請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31860
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明杰(Ming-Chieh Chen) | |
dc.contributor.author | Chih-Hsuan Shen | en |
dc.contributor.author | 沈志軒 | zh_TW |
dc.date.accessioned | 2021-06-13T03:22:29Z | - |
dc.date.available | 2007-06-16 | |
dc.date.copyright | 2006-08-01 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-28 | |
dc.identifier.citation | 1. 葛錦昭、楊炳炎、林淵霖、楊楚淇、漆陞忠,1978,台灣森林集水區經營試驗初步報告,林業試驗所試驗報告第304號,50頁。
2. 萬鑫森譯,1987,基礎土壤物理學,茂昌圖書有限公司,ch7、8、9、12。 3. 潘守文,1989,土壤熱交換的計算,小氣候考察的理論基礎及其應用,ch6,氣象出版社,中國北京。 4. 陳明杰,1991,集水區不同土地利用之土壤孔隙大小分佈之研究,中華林學季刊,24(4):93-101。 5. 夏禹九、黃良鑫、王立志、黃正良,1992,不同森林植被之淨輻射能與日輻射能關係,林業試驗所研究報告季刊7(4):371-374。 6. 何正品,1994,連華池森林集水區坡面土壤水分變化對降雨之反應,國立台灣大學森林學研究所碩士論文。 7. 鄭師中譯,1995,山岳天氣與氣候,國立編譯館,ch2、4。 8. 劉建廷,1996,土溫與能量收支特性之研究,國立中央大學大氣物理研究所碩士論文。 9. 姚榮鼐、陳信雄、魏聰輝,1999,塔塔加地區不同坡向日射量分布特性之探討,臺大實驗林研究報告13(1):21-36。 10. 陸象豫、唐凱軍、古秀宇、黃惠雪,2000,林業試驗所各林區氣候狀況,台灣林業科學15(3):429-440。 11. 盧惠生、林壯沛、黃良鑫,2000,蓮華池地區天然闊葉林不同土壤深度的溫度日週期變化,中華水土保持學報31(4):267-278。 12. 詹宜紋,2001,關刀溪森林集水區地表熱能收支之研究,國立中興大學水土保持系碩士論文。 13. 黃正良、廖學誠、陳明杰、金恆鑣、陸象豫,2002,蓮華池試驗林森林水文研究之回顧分析,台大實驗林研究報告16(2):95-14。 14. 魏聰輝,2002,塔塔加高山生態系表層土壤熱收支特性之研究,國立台灣大學森林學研究所博士論文。 15. 游繁結、詹宜紋、蔡志隆,2002,關刀溪森林集水區地表熱能收支之研究,中華水土保持學報33(2):151-160。 16. 竹下敬司,1985,森林土壤と水源かん养机能,森林立地5(2):19-26。 17. D. A. De Vries. 1952. A nonstationary method for determining thermal conductivity of soil in situ. Soil Sci. 73:83-89. 18. G. Al Nakshabandi and H. Kohnke. 1965. Thermal conductivity and diffusivity of soil as related to moisture tension and other physical properties. Agric. Meteorol, 2:271-279. 19. B. S. Ghauman, R. Lal. 1985. Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Sci. 139:74-80. 20. Hare, M. A., J. Ben-Asher, A. D. Matthias and A. W. Warrick. 1985. A simple method to evaluate daily positive soil heat flux. Soil Sci. Soc. Am. J. 49:45-47. 21. Hopmans, J. W. and J. H. Dane. 1985. Effect of temperature dependent hydraulic properties on soil water movement. Soil Sci. Soc. Am. J. 49:51-58. 22. W. J. van der Meulen and W. Klaassen. 1996. Soil heat flux measurement in an open forest. Phys. Chem. Earth. 21(3):101-105. 23. Poulovassilis, A. P. Kerkides, S. Alexandris, and S. Rizos. 1997. A contribution to the study of the water and energy balances of an irrigated soil profile. – A heat flux estimates. Soil & Tillage Research 45:189-198. 24. Bonan, Gordon B. 2002. Ecological climatology: Concepts and applications. Cambridge university press. PP:248-292. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31860 | - |
dc.description.abstract | 本研究的目的在於探討森林地區輻射能量的變化以及土壤的熱性質。以蓮華池五號集水區為試驗地,設置淨輻射計、土壤熱流量板,以及在不同深度埋設土壤溫度計、張力計。藉由自2005年五月至2006年四月收集到之淨輻射、土壤熱通量以及不同深度土壤溫度與土壤水分勢能資料的分析,探討本試驗地各項淨輻射、土溫、土壤熱能變化的特性,茲將研究結果摘要如下。
冬季因日射量及氣溫較低,地表長波輻射易由稀疏之樹冠層射出林外,因此林內淨輻射對林外淨輻射之比率較低。夏季降雨量多,土壤潮濕,潛熱通量較高,加上氣溫較高,顯熱通量亦高,故夏季土壤熱通量佔林內淨輻射量的比例非常低。而冬季則由於顯熱通量與潛熱通量較其它季節更低,且此時土壤熱通量為地表熱量的供應來源,因此佔林內淨輻射的比例也就相對較高。 淺層土壤溫度的日變化呈正弦曲線變化,土壤越深,則土壤溫度的正弦曲線變化其振幅越小,週期的起始也隨著土壤深度增加而延遲。試驗地於2005年九月至十月發生土溫的逆轉,土壤由吸熱狀態轉變為放熱狀態,一直到2006年三月到四月才又翻轉回來。 降雨時土壤水分勢能很快就能反應降雨的情況,其中以淺層土壤變化速度最快,在重力水(即pF值1.8以下)與毛管移動水的情形土壤熱傳導係數與土壤水分勢能具有明顯相關,土壤水分勢能越高,土壤熱傳導係數越高。在毛管水非移動水的情形土壤熱傳導係數與土壤水分勢能則沒有明顯相關。地表無有機物覆蓋處測得的土壤熱傳導係數平均值為1.095 Jm-1℃-1S-1,較有機物覆蓋處平均值0.5736Jm-1℃-1S-1大。地表無有機物覆蓋處測得的土壤熱傳導係數日變動的幅度也較無有機物覆蓋處高。 | zh_TW |
dc.description.abstract | This study is to investigate radiation energy variation and soil thermal properties in forest area. Experimental plot was selected in Lienhuachi experimental watershed No. 5. Radiometer, heat flux plate, and soil thermometers and tensiometers embedding at different depths were set. Data involving net radiation, soil temperature, and soil water potential were collected during May 2005 to April 2006. From analyzed data, the characteristics of net radiation within and without the forest, soil temperature, and soil thermal change with soil water situation were understood. Results are summarized as follows:
Decreasing solar radiation, decreasing air temperature, and defoliation during winter could cause earth radiation emission through out the canopy. Therefore, the net radiation ratio of within the forest to without the forest was lower. In summer, more latent heat flux and sensible heat flux caused relatively less proportion of soil heat flux to net radiation within the forest. In winter, latent heat flux and sensible heat flux were less than other seasons. Besides, soil heat flux became heat source of earth surface that could increase the proportion to net radiation. Daily soil temperature variation at the shallow part of soil appeared in sine curve. The amplitude of sine curve was decreasing with soil depth increasing. Also, the start of sine curve period delayed with soil depth increasing. During September to October 2005, the overturn of soil temperature occurred, soil heat from endothermic state converted to exothermic state. The process reverted to original state during March to April 2006. Among the rainfall occurred, it was therefore fair that soil water potential at the shallow part changed fastest. In gravitational water condition (pF value below 1.8) and in mobile capillary water condition, soil thermal conductivity would be significantly negative correlation with soil water potential, but in non-mobile capillary water condition, soil thermal conductivity would not be significantly correlation with soil water potential. The mean of the soil thermal conductivity obtained from non-organic matter covered surface was 1.095 Jm-1℃-1S-1, and that of the organic matter covered soils was 0.5736 Jm-1℃-1S-1. Furthermore, the daily variation amplitude of the soil thermal conductivity obtained from non-organic matter covered surface was larger than that of the organic matter covered surface. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:22:29Z (GMT). No. of bitstreams: 1 ntu-95-R92625004-1.pdf: 642997 bytes, checksum: 311f98aac71ad915273785788d9c4d74 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ 圖目次…………………………………………………………………Ⅴ 表目次…………………………………………………………………Ⅶ 壹、 前言……………………………………………………… 1 貳、 前人研究………………………………………………… 3 一、 輻射收支的研究………………………………………… 3 二、 森林地表能量收支的研究……………………………… 4 三、 土壤熱收支之各種特性………………………………… 5 四、 土壤水分移動特性……………………………………… 8 參、 試驗地自然環境概述……………………………………10 一、地理位置 ………………………………………………………10 二、地質與土壤 ……………………………………………………10 三、氣候特性 ………………………………………………………10 四、植群生態 ………………………………………………………10 五、試驗地點 ………………………………………………………10 肆、 研究材料及方法…………………………………………13 一、淨輻射資料收集 ………………………………………………13 二、土壤溫度資料收集 ……………………………………………14 三、表層土壤熱通量資料收集 ……………………………………14 四、土壤熱傳導係數之計算 ………………………………………15 五、土壤水分勢能觀測 ……………………………………………15 六、土壤物理性質試驗 ……………………………………………16 伍、 結果與討論………………………………………………17 一、 林內與林外能量收支的月變化與日變化………………17 二、 林內林外淨輻射與天氣狀況的關係……………………22 三、 土壤熱通量與林內淨輻射的關係………………………28 四、 土壤溫度之月變化與日變化……………………………30 五、 土壤溫度與土壤熱通量的關係…………………………37 六、 日雨量與土壤水分勢能日平均值的關係………………39 七、 降雨對應土壤水分勢能和土壤溫度的關係……………46 八、 土壤熱傳導係數之特性…………………………………48 九、 地表有機物覆蓋對熱傳導係數的影響…………………54 陸、 結論………………………………………………………56 柒、 參考文獻…………………………………………………58 | |
dc.language.iso | zh-TW | |
dc.title | 蓮華池試驗集水區淨輻射與土壤熱能變化特性之探討 | zh_TW |
dc.title | Studies on the characteristics of net radiation and soil heat variation in Lienhuachi Experimental Watershed | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳信雄,盧惠生,黃瓊 | |
dc.subject.keyword | 淨輻射,土壤熱通量,土壤溫度,土壤熱傳導係數, | zh_TW |
dc.subject.keyword | Net radiation,Soil heat flux,Soil temperature,Soil thermal conductivity, | en |
dc.relation.page | 59 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 627.93 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。