Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31792
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政忠,劉佩玲
dc.contributor.authorChung-Hao Hsuen
dc.contributor.author許中豪zh_TW
dc.date.accessioned2021-06-13T03:20:21Z-
dc.date.available2007-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citationReferences
1. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71, 2022 (1993).
2. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B.Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B 49, 2313 (1994).
3. M. S. Kushwaha and P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett. 64, 1085(1994).
4. Chunyin Qiu, Zhengyou Liu, Jing Shi and C. T. Chan, “Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals,” Appl. Phys. Lett. 86, 224105 (2005).
5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 58(20), 2059-2062 (1987).
6. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63(18), 1950-1953 (1989).
7. M. Sigalas and E. N. Ecconomou, “Elastic and acoustic wave band structure,” J. Sound Vib. 158, 377 (1992).
8. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett. 71, 2022 (1993).
9. M. S. Kushwaha and P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett. 64, 1085-1087 (1994).
10. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B 49, 2313-2322 (1994).
11. J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, M. S. Kushwaha, and P. Halevi, “Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems,” J. Phys.: Condens. Matter 6, 8759-8770 (1994).
12. M. Wilm, A. Khelif, S. Ballandras, and V. Laude, “Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials,” Phys. Rev. E 67, 065602 (2003).
13. C. Goffaux, and J. P. Vigneron, “Theoretical study of a tunable phononic band gap system,” Phys. Rev. B 64, 075118 (2001).
14. F. Wu, Z. Liu, and Y. Liu, “Acoustic band gaps in 2D liquid phononic crystals of rectangular structure,” J. Phys. D 35, 162-165 (2002).
15. F. Wu, Z. Liu, and Y. Liu, “Acoustic band gaps created by rotating square rods in a two-dimensional lattice,” Phys. Rev. E 66, 046628 (2002).
16. X. Li, F. Wu, H. Hu, S. Zhong, and Y. Liu, “Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites,” J. Phys. D: Appl. Phys. 36, L15-L17 (2003).
17. M. M. Sigalas, and E. N. Economou, “Attenuation of multiple-scattered sound,” Europhys. Lett. 36, 241-246 (1996).
18. M. S. Kushwaha, and P. Halevi, “Stop-bands for periodic metallic rods: Sculptures that can filter the noise,” Appl. Phys. Lett. 70, 3218-3220 (1997).
19. F. Wu, Z. Hou, Z. Liu, and Y. Liu, “Point defect states in two-dimensional phononic crystals,” Phy. Lett. A 292, pp. 198-202 (2001).
20. X. Li and Z. Liu, “Coupling of cavity modes and guiding modes in two-dimensional phononic crystals,” Solid State Communications 133, pp. 397-402 (2005).
21. Y. Tanaka and S. I. Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures,” Phys. Rev. B 58, 7958 (1998).
22. Y. Tanaka and S. I. Tamura, “Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer,” Phys. Rev. B 60, 13 294 (1999).
23. Tsung-Tsong Wu, Zi-Gui Huang, and S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy,” Phys. Rev. B 69,094301 (2004).
24. Tsung-Tsong Wu, Liang-Chen Wu, and Zi-Gui Huang, “Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers,” J. Appl. Phys., 97, 094916 (2005).
25. F. R. Montero de Espinosa, E. Jimenez, and M. Torres, “Ultrasonic Band Gap in a Periodic Two-Dimensional Composite,” Phys. Rev. Lett. 80, 1208 (1998).
26. M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, and N.Garcia, “Sonic Band Gaps in Finite Elastic Media: Surface States and Localization Phenomena in Linear and Point Defects,” Phys. Rev. Lett. 82, 3054 (1999).
27. M. Torres, F. R. Montero de Espinosa, and J. L. Aragon, “Ultrasonic Wedges for Elastic Wave Bending and Splitting without Requiring a Full Band Gap,” Phys.Rev. Lett. 86, 4282 (2001).
28. R. E. Vines J. P. Wolfe, and A. V. Every, “Scanning phononic lattices with ultrasound,” Phys. Rev. B 60, 11 871(1999).
29. R. E. Vines and J. P. Wolfe, “Scanning phononic lattices with surface acoustic waves,” Physica B 263–264, 567 (1999).
30. J. H. Sun and T.-T. Wu, “Analyses of mode coupling in joined parallel phononic crystal waveguides,” Phys. Rev. B 71, 174303 (2005).
31. I. Bulu, H. Caglayan, and E. Ozbay, “Highly directive radiation from sources embedded inside photonic crystals,” Appl. Phys. Lett. 83, 3263 (2003).
32. S. Enoch, B. Gralak, and G. Tayeb, “Enhanced emission with angular confinement from photonic crystals,” Appl. Phys. Lett. 81, 1588 (2002).
33. B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
34. R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir, M. M. Sigalas, and K. M. Ho, “Exceptionally directional sources with photonic-bandgap crystals,” J. Opt. Soc. Am. B 18, 1684 (2001).
35. Alterman, Z. S. and Karal, F. C. “Propagation of Elastic Waves in Layered Media by Finite Difference Method,” Bull. Seism. Soc. Am. 58, 367-398 (1968).
36. Bertholf, L. D. “Numerical solution for two-dimensional elastic wave propagation in finite bars,” J. Appl. Mech. 34, 725-734 (1967).
37. Y. Tanaka, Y. Tomoyasu, and S. I. Tamura, “Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch,” Phys. Rev. B, vol. 62, no. 11, pp. 7387–7392, (2000).
38. W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A highperformance, portable implementation of the MPI message passing interface standard,” Parallel Comput., vol. 22, pp. 789–828, (1996).
39. Po-Feng Hsieh, Tsung-Tsong Wu and Jia-Hong Sun, “Three-Dimensional Phononic Band Gap Calculations Using the FDTD Method and a PC Cluster System,” IEEE, J. Ultrasonics, Ferroelectrics and Freq. Control, 53 (1), 148-158 (2006).
40. Chunyin Qiu, Zhengyou Liu, Jun Mei, and Jing Shi, “Mode-selecting acoustic filter by using resonant tunneling of two-dimensional double phononic crystals,” Appl. Phys. Lett.87, 104101 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31792-
dc.description.abstractIn this thesis, we propose a design of a highly amplified directional acoustic source. The calculations in our work are based on the finite difference time domain (FDTD) method. A parallelized computation program with a message passing interface (MPI) is written and executed on a PC cluster system with 8 CPUs. The program is then adopted to calculate the dispersion relations, the transmission coefficients and the elastic field distribution throughout this thesis. We find that the order of the cavity resonant mode and the reflection coefficient of the phononic crystal slab are the key factors in designing a directional acoustic amplifier. In the design, the first order resonant mode of the cavity is highly recommended for obtaining a much higher amplification ratio. To obtain directional acoustic source, the first order resonant mode has to be tuned so as to be located in the complete band gap. Beyond that, the first resonant frequency is required to match with the highest reflection coefficient of the phononic crystal slab to obtain the highest amplification ratio. On the other hand, we demonstrate that a highly directive radiation source operates at the band edge of phononic crystals without requiring defect modes. The radiation pattern of a point source embedded inside phononic crystals strongly depends on the frequency and the crystal size. The findings of our study may be employed to improve the performance of certain devices such as sonars.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:20:21Z (GMT). No. of bitstreams: 1
ntu-95-R93543021-1.pdf: 1890956 bytes, checksum: 2402583380547f2772c3812fa3504bfb (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
致謝 I
Abstract II
Notations III
Contents VI
Figures VIII
Chapter 1 Introduction 1
1-1 Research motivation 1
1-2 Literature review 1
1-3 Contents of the chapter 3
Chapter 2 The FDTD Method and Theory of Phononic Crystals 5
2-1 Equation of the wave propagation and the FDTD method 5
2.1.1 Elastodynamic equation 6
2.1.2 Inner grids, source grids and boundary grids 10
2-2 The theory of the wave propagation in the phononic crystals 13
2.2.1 Bloch’s theorem and equation of the wave propagation 14
2.2.2 Bloch’s boundary condition 22
2-3 Parallel computing in the PC cluster system 25
Chapter 3 Analysis of A Directional Acoustic Source Based on The Resonant
Cavity of Two-Dimensional Phononic Crystals 30
3-1 Directional acoustic source 30
3-2 Transmission coefficients of the resonant cavity 32
3-3 Directional band structure of the superlattice 34
3-4 Amplitude distribution of the resonant cavity in the near field 35
3-5 Analysis of resonant modes in the cavity 36
Chapter 4 Design of A Highly Amplified Directional Acoustic Source Based
on The Resonant Cavity of Two-dimensional Phononic Crystals 45
4-1 Two important factors in the highly amplified directional acoustic source 45
4-2 Tuning the first order resonant frequency into the complete band gap 46
4-3 Amplification ratios versus resonant frequencies of first modes and second
modes 47
4-4 Amplification ratios versus different combinations of phononic slabs 48
Chapter 5 Highly Directive Radiation from A Point Source Embedded inside Phononic Crystals 89
5-1 The property of the band edge of the complete band gap 89
5-2 Restricting the emission of a point source in a small angular region 91
5-3 The radiation patterns versus the radiation frequencies near the upper band
edge 92
5-4 The radiation patterns versus various crystal widths 92
5-5 The radiation patterns versus various crystal lengths 92
Chapter 6 Conclusions and Future Works 101
6-1 Conclusions 101
6-2 Future works 104
References 105
dc.language.isoen
dc.subject頻緣zh_TW
dc.subject聲子晶體zh_TW
dc.subject聲波放大器zh_TW
dc.subject頻溝zh_TW
dc.subjectPhononic crystalen
dc.subjectBand edgeen
dc.subjectBand gapen
dc.subjectAcoustic amplifieren
dc.title二維聲子晶體於高方向性
聲波放大器之分析與設計
zh_TW
dc.titleAnalysis and Design of A Highly Directional Acoustic Amplifier Based on Two-Dimensional Phononic Crystalsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭茂坤
dc.subject.keyword聲子晶體,聲波放大器,頻溝,頻緣,zh_TW
dc.subject.keywordPhononic crystal,Acoustic amplifier,Band gap,Band edge,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved