Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31791
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政忠(Tsung-Tsong Wu)
dc.contributor.authorJun-Yi Wuen
dc.contributor.author吳俊億zh_TW
dc.date.accessioned2021-06-13T03:20:20Z-
dc.date.available2007-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citationReferences
1. Yu-He Chiang, “The Study of Smart Humidity Sensors” , Master of F. C. university (2001)
2. 洪永杰,“HIH系列溼度感測元件使用說明”, http://designer.mech.yzu.edu.tw
3. H. Wohltjen, R. Dessy, “ Surface acoustic wave probe for chemical analysis”, Anal. Chem 51, p1458~1478 (1979)
4. H. Wohltjen,” Mechanism of operation and design consideration for surface acoustic wave device vapour sensors ”, Sensors and Actuators 5, p307~324 (1984)
5. S. G. Joshi, J. G. Brace, “ Measurement of humidity using surface acoustic waves”, Proc. IEEE Ultrasonics Symp., San Francisco, CA, U.S.A., p600~602 (1985)
6. M. . NIEUWENHUIZEN, A. J. NEDERLOF, “A SAW Gas Sensor for Carbon Dioxide and Water. Preliminary Experiments”, Sensors and Actuators B 2, p97~101 (1990)
7. T. Nomura, K. Oofuchi, T. Yasuda, S. Furukawa, “ SAW humidity sensor using dielectric hygroscopic polymer film “, IEEE Ultra. Symp., p503~506 (1994)
8. Kofi Korsah, C.L. Ma, Bill Dress,” Harmonic frequency analysis of SAW resonator chemical sensors: application to the detection of carbon dioxide and humidity”, Sensors and Actuators B 50, p110~116 (1998)
9. Edmilson R. Braga, Alberto Y. Nakano, “ A SAW resonator sensor system employed in humidity measurements ”, SBMO/IEEE MTT-S IMOC’99 Proc, p342~345 (1999)
10. M. Penza, G. Cassano, “ Relative humidity sensing by PVA-coated dual resonator SAW oscillator”, Sensors and Actuators B 68, p300~306, (2000)
11. Wang, S. M. (2002), “The design and measurement of an IF SAW filter,” Master thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
12. Lin, G. M. (2003), “Analysis of RF Wide Band Layered SAW filter Using Slanted Finger Interdigital Transducer”, Master thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
13. Abbott, B. P., “A Coupling-of-Modes Model for SAW Transducers With Arbitrary Reflectivity Weighting,” Ph.D. dissertation, the Department of Electrical Engineering at the University of Central Florida Orlando, Florida (1989).
14. Abbott, B. P., Hartmann, C. S. and Malocha, D. C., “A Coupling-of-Modes Analysis of Chirped Transducers Containing Reflective Electrode Geometries,” Proc. IEEE Ultra. Symposium, pp.129 ~134, (1989).
15. Abbott, B. P., “A Derivation of the Coupling-of-Modes Parameters Based on the Scattering Analysis of SAW Transducers and Gratings,” Proc. IEEE Ultra. Symposium, pp. 5~10, (1991) .
16. Abbott, B. P., Hartmann, C. S. and Malocha, D. C., “Transduction Magnitude and Phase for COM Modeling of SAW Devices,” IEEE Transactions on Ultrasonics, Ferroelectics, and Freq.Contr., vol. 39, Jan., pp. 54~60, (1992)
17. Ming-Sheng Young, “ Characteristics of Surface Acoustic Wave Sensor”, Master of National C.K. university (2002)
18. Siemens Matsushita Components, “Principles of SAW-stabilized oscillators and transmitters”
19. Ron F. Schmitt, John W. Allen, Randy Wright, “Rapid design of SAW oscillator electronics for sensor applications”, Sensors and Actuators B 76, p80~85, (2001)
20. Mini-Circuits, “biasing MMIC amplifiers”
21. Jay W. Grate, Mark Klusty, “ Surface acoustic Wave Vapor Sensors Based on Resonator Devices”, Anal. Chem. 63, p1719~1727, (1991)
22. A. Snow, H. Wohtjen,” Poly(ethylene maleate)-cyclopentadiene: a
model reactive polymer–vapor system for evaluation of a SAN
microsensor”, Anal. Chem. 56 , p1411–1416. (1984)
23. Relative humidty: http://en.wikipedia.org/wiki/Relative_humidity
24. C. Caliendo, A. D’Amico, P. Verardi, E. Verona, “ Surface acoustic wave H2 sensor on silicon substrate ”, IEEE Ultra. Symp. , p569~574 (1988)
25. Wieslaw Jakubik, “ Hydrogen detection in Surface Acoustic Wave gas sensor based on interaction speed ”, IEEE, p1514~1517 (2004)
26. Samuel J. Ippolito, Sasikaran Kandasamy, “ A layered Surface Acoustic Wave ZnO/LiTaO3 structure with a WO3 selective layer for hydrogen sensing “, Sensor Letters Vol. 1, p1~4 (2003)
27. Samuel J. Ippolito, S. Kandasamy, K. Kalantar-Zadeh, W. Wlodarski, “ Layered SAW hydrogen sensor with modified tungsten trioxide selective layer “, Sensors and Actuators B 108, p553~557 (2005)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31791-
dc.description.abstractWith the development of industries, there is a growing need for sensitive, accurate, and inexpensive sensors of measuring relative humidity. Humidity sensors are expected for a broad spectrum of applications in meteorology, chemical industry, process control, medical instrument, agriculture, and etc. A good sensor should be characterized by high sensitivity, wide dynamic range, fast response, good reproducibility, easy interface electronics, small size, and minimum cost. It is hard for single sensing system matches all these criterions. However, surface acoustic wave ( SAW) sensing devices are promising candidates to pursue the above goals.
In this thesis, the 145MHz based SAW resonator is fabricated and integrated with the amplifier to form a SAW-based oscillator. To function as a humidity sensor, hygroscopic polymer polyethylenimine is coated on the delay line of the resonator as sensing film by airbrush method. Moreover, dual delay line configuration is constructed for the common mode rejection for external influences such as temperature, drift, etc. Then, the sensing devices are exposed to repeated cycles with various relative humidity to investigate the performances including sensitivity, reproducibility, and repeatability. The results reveal good linearity between frequency shifts and various relative humidity and enough short-term repeatability.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:20:20Z (GMT). No. of bitstreams: 1
ntu-95-R93543010-1.pdf: 1677991 bytes, checksum: 5cb74216802839e912a2a16695c08e7f (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsAcknowledgements I
Abstract II
Lists of Notations III
Table of Contents V
List of Figures VII
List of Tables IX
Chapter 1 Introduction 1
1-1 Research Motivation 1
1-2 Classification of Humidity Sensors 2
1-3 Literature Review 3
1-4Contents of the Chapters 4
Chapter 2 Abbott COM & Principles of SAW Sensor 7
2-1 Coupling-of- Modes Model 7
2-1.1 First Order Wave Equations 7
2-1.2 Propagation Loss 9
2-1.3 Reflectivity Coupling 10
2-1.4Transduction Coupling 13
2-1.5 [P] Matrix 15
2-1.6 Simulation of Two-Port SAW Filter 19
2-2 Principles of SAW Sensor 22
2-2.1 Mass Loading Effect 23
2-2.2 Chemically Interactively Film 24
2-2.3 Sensitivity 25
Chapter 3 Preparation of SAW Sensor System 32
3-1 Principles of SAW-based Oscillators 32
3-1.1 Oscillators with Two-port Resonators 33
3-1.2 Fabrication of the SAW Resonator 34
3-1.3 Design of the Amplifier 36

3-2 Dual Delay Line Configuration 38
3-3Deposition of Chemically Interactive Film 39
3-3.1 Selection of Sensing Film 40
3-3.2 Spray-Coated Polymer Filmr 40
3-4 Gas Flow System for Various Relative Humidity 41
Chapter 4 Construction of SAW Sensor System & Humidity Measurements 51
4-1 Fabrication of SAW sensor 51
4-1.1 Measurement of SAW oscillator 51
4-1.2 Measurement of Dual Delay Line Configuration 52
4-2 Deposition of Hygroscopic Film 52
4-3 Temperature Effect on SAW Sensor 53
4-4 Interface of Data Acquisition & Real-time Visualization 54
4-5 Measurements of Sensors toward Various RH 55
4-5.1 Repeatability 55
4-5.2 Sensitivity 56
4-5.3 Noise & Limit of Detection 58
Chapter 5 Conclusions and Future Work 71
5-1 Conclusions 71
5-2 Future work 72
References 73
dc.language.isoen
dc.subject靈敏度zh_TW
dc.subject表面聲波zh_TW
dc.subject共振器zh_TW
dc.subject溼度感測器zh_TW
dc.subject聚乙基亞胺zh_TW
dc.subject噴槍zh_TW
dc.subjectSensitivityen
dc.subjectSurface acoustic waveen
dc.subjectResonatoren
dc.subjectHumidity sensoren
dc.subjectPolyethylenimineen
dc.subjectAirbrushen
dc.title128°YX-LiNbO3基底表面聲波式溼度感測器之研究zh_TW
dc.titleStudy of 128°YX-LiNbO3 Based Surface Acoustic Wave Humidity Sensoren
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉佩玲(Pei-Ling Liu),郭茂坤(Mao-Kueng Kuo)
dc.subject.keyword表面聲波,共振器,溼度感測器,聚乙基亞胺,噴槍,靈敏度,zh_TW
dc.subject.keywordSurface acoustic wave,Resonator,Humidity sensor,Polyethylenimine,Airbrush,Sensitivity,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved