請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31789完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 杜宜殷(Yi-Yin Do) | |
| dc.contributor.author | Yung-Chen Lin | en |
| dc.contributor.author | 林運辰 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:20:16Z | - |
| dc.date.available | 2007-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-28 | |
| dc.identifier.citation | 1. 李瑋祥. 2003. 香蕉基因表現載體之構築與暫時性表達分析. 國立台灣大學園藝系碩士論文.
2. 汪雅瑩. 2003. 香蕉重泛素基因之選殖與啟動子活性分析. 國立台灣大學園藝系碩士論文. 3. 陳怡蒨. 1996. 香蕉β-1,3-葡聚醣酶基因之選殖與分析. 國立台灣大學園藝系碩士論文. 4. 黃卓君. 2000. 香蕉泛素基因之選殖與分析. 國立台灣大學園藝系學士論文. 5. Abel, S., N. Balla, L. -M. Wong, and A. Theologis. 1996. DNA elements responsive to auxin. Bioassays 18: 647-654. 6. Ang, L. H, and X. W. Deng. 1994. Regulatory hierarchy of phtomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6: 613-628. 7. Annadana, S., M. J. Beekwilder, G. Kuipers, P. B. Visser, N. Outchkourov, A. Pereira, M. Udayakumar, J. De-Jong, and M. A. Jongsma. 2002. Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema grandiflora. Transgenic Res. 11: 437-445. 8. Binet, M. N., J. H. Wei, and L. H. Tessier. 1991. Structure and expression of sunflower ubiquitin genes. Plant Mol. Biol. 17: 395-407. 9. Bostick, M., S. R. Lochhead, A. Honda, S. Palmer, J. Callis. 2004. Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling and ethylene production in Arabidopsis. Plant Cell 16: 2418-2432. 10. Burke, T., J. Callis, and R. D. Vierstra. 1988. Characterization of a polyubiquitin gene from Arabidopsis thaliana. Mol. Gen. Genet. 213: 435-443. 11. Boyes, D., A. M. Zayed, R. Ascenzi, A. J. McCaskill, N. E. Hoffman, K. R. Davis, and J. Goerlach. 2001. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13: 1499-1510. 12. Callis, J., T. Carpenter, C. W. Sun, and R. D. Vierstra. 1995. Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics: 139: 921-939. 13. Callis, J., J. A. Raasch, and R. D. Vierstra. 1990. Ubiquitin extension proteins of Arabidopsis thaliana: structure, localization, and expression of their promoters in transgenic tobacco. J. Biol. Chem. 265: 12486-12493. 14. Callis, J., L. Pollamann, J. Shanklin, M. Wettern and R. D. Vierstra. 1989. Sequence of a cDNA from Chlamydomonas renhardii encoding a ubiquitin 52 amino acid extension protein. Nucleic Acid Res. 17:8377. 15. Cazzonelli, C., E. J. McCallum, R. Lee, and J. R. Botella. 2005. Characterization of a strong, constitutive mung bean (Vigna radiate L.) promoter with a complex mode of regulation in planta. Transgenic Res. 14: 941-967. 16. Chaboute, M. E., B. Clement, M. Sekine, G. Philipps, and N. C. Gigot. 2000. Cell cycle regulation of tobacco ribonucleotide reductase small subunit gene is mediated by E2F-like elements. Plant Cell 12: 1987-1999. 17. Chattopadhyay, S., P. Puente, X. Wang, and N. Wei. 1998. Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis. Plant J. 15: 69-77. 18. Christensen, A., R. A. Sharrock, and P. H. Quail. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675-689. 19. Deng, X. W., T. Caspar, and P H. Quail. 1991.cop1: a regulatory locus involved in light-dependent development and gene expression in Arabidopsis. Genes Dev. 5: 1172-1182. 20. Deng, X. W., M. Matsui, N. Wei, D. R. Wagner, D. M. Chu, K. A. Feldmann, and P. H. Quail. 1992. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71: 791-801. 21. Deshaies, R. J., V. Chau, and M. Kirschner. 1995. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J. 14: 303-312. 22. Finley, D., B. Bartel, and A. Varshavsky. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338: 394-401. 23. Genschik, P., J. Marbach, M. Uze, M. Feuerman, B. Plesse, and J. Fleck. 1994. Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene 148: 195-202. 24. Gilmartin, P. and N. H. Chua. 1990. Spacing between GT-1 binding sites within a light-responsive element is critical for transcription activity. Plant Cell 2: 447-455. 25. Hersho, A., A. Ciechanover, and I. A. Rose. 1981. Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J. Biol.Chem. 256: 1525-1528. 26. Johnnalagadda, S., T. R. Butt, J. Marsh, E. J. Sternberg, C. K. Mirabelli, D. J. Ecker, and S. T. Crooke. 1987. Expression and accurate processing of yeast penta-ubiquitin in Escherichia coli. J. Biol. Chem. 262: 17750-17756. 27. Johnson, E. S., I. Schwienhortst, R. J. Dohmen, and G. Blobel. 1997. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16: 5509-5519. 28. Kawalleck, P., I. E. Somssich, M. Feldbruegge, K. Hahlbrock, and B. Weisshaar. 1993. Polyubiquitin gene expression and structural properties of the ubi4-2 gene in Petroselinum crispum. Plant Mol. Biol. 21: 673-684. 29. Kim, Y. J., S. H. Lee, and K. Y. Park. 2004. A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco. FEBS Lett. 578: 229-235. 30. Liscum, E., D. W. Hodgson, and T. J. Campbell. 2003. Blue light signaling through the cryptochromes and phototropins. So that’s what the blues is all about. Plant Physiol. 133: 1429-1436. 31. Leubner-Metzger, G. and F. J. Meins. 2001. Sense transformation reveals a novel role for class I β-1,3-glucanases in tobacco seed germination. Plant J. 23: 215-221. 32. Lund, P. K., B. M. Moats-Staats, J. G. Simmons, E. Hoyt, A. J. D’Ercole, F. Martin, and J. J. Van Wyk. 1985. Nucleotide sequence analysis of cDNA encoding human ubiquitin reveals that ubiquitin is synthesized as precursor. J. Biol. Chem. 260: 7609-7613. 33. Montoya, T., T. Nomura, T. Yokota, K. Farrar, K. Harrison, J. G. D. Jones, T. Kaneta, Y. Kamiya, M. Szekeres, and G. J. Bishop. 2005. Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J. 42: 262-269. 34. Norris, S. R., S. E. Meyer, and J. Callis. 1993. The intron of Arabidopsis thaliana ployubiquitin genes is conserved in location and is quantitative determinant of chimeric gene expression. Plant Mol. Biol. 21: 895-906. 35. Oezkaynak, E., D. Finley, M. J. Solomon, and A. Varshavsky. 1987. The yeast ubiquitin genes: a family of natural gene fusion. EMBO J. 6: 1429-1439. 36. Osterlund, M. K. and X. M. Deng. 1998. Multiple photoreceptors mediate the light induced reduction of GUS-COP1 from Arabidopsis hypocotyls nuclei. Plant J. 16: 201-208. 37. Osterlund, M. T., N. W. Hardtke, and X. W. Deng. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462-466. 38. Parks, B. M. 2003. The red side of photomorphogenesis. Plant Physiol. 133: 1437-1444. 39. Plesse, B., M. C. Criqui, A. Durr, Y. Parmentier, J. Fleck and P. Genschik. 2001. Effect of the polyubiquitin gene UbiU4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol. Biol. 45: 655-667. 40. Rao-Naik, C., W. delaCruz, J. M. Laplaza, S. Tan, J. Callis. 1998. The Rub family of ubiquitin-like proteins: crystal structure of Arabidopsis RUB1 and expression of multiple RUBs in Arabidopsis. J. Biol. Chem. 273: 34976-34982. 41. Rodrigues-Pousada, R. A., R. De Rycke, A. Dedonder, W. Van Caeneghem, G. Engler, M. Van Montagu, and D. Van Der Straeten. 1993. The Arabidopsis 1-Aminocyclopropane-1-Carboxylase Synthase gene 1 is expressed during early development. Plant Cell 5: 897-911. 42. Rollfinke, I., M. V. Silber, and U. M. Pfitzner. 1998. Characterization and expression of a heptaubiquitin gene from tomato. Gene 211: 267-276. 43. Salvesen, G., C. Lloyd, and D. Farley. 1987. cDNA encoding a human homolog of yeast ubiquitin 1. Nucleic Acid Res. 15: 5485. 44. Schlesinger, M. J. and U. Bond. 1987. Ubiquitin genes. Oxf. Surv. Eukaryotic Genes 4: 77-89. 45. Schwarz, S. E., K. Matuschewski, D. Liakopoulos, M. Scheffner, and S. Jentsch. 1998. The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc. Natl. Acad. Sci. USA 95: 560-564. 46. Schwechheimer, C. and L. I. A. C. Villalobos. 2004. Cullin-containing E3 ubiquitin ligase in plant development. Curr. Opin. Plant Biol. 7: 677-686. 47. Shen, Q. and T. H. D. Ho. 1995. Functional dissection of and abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295-307. 48. Skowyra, D., K. L. Craig, M. Tyers, S. J. Elledge, and J. W. Harper. 1997. F-Box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209-219. 49. Sun, C. W. and J. Callis. 1997. Independent modulation of Arabidopsis thaliana polyubiquitin mRNA in different organs and in response to environmental changes. Plant J. 11: 1017-1027 50. Sun, C. W. and J. Callis. 1993. Recent stable insertion of mitochondrial DNA into an Arabidopsis polyubiquitin gene by non-homologous recombination. Plant Cell 5: 97-107. 51. Tsuchisaka, A. and A. Theologis. 2004. Unique and overlapping expression patterns among the Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136: 2982-3000. 52. Wang, J. and J. H. Oard. 2003. Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. Plant Cell Rep. 22: 129-134. 53. Wang, J., J. Jiang, and J. H. Oard. 2000. Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). Plant Sci. 156: 201-211. 54. Wang, S., J. W. Wang, N. Yu, C. H. Li, J. Y. Gou, L. J. Wang, and X. Y. Chen. 2004. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16: 2323-2334. 55. Worley, C., N. Zenser, J. Ramos, D. Rouse, O. Leyser, A. Theologis, and J. Callis. 2000. Degradation of Aux/IAA proteins is essential for normal auxin signaling. Plant J. 21: 553-562. 56. Ulmasov, T., G. Hagen, T. J. Guilfoyle. 1997. ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865-1868. 57. Yadav, V., S. Kundu, D. Chattopadhyay, P. Negi, N. Wei, X. W. Deng, and S. Chattopadhyay. 2002. Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5, in Arabidopsis. Plant J. 31: 741-753. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31789 | - |
| dc.description.abstract | 為了分析香蕉重泛素基因Mh-UBQ3、Mh-UBQ4及beta-1,3-葡聚醣酶基因Mh-BGL1啟動子之表現活性,將五個基因轉譯起始點上游長度不等的5’-flanking 區域分別構築至轉殖載體,連接報導基因GUS並以農桿菌轉殖至阿拉伯芥及菸草進行分析。在阿拉伯芥苗期發育階段方面,Mh-UBQ3基因啟動子則在各發育階段,均維持不表現之特性,此外,其在菸草轉殖植株亦不表現; Mh-UBQ4基因啟動子在子葉的表現會明顯受到不同苗期發育階段之影響,當新葉萌發時,於子葉的表現活性會明顯提升,而後其表現活性隨新生葉之展開而降低,而於新生之真葉則具有高表現活性;而Mh-UBQ4啟動子在菸草幼苗中,僅會表現於上胚軸靠近生長點之周圍,且不隨發育而改變;在Mh-BGL1啟動子方面,在苗期時為專一地表現的於子葉與上胚軸相連處,且隨子葉展開角度之增加,其表現活性亦隨之提升,在菸草幼苗中,Mh-BGL1啟動子亦有相同之表現。在成熟植株中的組織特異性方面, Mh-UBQ4動子在阿拉伯芥方面,主要在發育早期之花序葉及花苞,或老化之蔟生葉及發育後期之花苞有較強之表現活性,而於成熟之蔟生葉的表現活性則相對較低;而Mh-UBQ4啟動子在菸草中,仍表現於莖頂靠近生長點處,手切片顯示,其表現分布位置與木質部類似,此外,於根尖及側根尖端均有表達之活性。Mh-BGL1啟動子在阿拉伯芥中,主要表現於器官與器官相連接處、成熟果莢之胎做框(replum)及葉面及花序莖表面的毛狀體;而在菸草中,Mh-BGL1基因啟動子表現於老化之葉片。
植物生長調節劑誘導試驗方面,Mh-UBQ1啟動子會受IAA、BA、ABA、GA3、2,4-D、SA、Me-JA及ethylene之誘導而促進表現活性; Mh-UBQ2啟動子同樣會受IAA、BA、ABA、GA3、2,4-D、SA、Me-JA及ethylene之誘導而促進表現活性;Mh-UBQ3在本試驗中則不受任何處理之誘導;Mh-UBQ4啟動子方面,IAA、BA、GA3及2,4-D不影響啟動子之表現活性,ethylene及SA處理則會進啟動子的表現活性,而ABA及Me-JA則會抑制啟動子的表現活性;Mh-BGL1啟動子方面,IAA、BA、ABA、2,4-D、SA及Me-JA會抑制啟動子的表現活性,GA3及ethylene則會促進啟動子的表現活性。 非生物性誘導物誘導試驗方面,Mh-UBQ1啟動子會受乾旱及高鹽處理之誘導表現,創傷、低溫、暗及低溫及暗處理則不影響表現活性,高溫及淹水處理則會抑制表現活性。Mh-UBQ2啟動子則會受高鹽、創傷、低溫及暗處理及高溫處理誘導表現活性,乾旱、暗及低溫則不影響其表現活性,淹水處理則抑制其表現。Mh-UBQ3啟動子仍不表現。Mh-UBQ4啟動子方面,創傷、暗及高溫處理會促進其表現活性,乾旱、高鹽及低溫則不影響其表現活性。 | zh_TW |
| dc.description.abstract | To analyze promoter activity of banana polyubiquitin Mh-UBQ3, Mh-UBQ4 and beta-1,3-glucanase Mh-BGL1 genes, 5’-flanking region upstream translation start codon of each gene was constructed into stable transformation vector to drive reporter gene β-glucuronidase (GUS). Then, these expression vectors were transformed into Arabidopsis and tobacco. Results of GUS histochemical analysis for both of Arabidopsis and tobacco transgenic plants reveals that each promoter expressed differentially in tissues and development stages. No detactable expression activity was observed in Mh-UBQ3::GUS transgenic plants for both Arabidopsis and tobacco. In Mh-UBQ4::GUS transgenic plants, expression pattern in cotyledon was greatly affected during seedling development, while it always had strong expression activity in the newly born leaves. GUS expression in Mh-BGL1::GUS transgenic plants was tissue and developmental specific. When cotyledons was encloed, expression in the junction site of cotyledons and hypocotyls was weak. As it expanded, expression activity was gradually eleveated.
Result of treatment analysis indicated that expression activity of Mh-UBQ1 gene promoter could be induced by plant growth regulators IAA, BA, ABA, GA3, 2,4-D, SA, and Me-JA and by abiotic stimuli such as drought and high salt. Expression activity of Mh-UBQ2 gene promoter could be induced by palnt growth regulators such as IAA, BA, ABA, GA3, 2,4-D, SA, and Me-JA and by abiotic stimuli like high salt, wounding, cold and dark, and heat. Expression activity of Mh-UBQ3 gene promoter was not induced by any treatment in the experiment. Expression activity of Mh-UBQ4 gene promoter could be induced by plant growth regulators SA and ethylene and by abiotic stimule like dark and heat while repressed by ABA and Me-JA. Promoter activity of Mh-BGL1could be indeuced by GA3 and ethylene but repressed by IAA, BA, ABA, 2,4-D, SA, and Me-JA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:20:16Z (GMT). No. of bitstreams: 1 ntu-95-R93628108-1.pdf: 2881000 bytes, checksum: 573af6256d678fc0e87c7e00a1a3cd14 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 摘要 6
Abstract 8 前言 9 壹、 前人研究 10 一、 泛素的功能與角色 10 (一) 泛素基因的種類及特性 10 (二) 泛素基因的表現 12 (三) 泛素作用的模式 13 (四) 泛素所參與的植物生理反應 14 二、 beta-1,3-葡聚醣酶的功能 16 三、 影響啟動子活性的因子 17 四、 啟動子活性分析的方法 20 貳、 材料與方法 22 一、 試驗材料 22 (一)香蕉重泛素基因啟動子之來源 22 (二)香蕉beta-1,3-葡聚醣酶基因啟動子來源 22 (三)植物材料 22 二、 試驗方法 24 (一)轉殖載體之構築 24 1. Mh-UBQ2啟動子轉殖質體之構築 24 2. Mh-UBQ3啟動子轉殖質體之構築 24 3. Mh-UBQ4啟動子轉殖質體之構築 24 4. 雙股DNA3’突出末端切平反應 25 5. 接合反應 25 6. 穩定轉殖質體之小量DNA製備 25 7. 構築載體之檢測 25 8. 代轉型大腸桿菌細胞之製備 30 9. 大腸桿菌之轉型 30 10. 大量質體DNA之製備 30 (一) 農桿菌之轉型與檢測 31 1. 待轉型農桿菌之製備 31 2. 電穿孔轉型農桿菌 32 3. 農桿菌質體DNA抽取及檢測 32 (二) 阿拉伯芥的轉殖與篩選 33 1. 阿拉伯芥轉殖 33 2. 阿拉伯芥轉殖種子篩選 34 (三) 菸草的轉殖與篩選 34 1. 菸草葉圓片轉殖與篩選 34 2. 菸草轉殖株種子篩選 34 (一) GUS活性組織化學染色法 35 (二) 植物基因組DNA抽取 35 (三) 核酸探針之製備與標定反應 36 (四) 南方氏雜交反應 36 (五) 不同發育階段基因表現情形 36 (六) 植物荷爾蒙誘導處理 37 (七) 非生物性誘導物處理 38 參、 結果 39 一、 阿拉伯芥及菸草轉殖之轉殖 39 (一) 阿拉伯芥之轉殖 39 (二) 菸草轉殖植株南方氏雜交分析 39 二、 香蕉重泛素基因啟動子活性分析 45 (一) 生長發育階段對啟動子表現活性及組織特異性之影響 45 (二) 啟動子表現活性之比較 67 (三) 植物荷爾蒙誘導處理對啟動子活性之影響 71 (四) 非生物性誘導處理對啟動子活性之影響 79 三、 香蕉beta-1,3-葡聚醣酶啟動子活性分析 85 (一) 生長發育階段對啟動子表現活性之影響及組織表現特異性 85 (二) 植物生長調節劑對beta-1,3-葡聚酶基因啟動子表現活性之影響 88 (三) 非生物性誘導物處理對啟動子活性之影響 88 肆、 討論 92 一、 香蕉重泛素基因啟動子於不同發育階段及組織部位之表現特性 92 二、 香蕉重泛素基因啟動子之誘導因子 92 三、 Mh-BGL1之啟動子特性及基因可能功能 93 四、 啟動子表現活性之比較 94 伍、參考文獻 95 圖1、香蕉Mh-UBQ2~4基因啟動子穩定性轉殖質體構築策略……………… 26 圖2、菸草Mh-UBQ1::GUS轉殖植株南方氏雜交分析………………………… 41 圖3、菸草Mh-UBQ2::GUS轉殖植株南方氏雜交分析………………………… 43 圖4、菸草Mh-UBQ3::GUS轉殖植株南方氏雜交分析………………………… 46 圖5、菸草Mh-UBQ4::GUS轉殖植株南方氏雜交分析………………………… 48 圖6、菸草Mh-BGL1::GUS轉殖植株南方氏雜交分析………………………… 50 圖7、香蕉重泛素基因Mh-UBQ3及Mh-UBQ4啟動子於不同發育期之阿拉伯芥轉殖植株中之表現情形………………………………………………………… 52 圖8、香蕉重泛素基因Mh-UBQ3及Mh-UBQ4啟動子於株齡5天大之阿拉伯芥轉殖植株中細部表現情形……………………………………………………… 55 圖9、香蕉重泛素基因Mh-UBQ3及Mh-UBQ4啟動子於株齡7天之阿拉伯芥轉殖植株中細部表現情形………………………………………………………… 56 圖10、香蕉重泛素基因Mh-UBQ3及Mh-UBQ4啟動子於株齡14天大之阿拉伯芥轉殖植株中細部表現情形…………………………………………………… 57 圖11、香蕉重泛素基因Mh-UBQ3及Mh-UBQ4啟動子於阿拉伯芥轉殖植株全株表現之情形………………………………………………………… 60 圖12、香蕉重泛素基因Mh-UBQ3及Mh-UBQ4啟動子於阿拉伯芥轉殖植株之組織表現特異性…………………………………………………………………… 61 圖13、香蕉重泛素基因Mh-UBQ4啟動子於不同發育期之菸草R1轉殖植株中之表現情形………………………………………………………………………… 63 圖14、香蕉重泛素基因Mh-UBQ3及Mh-UBQ4啟動子於菸草成熟植株中之表現情形……………………………………………………………………………… 64 圖15、香蕉重泛素基因Mh-UBQ4::GUS於不同發育階段之阿拉伯芥花器表現情形………………………………………………………………………………… 65 圖16、香蕉重泛素基因Mh-UBQ4::GUS於不同發育階段之阿拉伯芥轉殖植株的果莢表現情形…………………………………………………………………… 68 圖17、不同發育階段啟動子表現強弱之比較…………………………………... 70 圖18、不同植物生長調節劑及非生物性誘導物對Mh-UBQ1基因啟動子之活性影響……………………………………………………………………………… 72 圖19、乙烯及不同非生物性誘導物對Mh-UBQ1基因啟動子之活性影響…… 73 圖 20、不同濃度之植物生長調節劑對Mh-UBQ1基因啟動子活性之影響…… 74 圖21、不同植物生長調節劑及非生物性誘導物對Mh-UBQ2基因啟動子之活性影響……………………………………………………………………………… 76 圖22、乙烯及不同非生物性誘導物對Mh-UBQ2基因啟動子之活性影響……. 77 圖23、不同濃度之植物生長調節劑對Mh-UBQ2基因啟動子活性之影響…… 78 圖24、不同植物生長調節劑及非生物性誘導物對Mh-UBQ3基因啟動子之活性影響……………………………………………………………………………… 80 圖25、乙烯及不同非生物性誘導物對Mh-UBQ3基因啟動子之活性影響……. 81 圖26、不同植物生長調節劑及非生物性誘導物對Mh-UBQ4基因啟動子之活性影響……………………………………………………………………………… 82 圖27、乙烯及不同非生物性誘導物對Mh-UBQ4基因啟動子之活性影響…… 83 圖28、乾旱及創傷處理對Mh-UBQ1~4基因啟動子的表現組織特異性之影響. 84 圖29、香蕉Mh-BGL1基因啟動子於不同發育階段之表現情形……………… 86 圖30、香蕉Mh-BGL1基因啟動子之表現組織特異性………………………… 89 圖31、不同植物生長調節劑及非生物性誘導物對Mh-BGL1基因啟動子之活性影響……………………………………………………………………………… 91 表1、香蕉重泛素及β-1,3-葡聚醣酶基因啟動子構築名稱對照表……… 23 表2、香蕉重泛素基因啟動子Mh-UBQ1::GUS、Mh-UBQ2::GUS、Mh-UBQ3::GUS、Mh-UBQ4::GUS及Mh-BGL1::GUS之阿拉伯芥T2轉殖植株遺傳率分析………………………………………………………………………… 40 表3、香蕉重泛素基因Mh-UBQ1~4::GUS於七天大之阿拉伯芥T3轉殖株中之表現情形…………………………………………………………………………… 54 表4、香蕉重泛素基因Mh-UBQ1~4::GUS於成熟之阿拉伯芥T3轉殖株中之表現情形………………………………………………………………………………. 59 表5、香蕉重泛素基因Mh-UBQ1~4::GUS於成熟之阿拉伯芥T3轉殖株花器不同發育階段的表現情形…………………………………………………………… 66 表6、香蕉重泛素基因Mh-UBQ1~4::GUS於成熟之阿拉伯芥T3轉殖株不同發育階段之果莢的表現情形………………………………………………………… 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 啟動子 | zh_TW |
| dc.subject | 香蕉重泛素基因 | zh_TW |
| dc.subject | beta-1 | zh_TW |
| dc.subject | 3-葡聚醣酶 | zh_TW |
| dc.subject | 基因 | zh_TW |
| dc.subject | banana | en |
| dc.subject | 3-glucanas | en |
| dc.subject | promter | en |
| dc.subject | beta-1 | en |
| dc.subject | ubiquiti | en |
| dc.title | 香蕉重泛素及beta-1,3-葡聚醣酶基因啟動子活性分析 | zh_TW |
| dc.title | Promoter Activity Analyses of Banana Polyubiquitin and beta-1,3-Glucanase genes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃鵬林(Pung-Ling Huang) | |
| dc.contributor.oralexamcommittee | 黃銓珍(Chang-Jen Huang),劉祖惠(Tsu-Hwie Liu) | |
| dc.subject.keyword | 香蕉重泛素基因,啟動子,beta-1,3-葡聚醣酶,基因, | zh_TW |
| dc.subject.keyword | banana,ubiquiti,beta-1,3-glucanas,promter, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
