Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31729
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光(Chi-Kuang Sun)
dc.contributor.authorJen-Tang Luen
dc.contributor.author呂任棠zh_TW
dc.date.accessioned2021-06-13T03:18:39Z-
dc.date.available2012-08-01
dc.date.copyright2011-08-01
dc.date.issued2011
dc.date.submitted2011-07-29
dc.identifier.citation[1.1] D. Grischkowsky, S. Keiding, M. v. Exter, and Ch. Fattinger, 'Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,' Journal of the Optical Society of America B 7, 2006-2015 (1990).
[1.2] Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Applied Physics Letters 76, 2505-2507 (2000).
[1.3] B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nature Materials 1, 26 - 33 (2002).
[1.4] B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1, 517-525 (2007).
[1.5] M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97 - 105 (2007).
[1.6] L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Optics Letters 31, 308-310 (2006).
[1.7] J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J.Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Applied Physics Letters 92, 084102 (2008).
[1.8] J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, 'THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,' Optics Express 16, 2494-2501 (2008).
[1.9] C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, 'All-terahertz fiber-scanning near-field microscopy,' Optics Letters 34, 1084-1086 (2009).
[1.10] Y.-W. Huang, T.-F. Tseng, C.-C. Kuo, Y.-J. Hwang, and C.-K. Sun, 'Fiber-based swept-source terahertz radar,' Optics Letters 35, 1344-1346 (2010).
[1.11] J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Applied Physics Letters 92, 064105 (2008).
[1.12] C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, 'Low-index terahertz pipe waveguides,' Optics Letters 34, 3457-3459 (2009).
[1.13] X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Physics in Medicine and Biology 47, 3667-3677 (2007).
[1.14] S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Physics in Medicine and Biology 46, R101-R112 (2001).
[1.15] S. Wang, B. Ferguson, D. Abbott and X.-C. Zhang, “T-ray Imaging and Tomography,” Journal of Biological Physics 29, 247-256 (2003).
[1.16] J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, C.-K. Sun, “Terahertz Microchip for Illicit Drug Detection,” IEEE Photonics Technology Letters 18, 2254- 2256 (2006).
[1.17] M. Y. Frankel, S. Gupta, J.A. Valdmanis, and G.A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Transactions on Microwave Theory and Techniques 39, 910-916 (1991).
[1.18] R. W. McGowan, G. Gallot, and D. Grischkowsky, 'Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,' Optics Letters 24, 1431-1433 (1999).
[1.19] S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Applied Physics Letters 76, 1987-1989 (2000).
[1.20] R. Mendis, and D. Grischkowsky, “Plastic ribbon THz waveguides,” Journal of Applied Physics 88, 4449-4451 (2000).
[1.21] K. Wang, and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379. (2004).
[1.22] V. Astley, J. Scheiman, R. Mendis, and D. M. Mittleman, “Bending and coupling losses in terahertz wire waveguides,” Optics Letters 35, 553-555 (2010).
[1.23] A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Optics Express 16, 6340–6351 (2008).
[1.24] S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, 'Porous fibers: a novel approach to low loss THz waveguides,' Optics Express 16, 8845-8854 (2008).
[1.25] J. A. Harrington, R. George, P. Pedersen, and E. Muller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Optics Express 12, 5263−5268 (2004).
[1.26] B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Optics Letters 32, 2945−2947 (2007).
[1.27] T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” Journal of the Optical Society of AmericaB 24, 1230−1235 (2007).
[1.28] T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” IEEE/OSA Journal of Lightwave Technology 23, 2469−2473 (2005).
[1.29] M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Applied Physics Letters 90, 113514 (2007).
[1.30] R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photonics Technology Letters 19, 910−912 (2007).
[2.1] C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Optics Letters 34, 3457-3459 (2009).
[2.2] J.-T. Lu, Y.-C. Hsueh, Y.-R. Huang, Y.-J. Hwang, and C.-K. Sun, 'Bending loss of terahertz pipe waveguides,' Optics Express 18, 26332-26338 (2010)
[2.3] C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Optics Express 18, 309-322 (2010).
[2.4] N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Optics Letters 27, 1592-1594 (2002).
[2.5] H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
[2.6] M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Applied Physics Letters 95, 233506 (2009).
[2.7] V. Astley, J. Scheiman, R. Mendis, and D. M. Mittleman, “Bending and coupling losses in terahertz wire waveguides,” Optics Letters 35, 553-555 (2010).
[2.8] A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Optics Express 16, 6340–6351 (2008).
[2.9] S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, 'Porous fibers: a novel approach to low loss THz waveguides,' Optics Express 16, 8845-8854 (2008).
[2.10] J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Applied Physics Letters 92, 084102 (2008).
[2.11] J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Optics Express 12, 5263–5268 (2004).
[2.12] T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” Journal of the Optical Society of America B 24, 1230–1235 (2007).
[2.13] Y-C. Hsueh, “THz Anti-resonant Reflecting Pipe Waveguide,” Master Thesis, National Taiwan University (2009).
[2.14] M. Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Optics Letters 14, 1128–1130 (1989).
[2.15] J. W. Lamb, “Miscellaneous Data on Materials for Millimetre and Submillimetre Optics,” International Journal of Infrared and Millimeter Waves 17, 1997-2034 (1996).
[2.16] J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscope,” Optics Express 16, 2494-2501 (2008).
[2.17] C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, “All-THz fiber-scanning near-field microscopy,” Optics Letters 34, 1084-1086 (2009).
[2.18] Y.-W. Huang, T.-F. Tseng, C.-C. Kuo, Y.-J. Hwang, and C.-K. Sun, “Fiber-based swept-source terahertz radar,” Optics Letters 35, 1344-1346 (2010).
[3.1] K. D. Laakmann and W. H. Steier, “Waveguides: characteristic modes of hollow rectangular dielectric waveguides,” Applied Optics 15, 1334-1340 (1976).
[3.2] H. Machida, Y. Matsuura, H. Ishikawa, and M. Miyagi, “Transmission properties of rectangular hollow waveguides for CO2 laser light,” Applied Optics 31, 7617-7622 (1992).
[3.3] J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y.-F. Tsai, I.-J. Chen, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Terahertz polarization-sensitive rectangular pipe waveguides,” submitted to Optics Express.
[3.4] J.-T. Lu, C.-H. Lai, Y.-R. Huang, Y.-C. Hsueh, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, 'Investigation on Mode Coupling and Bending Loss Characteristics of Terahertz Air-core Pipe waveguides,' in Technical Digest of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS’10), paper JWA118, San Jose, CA (2010).
[3.5] C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Optics Letters 34, 3457-3459 (2009).
[3.6] C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Optics Express 18, 309-322 (2010).
[3.7] N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Optics Letters 27, 1592-1594 (2002).
[3.8] J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” International Journal of lnfrared and Millimeter Waves 17, 1997-2034 (1996).
[3.9] R. G. Hunsperger, Integrated Optics (Springer, 2002).
[3.10] D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, 1983).
[3.11] D. M. Pozar, Microwave Engineering (Wiley, 2005).
[3.12] M. Hangyo, M. Tani, and T. Nagashima, “Terahertz time-domain spectroscopy of solid: a review,” International Journal of lnfrared and Millimeter Waves 26, 1661-1690 (2005).
[3.13] C.-H. Lai, private communication (2011).
[4.1] J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, 'THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,' Optics Express 16, 2494-2501 (2008).
[4.2] H.-W. Chen, C.-M. Chiu, J.-L. Kuo, P.-J. Chiang, H.-C. Chang, and C.-K. Sun, “Subwavelength dielectric-fiber-based terahertz coupler,” Journal of Lightwave Technology 27, 1489-1495 (2009).
[4.3] Y.-W. Huang, T.-F. Tseng, C.-C. Kuo, Y.-J. Hwang, and C.-K. Sun, “Fiber-based swept-source terahertz radar,” Optics Letters 35, 1344-1346 (2010).
[4.4] J. L. Hesler and A. W. Lichtenberger, “THz Waveguide Couplers Using Quartz Micromachining,” in Proceedings of 21st International Symposium on Space Terahertz Technology, 358-359 (2010).
[4.5] C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Optics Letters 34, 3457-3459 (2009).
[4.6] C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Optics Express 18, 309-322 (2010).
[4.7] N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Optics Letters 27, 1592-1594 (2002).
[4.8] C.-H. Lai, “Finite-Difference Numerical Investigation of Several Optical and Terahertz Guided-Wave Structures,” Doctoral Dissertation, National Taiwan University (2010).
[4.9] J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Applied Physics Letters 92, 084102 (2008).
[4.10] H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, 'Investigation on spectral loss characteristics of subwavelength terahertz fibers,' Optics Letters 32, 1017-1019 (2007)
[4.11] R. G. Hunsperger, Integrated Optics (Springer, 2002)
[5.1] J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, 'THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,' Optics Express 16, 2494-2501 (2008).
[5.2] J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Applied Physics Letters 92, 084102 (2008).
[5.3] C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, 'All-terahertz fiber-scanning near-field microscopy,' Optics Letters 34, 1084-1086 (2009).
[5.4] Y.-W. Huang, T.-F. Tseng, C.-C. Kuo, Y.-J. Hwang, and C.-K. Sun, “Fiber-based swept-source terahertz radar,” Optics Letters 35, 1344-1346 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31729-
dc.description.abstract兆赫波科技已經被證實在高速通訊、生醫造影、分子偵測、材料性質分析、反恐技術、以及天文遙測方面都有極高的應用潛力。為了使兆赫波能更廣泛地被應用,各類型的兆赫波光纖以及波導在過去十年之間被廣泛地研究。而我們也在兩年前提出一種低損耗的圓管型波導作為傳遞兆赫波之用。利用市售的鐵弗龍管,我們成功地使損耗係數低於0.001 cm-1。
為了建造輕巧簡便的兆赫波系統,我們在此論文中提出了數種管型波導化的兆赫波元件。首先,我們研究圓管型波導的彎曲損耗特性,發現圓管型波導擁有極佳的彈性、以及出乎預期地低的彎曲損耗。而為了建構兆赫波偏振控制器以及方向耦合器,我們進一步地提出正方形以及長方形的管型波導。我們發現長方管型波導除了擁有極低的損耗係數外 (約0.002 cm-1),也具備了區分兆赫波偏振的能力。
除此之外,我們利用兩個正方管型波導建立出漏模特性(leaky mode)的兆赫波方向耦合器。此方向耦合器對於兆赫波的偏振極為敏感,我們利用管型波導的抗共振反射式的傳導機制,使得此方向耦合器在最低損耗的波長區段能最有效率地耦合兆赫波。最後,我們提出了一個簡單的波導耦合器作為結合圓管型以及正方或是長方管型波導之用。利用開口對開口的耦合方式 ,我們能高效率地(趨近100%)耦合正方、長方以及圓管型波導。
我們相信這些低損耗、對偏振敏感、以及波導化的兆赫波元件對於未來兆赫波的發展都極具幫助。
zh_TW
dc.description.abstractTHz technology has been proved to have high potential in a variety of fields such as high-speed telecommunications, bio imaging, molecular detection, material property study, anti-terrorism applications, and astronomical remote sensing. To facilitate THz technology, various kinds of THz fibers and waveguides have been extensively investigated in the past decade. Two years ago, we previously proposed a circular pipe waveguide for low-loss THz waveguiding. With commercial Teflon pipes, an attenuation constant lower than 0.001 cm-1 had been achieved.
In this thesis, we proposed several kinds of THz pipe-waveguide-based components for the purpose of constructing compact and flexible THz systems. We first investigated the bending loss characteristics of the pipe waveguides. It is found that the circular pipe waveguides possess magnificent flexibility and unexpected low bending loss. In order to construct THz polarization controllers and directional couplers, we modified the circular pipe waveguides into square and rectangular ones. The proposed rectangular waveguides not only suffer low attenuation (~0.002 cm-1), but also possess polarization-sensitivity to guided THz waves.
Moreover, we established a THz leaky mode directional coupler with two square pipe waveguides. The proposed directional coupler is polarization-sensitive. Because of the anti-resonant reflecting guiding principle of the pipe waveguides, the directional coupler works most efficiently in the minimal-attenuation wavelength regime. We further devised a simple butt coupler setup to combine circular pipe waveguides and rectangular ones. With butt coupling method, square and rectangular pipe waveguides can be high-efficiently (almost 100%) coupled with circular ones.
It is expected that these low loss, polarization-sensitive waveguide-based components have high potential in future THz applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:18:39Z (GMT). No. of bitstreams: 1
ntu-100-R97941042-1.pdf: 2864706 bytes, checksum: 3845df3bbfdf210f53d543c8ef236254 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝……………………………………………………………… I
摘要…………………………………………………………………III
Abstract……………………………………………………….……….. IV
Contents………………………………………………..................V
Figure Contents……………………………………………………. VIII
Table Contents………………………………………………………. XIV
Chapter 1 Introduction……………………………………………………..1
1.1 An Introduction of Terahertz Technology………………………………….2
1.2 An Overview of the Thesis…………………………………………………5
Reference……………………………………………………………………….6
Chapter 2 Terahertz Air-Core Pipe Waveguides with Focus on Bending Loss……………………….…………...…….………..……10
2.1 Review of the THz Anti-Resonant Reflecting Pipe Waveguides………….11
2.1.1 Guiding Principle of the THz Pipe Waveguides……………………..11
2.1.2 Mode Distribution and Modal Index of the Pipe Waveguides……….13
2.2 Bending Loss of THz Pipe Waveguides…………………………………...15
2.2.1 Experimental Setup………………………………………………...16
2.2.2 Measurement of Bending Loss Spectra……………………………18
2.2.2.1 Frequency Dependency……………………………………..18
2.2.2.2 Cladding Thickness Dependence……………………………20
2.2.2.3 Core Size Dependence………………………………………21
2.2.2.4 Cladding Material Dependence………………………….….22
Reference………………………………………………………………………25
Chapter 3 THz Polarization-Sensitive Square and Rectangular Pipe Waveguides………..............................................................................27
3.1 THz Square Pipe Waveguides……………………………………………...28
3.1.1 Fabrication of Waveguides and Experimental Setup………………28
3.1.2 Attenuation Spectra of Square Pipe Waveguides………………...30
3.2 THz Rectangular Pipe Waveguides………………………………………....35
3.3 Modal Index of THz Square and Rectangular Pipe Waveguides………..…40
Reference……………………………………………………………….……….44
Chapter 4 THz Pipe-Waveguide-Based Directional Couplers and Butt Couplers…………………………………………………………….46
4.1 Operating Mechanism of the Pipe-Waveguide-Based Directional Couplers…………………………………………………………..............47
4.1.1 Review of THz Directional Couplers………………………………47
4.1.2 Fabrication of the Pipe-Waveguide-Based Directional Couplers and Experimental Setup………...........................................................................48
4.1.3 Operating Mechanism of the Directional Couplers……..……….…49
4.2 Coupling Efficiency Characteristics of the Pipe-Waveguide-Based Directional
Couplers………………….…..……………………………………....................50
4.2.1 Frequency Dependency……………………………………………..50
4.2.2 Polarization Dependency…………………………………………….51
4.2.3 Core Size Dependency……………………………………………….52
4.2.4 Directional Couplers Based on Rectangular Pipe Waveguides………..53
4.2.5 Insertion Loss of Pipe-Waveguide-Based Directional Couplers………54
4.3 Butt Couplers between Several Kinds of THz Fibers and Waveguides…..…56
4.3.1 Butt Coupling between Circular and Square/Rectangular Pipe Waveguides………………………………………………………………….56
4.3.2 Butt Coupling between Subwavelength Fibers and Circular/Square Pipe Waveguides……………………………………………………………….…59
Reference…………………………………………………….………….……….66
Chapter 5 Conclusions…………………………………………………………68
5.1 Summary…………………………………………………………………..68
5.2 Future Work……………………………………………………………….70
Reference……………………………………………………………………….71
Appendix: Publication List of Jen-Tang Lu…………………………….A1
dc.language.isoen
dc.title管型波導化之兆赫波元件zh_TW
dc.titleTerahertz Pipe-Waveguide-Based Componentsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張宏鈞(Hung-Chun Chang),齊正中(Cheng-Chung Chi),賴志賢(Chih-Hsien Lai)
dc.subject.keyword兆赫波,波導,波導化元件,管型,抗共振反射,zh_TW
dc.subject.keywordTerahertz,THz,Waveguide,Waveguide-Based Components,Pipe,Anti-Resonant,ARROW,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2011-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved