請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31713完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光禎 | |
| dc.contributor.author | Fong-Shih Wei | en |
| dc.contributor.author | 魏逢時 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:18:14Z | - |
| dc.date.available | 2006-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | Bibliography
[1] G.J. Foshini and M.J. Gans, “On limits of wireless communication in a fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, no, 3, pp.311-335, Mar. 1998 [2] I.E. Telatar, “Capacity of Multi-Antenna Gaussian Channels,” Eur. Trans. Telecom., vol. 10, pp. 585-595, Nov. 1999 [3] S.M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications,” IEEE J. Select. Areas in Commun., vol. 16, pp. 1459-1478, Oct. 1998. [4] D.C. Rife and R.R. Boorstyn, “Single Tone Parameter Estimation from Discrete-Time Observations,” IEEE Trans. Inform. Theory, vol. 20, pp. 591-598, Sep 1974 [5] M. Morelli and U. Mengali, “Carrier-Frequency Estimation for Transmissions over Selective Channels,” IEEE Trans. Comm., vol. 48, no. 9, pp. 1580-1589 [6] U. Mengali, A.N. DAdrea, Synchronization techniques for Digital Receivers, Plenum Press, 1997 [7] J.G. Proakis, Digital Communications, 4th Edition, McGraw Hill 2001 [8] S.M. Kay, Fundamental of Statistical Signal Processing Vol. I: Estimation Theory, Prentice-Hall, 1993 [9] H.V. Poor, An Introduction to Signal Detection and Estimation, Springer, New York, 2nd edition, 1994 [10] O. Besson and P. Stoica, “On Parameter Estimation of MIMO Flat-Fading Channels with Frequency Offsets,” IEEE Trans. Signal Processing, vol. 51, pp. 602-613, Mar. 2003 [11] H. Meyr, M. Mooeneclaey and S.A. Fechtel, Digital Communication Receivers Synchronization, Channel estimation, and Signal Processing, John Wiley & Sons, New York, 1998 [12] W.Y. Kuo and M.P. Fitz, “Frequency Offset Compensation of Pilot Symbol Assisted Modulation in Frequency Flat Fading,” IEEE Trans. Comm. Vol. 45, pp. 1412-11417, Nov. 1997 [13] M.G. Helbey and D.P. Taylor, “The Effect of Diversity on a Burst-Mode Carrier Frequency Estimator in the Frequency-Selective Multipath Channels,” IEEE Trans. Comm. vol. 46, pp. 553-560, Apr. 1998 [14] V. Tarokh, H. Jafarkhani and A. Calderbank, “Space-Time Block Codes from Orthogonal Designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, July 1999 [15] A.W. Marshal and I. Olkin, Inequalities: Theory of Majorization and Its Applications. New York: Academic, 1979 [16] D. Gerlach and A. Paularj, “Spectrum Reuse Using Transmitting Antenna Arrays With Feedback,” in Proc. Int. Conf. Acoust., Speech, Signal Processing (Adelaide Australia), Apr. 1994, pp. 97-100 [17] D. Gerlach and A. Paularj, “Adaptive Transmitting Antenna Arrays With Feedback,” IEEE Signal Proc. Letters, pp. 150-152, October, 1994 [18] Jinho Choi, “Performance Analysis for Transmit Antenna Diversity With/Without Channel Information,” IEEE Trans. On Vehicular Technology, vol. 51, no. 1, Jun. 2002 [19] T.K.Y. Lo, “Maximum Ratio Transmission,” IEEE Trans. Comm., vol. 47, no. 10, Oct. 1999 [20] S.H. Friedberg, A.J. Insel and L.E. Spence, Linear Algebra, 4th edition, Prentice Hall, 1998 [21] A. Papoulis and S.U. Pillai, Probability, Random Variables and Stochastic Processes, 4th edition, McGraw Hill, 2002 [22] W.C. Jakes, Jr., Mobile Microwave Communication, New York: Willey, 1974 [23] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 5th edition, New York: Academic, 1994 [24] R.L. Peterson, R.E. Ziemer and D.E. Borth, Introduction to Spread Spectrum Communications, Prentice Hall, 1995 [25] T.S. Rappaport, Wireless Communications Principles and Practice, 2nd edition, Prentice Hall, 2002 [26] M. Sandell, D. McNamara and S. Parker, “Frequency offset tracking for MIMO OFDM systems using pilots,” IEEE WCNC, Vol. 1, pp. 7 – 11, Mar. 2005 [27] En Zhou, Xing Zhang, Hui Zhao, Wenbo Wang, “Synchronization Algorithms for MIMO OFDM Systems,” IEEE WCNC, Vol. 1, pp. 18-22, Mar. 2005 [28] A.N. Mody, G.L. Stuber, “Synchronization for MIMO OFDM Systems,” IEEE Globecom, Vol. 1, pp. 509-513, Nov. 2001 [29] A.N. Mody, G.L. Stuber, “Receiver Implementation for a MIMO OFDM System,” IEEE Globecom, Vol. 1, pp. 716-720, Nov. 2002 [30] T.C.W. Schenk, A. ven Zelst, “Frequency synchronization for MIMO OFDM wireless LAN systems,” IEEE VTC, Vol. 2, pp. 781-785, Oct. 2003 [31] ven Zelst, T.C.W. Schenk, “Implementation of a MIMO OFDM-based wireless LAN system,” IEEE Trans. Signal Processing, Vol. 52, pp. 783-794, Feb. 2004 [32] L. Zheng, D. Tse, “Diversity versus multiplexing: A fundamental tradeoff in multiple antenna communications,” IEEE Trans. Inform. Theory, May 2003 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31713 | - |
| dc.description.abstract | Abstract
Spatial antenna diversity has been important in improving the performance of the wireless communication systems and supporting high data rate services. Many of the space-time coding schemes applied to multi-antenna systems assume that perfect synchronization to achieve the expected performance gain. However, the inaccuracy of frequency offset estimation caused by the mismatch of the oscillators between the transmitter and receiver and/or Doppler shift would degrade the performance. In this thesis we investigate the problem of frequency offset estimation in multiple-transmit-antenna systems to find out whether space diversity can provide diversity gain to frequency offset estimation or not. The performance of the maximum likelihood (ML) estimator and the Cramer-Rao lower bound (CRLB) are shown and also the asymptotic CRLB. The optimal training sequences designed based on obtaining the optimum performance are discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:18:14Z (GMT). No. of bitstreams: 1 ntu-95-R93942100-1.pdf: 656275 bytes, checksum: c9c0edb0bbfd6037f362b1f4cfd2a569 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Contents
摘要 ….……………………………………………………...…………I 誌謝 ........................................................................................................III Abstract…………………………………………………….....................V List of Figures..........................................................................................XI List of Tables..........................................................................................XV Chapter 1 Introduction………………………………………...............….1 Chapter 2 Overview of Transmit Space Diversity……………………......5 2.1 Wireless Multi-Input and Single-Output Channel Model………………..…...5 2.1.1 Multi-Path Fading Propagation………………………….........................5 2.1.2 The Statistical Model for the Fading Channel……………………….......6 2.1.3 Wireless MISO Channel Model…………………………........................7 2.2 Transmitter Space Diversity………………………………………...…….......8 2.2.1 Two Kinds of Transmitter Space Diversity…………………………..….8 2.2.2 Signal Models and Assumptions………………………………………...9 Chapter 3 Transmit Space Diversity in Frequency Estimation………….13 3.1 Maximum Likelihood Estimation……………………………………..…….13 3.2 Performance Analysis of ML Estimation…………………………………….16 3.2.1 Expectation and Variance………………………………………………16 3.2.2 Crammer Rao Lower Bound (CRLB)………………………………….17 3.2.3 Asymptotic (Large-sample) CRLB…………………………………….20 3.3 Design of the Optimum Training Sequence………………………...……….22 3.3.1 Optimization Criterion…………………………………………………22 3.3.2 Average Asymptotic CRLB…………………………………………….24 3.4 Diversity Gain for Frequency Estimation……………………..…………….25 3.4.1 Space-Time Block Orthogonal Training Sequence…………………….26 3.4.1.1 Performance of Space-Time Block Orthogonal Training Sequence………………………………………………………….27 3.4.1.2 Statistical Analysis of the Performance of Space-Time Block Orthogonal Training Sequence…………………………………...28 3.4.2 Hadamard Sequence……………………………………………………29 3.4.2.1 Performance of Hadamard Sequence…………………………….30 3.4.2.2 Statistical Analysis of the Performance of Hadamard Sequence……………………………………………………………….32 Appendix 3 Mean and Variance of the ML Estimator………………………..…..35 Chapter 4 Simulations and Discussions………………………………...37 4.1 Performance of ML Estimation in Rayleigh Flat-Fading Channels……….37 4.1.1 Random Sequence: MISO vs. SISO……………………………………38 4.1.2 Space-time Block Orthogonal Training Sequence: MISO vs. SISO…...41 4.1.3 Hadamard Sequence: MISO vs. SISO………………………………….44 4.2 The Effect of Timing Offset………………………………………………....52 4.3 Performance of ML Estimation in Frequency-Selective Channels...……...…55 Chapter 5 Conclusions and Future Work………………………………. 59 Bibliography………………………………………………………...…. 63 | |
| dc.language.iso | en | |
| dc.subject | 分集 | zh_TW |
| dc.subject | 頻率偏移估測 | zh_TW |
| dc.subject | frequency offset estimation | en |
| dc.subject | diversity | en |
| dc.title | 傳送分集中的頻率偏移估測 | zh_TW |
| dc.title | Transmit Diversity in Frequency Offset Estimation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張仲儒,許大山,蘇炫榮 | |
| dc.subject.keyword | 頻率偏移估測,分集, | zh_TW |
| dc.subject.keyword | frequency offset estimation,diversity, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 640.89 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
