Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝學真(Hsyue-Jen Hsieh)
dc.contributor.authorAngela Wangen
dc.contributor.author王安姬zh_TW
dc.date.accessioned2021-06-13T03:18:02Z-
dc.date.available2006-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-30
dc.identifier.citationAdams TE and Huntington JA. (2006). Thrombin-cofactor interactions.
Structural insights into regulatory mechanisms. Arterioscler Thromb Vasc
Biol. Published online.
Aitken RJ, Buckingham DW, and West KM. (1998). Reactive oxygen
species as mediators of singnal transduction in cardiovascular disease.
Trends Cardiovasc Med. 8, 59-64.
Alexander RW. (1995). Theodore cooper memorial lecture. Hypertension
and the pathogenesis of atherosclerosis: oxidative stress and the mediation
of arterial imflammatory response: a new perspective. Hypertension 25(2),
155-161.
Ardissino D, Merlini PA, Baucer KA, Bramucci E, Ferrario M, Coppola R,
Fetiveau R, Lucreziotti S, Rosenberg RD, and Mannucci PM. (2001).
Thrombogenic potential of human cornary atherosclerotic plaques. Blood 98,
2726-2729.
Arkenbout EK, Dekker RJ, De Vries CJ M, Horrevoets AJ G, and
Pannekoek H. (2003). Focusing on transcription factor families in
atherogenesis: the function of LKLF and TR3. Thromb Haemost. 89(3),
522-529.
Asakura T and Karino T. (1990). Flow patterns and spatial distribution of
atherosclerotic lesions in human coronary arteries. Circ Res. 66(4),
1045-1066.
Ashkenazi A. and Dixit VM. (1998). Death receptors: signaling and
modulation. Science 281(5381), 1305-1308.
Azuma N, Duzgun SA, Ikeda M, Kito H, Akasaka N, Sasajima T, and
Sumpio BE. (2000). Endothelial cell response to different mechanical forces.
J Vasc Surg. 32(4), 789-794.
Bao X, Lu C, and Frangos JA. (2001). Mechanism of temporal gradients in
shear-induced ERK1/2 activation and proliferation in endothelial cells. Am J
Physiol Heart Circ Physiol. 281(1), H22-29.
Bajzar L, Manuel R, and Nesheim MF. (1995). Purification and
characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol
Chem. 270(24), 14477-14484.
Berk BC, Abe JI, Wang M, Suprapisitchat J, and Yan C. (2001). Endothelial
atheroprotective and anti-inflammatory mechanisms. Ann N Y Acad Sci.
947, 93-111.
Bhattacharya R, SenBanerjee S, Lin Z, Mir S, Hamik A, Wang P,
Mukherjee P, Mukhopadhyay D, and Jain MK. (2005). Inhibition of
vascular permeability factor/vascular endothelial growth factor-mediated
angiogenesis by the Kruppel-like factor KLF2. J Biol Chem. 280(32),
28848-28851.
Bird RB, Stewart WE, and Lightfoot EN. (2002). Transport Phenomena.
(New York: Wiley).
Boo YC and Jo H. (2003). Flow-dependent regulation of endothelial nitric
oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 285(3),
C499-508.
Boo YC, Hwang J, Sykes M, Michell BJ, Kemp BE, Lum H, and Jo H.
(2002). Shear stress stimulates phosphorylation of eNOS at Ser(635) by a
protein kinase A-dependent mechanism. Am J Physiol Heart Circ Physiol.
283(5), H1819-1828.
Brach MA, Gruss HJ, Riedel D, Asano Y, De Vos S, and Herrmann F.
(1992). Effect of antiinflammatory agents on synthesis of MCP-1/JE
transcripts by human blood monocytes. Mol Pharmacol. 42(1), 63-68
Bradford MM. (1976). A rapid and sensitive for the quantitation of
microgram quantitites of protein utilizing the principle of protein-dye
binding. Anal Biochem. 72, 248-254.
Brooks AR, Lelkes PI, and Rubanyi GM. (2002). Gene expression profiling
of human aortic endothelial cells exposed to disturbed flow and steady
laminar flow. Physiol Genomics 9(1), 27-41.
Butterfield AB and Miller CW. (1977). Inverse effect of chronically
elevated blood flow on atherogenesis in miniature swine. Atherosclerosis
26(2), 215-224.
Cai J and Jones DP. (1998). Superoxide in apoptosis. Mitochondrial
generation triggered by cytochrome c loss. J Biol Chem. 273(19),
11401-11404.
Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY and
Chien S. (2001). DNA microarray analysis of gene expression in endothelial
cells in response to 24-h shear stress. Physiol Genomics 7(1), 55-63.
Chen HH, and Wang DL. (2004). Nitric oxide inhibits matrix
metalloproteinase-2 expression via the induction of activating transcription
factor 3 in endothelial cells. Mol Pharmacol. 65(5), 1130-1140.
Chen JX, Lawrence ML, Cunningham G, Christman BW, and Meyrick B.
(2004). HSP90 and Akt modulate Ang-1-induced angiogenesis via NO in
coronary artery endothelium. J Appl Physiol. 96(2), 612-620.
Chen XL and Varner SE. (2003). Laminar flow induction of antioxidant
response element-mediated genes in endothelial cells. A novel
anti-inflammatory mechanism. J Biol Chem. 278(2), 703-711.
Chiu JJ, Wung BS, Hsieh HJ, Lo LW, Wang DL. (1999). Nitric oxide
regulates shear stress-induced early growth response-1. Expression via the
extracellular signal-regulated kinase pathway in endothelial cells. Circ Res.
85(3), 238-246.
Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP,
Pober JS, Wick TM, Konkle BA, and Schwartz BS et al. (1998). Endothelial
cells in physiology and in the pathophysiology of vascular disorders. Blood
91(10), 3527-3561.
Conway EM, Pollefeyt S, Collen D, and Steiner-Mosonyi M. (1997). The
amino terminal lectin-like domain of thrombomodulin is required for
constitutive endocytosis. Blood 89(2), 652-661.
Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De
Vriese A, Weitz JI, Weiler H, Hellings PW, and Schaeffer P et al. (2002).
The lectin-like domain of thrombomodulin confers protection from
neutrophil-mediated tissue damage by suppressing adhesion molecule
expression via nuclear factor-kappa B and mitogen-activated protein kinase
pathways. J Exp Med. 196(5), 565-577.
Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, and
Lord JM. (2000). Serine/threonine protein kinases and apoptosis. Exp Cell
Res. 10, 34-41.
Dancey JE. (2004). Molecular targeting: PI3 kinase pathway. Ann Oncol.
15(l 4), iv233-239.
Day SM, Reeve JL, Pedersen B, Farris DM, Myers DD, Im M, Wakefield
TW, Mackman N, and Fay WP. (2005). Macrovascular thrombosis is driven
by tissue factor derived primarily from the blood vessel wall. Blood 105(1),
192-198.
Dekker RJ, Boon RA, Rondaij MG, Kragt A, Volger OL, Elderkamp YW,
Meijers JC, Voorberg J, Pannekoek H, Horrevoets AJ. (2005). KLF2
provokes a gene expression pattern that establishes functional quiescent
differentiation of the endothelium. Blood 107(11), 4354-4363.
Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel
E, Pannekoek H, Horrevoets AJ. (2002). Prolonged fluid shear stress induces
a distinct set of endothelial cell genes, most specifically lung Kruppel-like
factor (KLF2). Blood 100(5), 1689-1698.
Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW,
Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, and Pannekoek H et al.
(2005). Endothelial KLF2 links local arterial shear stress levels to the
expression of vascular tone-regulating genes. Am J Pathol. 167(2), 609-618.
Diamond SL, Eskin SG, and McIntire LV. (1989). Fluid flow stimulates
tissue plasminogen activator secretion by cultured human endothelial cells.
Science 243(4897), 1483-1485.
Dimmeler S, Assmus B, Hermann C, Haendeler J, and Zeiher AM. (1998).
Fluid shear stress stimulates phosphorylation of Akt in human endothelial
cells: involvement in suppression of apoptosis. Circ Res. 83(3), 334-341.
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, and Zeiher AM.
(1999). Activation of nitric oxide synthase in endothelial cells by
Akt-dependent phosphorylation. Nature 399(6736), 601-605.
Dittman WA, Nelson SC, Greer PK, Horton ET, Palomba ML, and
McCachren SS. (1994). Characterization of thrombomodulin expression in
response to retinoic acid and identification of a retinoic acid response
element in the human thrombomodulin gene. J Biol Chem. 269(24),
16925-16932.
Esmon CT. (2005). Do-all receptor takes on coagulation, inflammation. Nat
Med. 11(5), 475-477.
Esmon CT. (2005). The interactions between inflammation and coagulation.
Br J Haematol. 131(4), 417-430.
Esmon CT. (2003). The protein C pathway. Chest. 124(3 suppl), 26S-32S.
Falk E, Shah PK, and Fuster V. (1996). Pathogenesis of plaque disruption.
Atherosclerosis and coronary artery disease. Fuster V, Ross R, Topol EJ, ed.
(Philadelphia: Lippincott-Raven 2), pp.492-510.
Faxon DP, Fuster V, Libby P, Beckman JA, Hiatt WR, Thompson RW,
Topper JN, Annex BH, Rundback JH, and Fabunmi RP et al. (2004)
American Heart Association. Atherosclerotic Vascular Disease Conference:
Writing Group III: pathophysiology. Circulation 109(21), 2617-2625.
Frangos JA, Eskin SG, and Mclntire LV, and Ives CL. (1985). Flow effects
on prostacyclin production by cultured human endothelial cells. Science
227(4693), 1477-1479.
Frangos JA, Huang TY, and Clark CB. (1996). Steady shear and step
changes in shear stimulate endothelium via independent
mechanisms-superposition of transient and sustained nitric oxide production.
Biochem Biophys Res Commun. 224(3), 660-665.
Fulcher CA, Gardiner JE, Griffin JH, and Zimmerman TS. (1984).
Proteolytic inactivation of human factor VIII procoagulant protein by
activated protein C and its analogy with factor V. Blood 63(2), 486-489.
Furchgott RF and Zawadzki JV. (1980). The obligatory role of endothelial
cells in the relaxation of arterial smooth muscle by acetylcholine. Nature
288(5789), 373-376.
Galis ZS, Sukhova GK, Lark MW, and Libby P. (1994). Increased
expression of matrix metalloproteinases and matrix degrading activity in
vulnerable regions of human atherosclerotic plaques. J Clin Invest. 94(6),
2493-2503.
Gray MW. (1993). Antioxidants Chemical, Physiological, Nutritional and
Toxicological Aspects. (New Jersey: Princeton scientific publishing Co.,
Inc.).
Hamada H, Ishii H, Sakyo K, Horie S, Nishiki K, and Kazama M. (1995).
The epidermal growth factor-like domain of recombinant human
thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood
86(1), 225-233.
Hancock JT, Desikan R, and Neill SJ. (2001). Role of reactive oxygen
species in cell signalling pathways. Biochem Soc Trans. May 29 (Pt 2):
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31705-
dc.description.abstract動脈粥狀硬化的致病過程中,發炎反應 (inflammation) 扮演十分重要的角色,在血管內皮細胞中的凝血酶調節素 (thrombomodulin;簡稱TM),具有抗凝血及抗發炎的功能;轉錄因子KLF2則是被發現具有藉調控TM及eNOS等多種基因表現,以調節凝血機制之特性,因此,本研究針對TM及KLF2的表現及調控作為目標。由於動脈粥狀硬化的初始及發展與血液流動產生之剪力作用於血管內皮細胞造成的各種反應密切相關,本研究使用人類臍帶靜脈內皮細胞 (HUVEC) 及牛動脈內皮細胞 (BAEC),探討剪力刺激對細胞中TM及KLF2的表現及其調控之訊息傳遞路徑。
在高剪力 (25 dyn/cm2) 刺激不同時間下,TM mRNA表現量屬於暫態誘發,在大約四到六小時之間達到最高量,約為控制組的1.6倍左右,隨著時間增長,表現量會回到基礎值;而KLF2 mRNA則是屬於持續誘發,最高表現量可以達到約為控制組的85倍左右;但是就蛋白質表現而言,剪力作用對TM及KLF2的蛋白質量卻沒有明顯的增加。比較不同大小剪力對細胞的刺激,在高剪力 (25 dyn/cm2) 刺激狀態下,TM及KLF2 mRNA都有明顯的增加表現,而低剪力 (4.5 dyn/cm2) 的作用較不明顯,表示在高剪力的環境下對於細胞有較佳的保護作用;然而,TM及KLF2的蛋白質表現量似乎都沒有太大變化,推測可能剪力會對於TM及KLF2 mRNA的穩定性進行調控所造成。欲探討剪力對於兩者的調控路徑,使用NO donor (即NOC18) 及eNOS inhibitor (即L-NAME),結果發現單獨剪力刺激時所生成的NO可能對於細胞中的TM及KLF2具有保護效果,若對eNOS進行抑制降低NO量,則有可能會造成TM啟動子活性表現降低;但是當NO的量超過正常狀態甚多,細胞中可能產生回饋抑制效應,降低TM及KLF2的表現。
此外,本研究亦針對在細胞激素刺激下來探討剪力對TM及KLF2的保護作用,當加入TNF-α會使得TM mRNA的表現量有明顯下降,若同時有剪力的刺激下,TNF-α對TM mRNA的抑制現象則可被逆轉而回復到正常表現量,證明了剪力對於細胞激素所造成的細胞傷害是具有保護作用的;相較之下,KLF2受到TNF-α的影響並不是十分明顯,因此,TNF-α似乎並不參與在剪力調控KLF2的訊息傳導路徑中。
綜合以上實驗結果,剪力對於TM及KLF2誘發其表現可能經由mRNA及蛋白質之穩定性調控的機制,推測剪力有可能是經由活化eNOS產生NO調控了細胞中的氧化還原狀態,進而對TM的表現產生調控;KLF2則是經由其他的路徑受到剪力調控;在TNF-α與剪力的雙重作用下,剪力對於TNF-α所造成的細胞傷害是具有保護功能的,它可以使TM mRNA表現量回復到正常範圍,達到保護心血管系統的功效。
zh_TW
dc.description.abstractDuring atherogenesis, inflammation plays an important role. Thrombomodulin (TM), in vascular endothelial cells, has anti-coagulation and anti-inflammation properties. Transcription factor, Kruppel-like factor 2 (KLF2) has been shown to participate in the regulation of the expression of TM and endothelial nitric oxide synthase and thus is important for regulating thrombotic function. Endothelial cells are constantly under the influence of flow-induced hear stress and the atherosclerotic lesions are closely related to this hemodynamic effect. In the present study, we focused on the study of gene expression of TM and
KLF2 in endothelial cells exposed to shear stress. Human umbilical vein endothelial cells (HUVECs) and bovine aortic endothelial cells (BAECs) were used to probe into the signaling mechanisms involved in this shear-induced TM and KLF2 expression. ECs exposed to shear stress of 25 dyn/cm2 transiently induced the TM mRNA expression with peak induction about 1.6-folds after exposure to shear stress for 4 to 6 hrs before it returned to basal level. However, KLF2 mRNA expression in those ECs was found to be a sustained one with peak induction more than 85-folds. While mRNA expression of TM and KLF2 were significantly induced in shear-induced ECs, protein expression of TM and KLF2 had no obvious increase. Furthermore, TM mRNA and KLF2 mRNA were
significantly increased in ECs exposed to higher shear stress (25 dyn/cm2) in contrast to those ECs exposed to low shear stress (4.5 dyn/cm2) indicating that TM mRNA induction is sensitive to shear force. However, the protein expression of TM and KLF2 from shear-treated ECs show no significant difference as compared to those control ECs. This indicates that protein stability may be involved in those shear-treated ECs. ECs under shear flow condition constantly release nitric oxide (NO). The role of NO in this shear-induced TM and KLF2 mRNA expression was examined. ECs exposed to a NO donor (NOC18) significantly suppressed the TM and KLF2 mRNA level with a dose-dependent manner. Consistently, shear stress to ECs increased the TM promoter activity. Interestingly, ECs pretreated with an eNOS inhibitor (L-NAME) did not enhance the shear-induced TM promoter activity.
Furthermore, the protection effect of shear flow on cytokine-treated ECs was examined. ECs treated with tumor necrosis factor (TNF) greatly reduced the TM and KLF2 expression. ECs pretreated with TNF followed with shear flow, however, significantly attenuated the TNF-induced
suppression of TM mRNA levels. In contrast, the basal KLF2 and the shear-induced KLF2 mRNA levels were not affected by TNF pretreatment.
In summary, shear flow to ECs increases the TM and KLF2 mRNA expression in a dose-dependent manner. However, this induction can not be reflected by the TM protein levels indicating that the stability of TM mRNA and protein may be involved. Furthermore, shear flow exerts its protective effect by attenuating the TNF-induced suppression of TM mRNA expression. ECs treated with NO suppress the TM and KLF2 mRNA expression. Although the detailed up-regulation mechanism of TM remains unclear, this study suggests that shear flow plays an important role in regulating TM expression and consequently affects endothelial integrity.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:18:02Z (GMT). No. of bitstreams: 1
ntu-95-R93524018-1.pdf: 1539075 bytes, checksum: 91142f6f10a9a65e034865e4da2ee3b1 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目 錄
誌謝 I
中文摘要 III
英文摘要 V
目錄 VII
圖表索引 XI
縮寫及符號說明 XIII
中英名詞對照 XVII
第一章 緒論
1.1 動脈粥狀硬化…………………………………………1
1.2 血管內皮細胞與剪力
1.2.1 內皮細胞之結構………………………………………6
1.2.2 血管內皮細胞所承受之剪力………………………10
1.3 Thrombomodulin (TM)
1.3.1 TM之結構與生理功能………………………………15
1.3.2 TM對發炎與凝血機制之調控………………………19
1.4 Kruppel Like Factor 2 (KLF2) 之結構與生理功能23
1.5 Thrombosis 與動脈粥狀硬化之調控機制…………26
1.6 一氧化氮 (NO) 對於內皮細胞之調控……………30
1.7 細胞激素 (Cytokine) 對於內皮細胞之調控………34
1.8 研究動機與目的……………………………………37
第二章 實驗材料與方法
2.1 實驗材料
2.1.1 細胞培養及流動實驗所用材料……………………39
2.1.2 實驗耗材……………………………………………41
2.1.3 細胞轉染 (Transfection) 所用材料……………41
2.1.4 西方墨點轉印法 (Western Blot) 所用材料……43
2.1.5 同步定量聚合酶連鎖反應(Real-time PCR)材料44
2.1.6 啟動子活性測定法所用材料…………………44
2.2 實驗儀器…………………………………………45
2.3 實驗原理與方法
2.3.1 人類臍帶靜脈內皮細胞初級培養………….47
2.3.2 人類臍帶靜脈內皮細胞繼代培養………………48
2.3.3 牛動脈內皮細胞繼代培養………………………48
2.3.4 流動室之設計……………………………….49
2.3.5 流動實驗之設計與流程……………………54
2.3.6 全細胞之蛋白質 (total cell lysate) 的抽取………56
2.3.7 蛋白質含量測定………………………………….56
2.3.8 細胞內特定蛋白質含量測定:Western Blot……….57
2.3.9 細胞內RNA的抽取…………………………………57
2.3.10 細胞內特定mRNA 含量的測定:同步定量聚合酶連
鎖反應(Real-time quantitative PCR)……………….58
2.3.11 以電穿孔及Lipofectamine2000 方式進行細胞轉染
2.3.11.1 以電穿孔方式進行細胞轉染:Electroporation…59
2.3.11.2 以Lipofectamine 2000 進行細胞轉染…………60
2.3.12 啟動子活性測定:Promoter Activity Assay
2.3.12.1 β-Galactosidase assay………………………..…..61
2.3.12.2 Luciferase assay…...………………………………61
第三章 實驗結果與討論
3.1 不同時間之剪力刺激對於TM及KLF2 之影響…….63
3.1.1 不同時間之剪力刺激對TM mRNA 表現之影響…..64
3.1.2 不同時間之剪力刺激對KLF2 mRNA 表現之影響...66
3.2 不同剪力大小對於TM及KLF2之影響…………….68
3.2.1 不同剪力大小對TM及及KLF2蛋白質表現影響….68
3.2.2 不同剪力大小對TM mRNA表現量之影響………...70
3.2.3 不同剪力大小對KLF2 mRNA 表現之影響…….72
3.3 剪力活化TM及KLF2表現調控之探討…………….74
3.3.1 eNOS及NO對TM及KLF2之調控………...............74
3.3.2 eNOS對TM啟動子活性( Promoter activity )調控…79
3.4 Cytokine 對TM及KLF2之調控…………………….81
3.4.1 剪力與TNF-α對於TM mRNA表現量之影響……81
3.4.2 剪力與TNF-α對於KLF2 mRNA 表現量之影響…83
3.5 討論………………………………………………….85
第四章 結論
4.1 結論…………………………………………………89
4.2 未來研究方向………………………………………92
參考文獻……………………………………………………93
dc.language.isozh-TW
dc.subject訊息傳遞路徑zh_TW
dc.subject凝血&#37238zh_TW
dc.subject內皮細胞zh_TW
dc.subject調節素zh_TW
dc.subject剪力zh_TW
dc.subjectKLF2en
dc.subjectsignaling transduction pathwayen
dc.subjectshear stressen
dc.subjectendothelial cellsen
dc.subjectthrombomodulinen
dc.title內皮細胞中凝血酶調節素TM及轉錄因子KLF2受剪力調控及其訊息傳遞路徑之探討zh_TW
dc.titleRegulation and Signaling Mechanisms of Shear Stress-induced Thrombomodulin and Transcription Factor KLF2 in Endothelial Cellsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor王寧(Danny Ling Wang)
dc.contributor.oralexamcommittee蕭明熙(Ming-Shi Shiao)
dc.subject.keyword內皮細胞,凝血&#37238,調節素,剪力,訊息傳遞路徑,zh_TW
dc.subject.keywordendothelial cells,thrombomodulin,KLF2,shear stress,signaling transduction pathway,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved