請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31699完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃孝平(Hsiao-Ping Huang) | |
| dc.contributor.author | Te Yuan Chen | en |
| dc.contributor.author | 陳德原 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:17:53Z | - |
| dc.date.available | 2006-10-24 | |
| dc.date.copyright | 2006-08-01 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-28 | |
| dc.identifier.citation | [1] 莊達人,「VLSI製造技術」,高立圖書有限公司,台北縣, (2002)。
[2] 張智星,「MATLAB程式設計與應用」,清蔚科技,新竹市, (2000)。 [3] Amer, S. A.; Couderc, J.P.; Duverneuil, P. , “Three dimensional modeling of LPCVD vertical cold wall reactors” Computers & Chemical Engineering, 18(SUPPL), 235(1994). [4] Azzaro, C.;Duverneuil, P. ; Couderc, J.P., “Two-dimensional modeling of low pressure chemical vapor deposition hot wall tubular reactors. II. Systematic analysis of pure and phosphorus in situ doped polycrystalline silicon depositions.” J. electrochem. SOC., 139(1),305 (1992). [5] Azzaro, C.; Duverneuil, P.; Couderc, J.P., “Thermal and kinetic modeling of low-pressure chemical vapor deposition hot-wall tubular reactors” Chemical Engineering Science., 47(15-16), 3827 (1992). [6] Azzaro, C.; Duverneuil, P.; Couderc, J.P., “Analysis and modeling of low pressure chemical vapor deposition (LPCVD) reactors used in the microelectronic industry.” International Chemical Engineering, 34(1), 59 (1994). [7] Azzaro, C.; Couderc, J.P., “Thermal modeling of tubular horizontal hot-wall low pressure chemical vapor deposition reactors” Chemical Engineering Journal and Biochemical Engineering Journal, 57(1), 39 (1995). [8] Badgwell, T. A.; Trachtenberg, I.; Edgar, T. F. “Modeling the wafer temperature profile in a multiwafer LPCVD furnace” J. electrochem. SOC., 141(1), 161(1994). [9] Bismo, S.; Duverneuil, P.; Pibouleau, L.; Domenech, S.; Couderc, J.P. ,“Modeling of a new parallel-flow CVD reactor for low pressure silicon deposition” Chemical Engineering Science., 47(9-11), 2921 (1992). [10] Bismo, S.; Duverneuil, P.; Pibouleau, L.; Domenech, S.; Couderc, J.P. , “Analysis and modelling of the LPCVD annular reactor” Materials and Manufacturing Processes., 10(2), 241 (1995). [11] Charlier, J. P., ” Modeling of low-pressure chemical vapor deposition” IEEE Transactions on Electron Devices, ed-28(5), 501 (1981). [12] Desu, S. B., “Decomposition chemistry of Tetraethoxysilane” Journal of the American Ceramic Society, 72(9), 1615(1989). [13] Duverneuil, P. ; Couderc, J.P., “Two-dimensional modeling of low pressure chemical vapor deposition hot wall tubular reactors. I. Hypotheses, methods, and first results.” J. electrochem. SOC., 139(1), 296 (1992). [14] Ekbundit, S.; Izzio, B., “Characterization of film uniformity in LPCVD TEOS vertical furnace” IEEE International Symposium on Semiconductor Manufacturing Conference, Proceedings, 38 (2002). [15] Fogler, H. S., Elements of chemical reaction engineering, Prentice Hall, New Jersey, USA (1999). [16] Haupfear, E. A.; Olson, E. C.; Schmidt, L. D., “Kinetics of SiO2 deposition from tetraethylorthosilicate” J. electrochem. SOC., 141(7), 1943 (1994). [17] He, Q.; Qin, S. J.; Toprac, A. J., “Computationally Efficient Modeling of Wafer Temperatures in an LPCVD Furnace” Proceedings of SPIE - The International Society for Optical Engineering, 5004, 97 (2003). [18] He, Q.; Qin, S. J.; Toprac, A. J., “Computationally efficient modeling of wafer temperatures in a low-pressure chemical vapor deposition furnace” IEEE Transactions on Semiconductor Manufacturing, 16(2), 342(2003). [19] Hitchman, M. L. ,Kane, J., Widmer, A. E., “Polysilicon growth kinetics in a low pressure chemical vapor deposition reactor.” Thin Solid Films., 59(2), 231(1979). [20] Jacobs, R.; Krishna, R., “Multiple Solutions in Reactive Distillation for Methyl Tert-Butyl Ether Synthesis.” Ind. eng. chem. res., 32(8), 1706 (1993). [21] Jensen, K. F. ; Graves, D. B., “Modeling and analysis of low pressure CVD reactors.” J. electrochem. SOC., 130(9), 1950 (1983). [22] Joshi,M.G., ” Modeling of LPCVD reactors, effects of the empty inlet tube.” J. electrochem. SOC., 134(12), , 3118 (1987). [23] Kalidindi, S. R.; Desu, S. B., “ Analytical model for the low pressure chemical vapor deposition of SiO2 from tetraethoxysilane.” J. electrochem. SOC., 137(2), 624 (1990). [24] Kim, E. J.; Gill, W. N.,“Modeling of CVD of silicon dioxide using TEOS and ozone in a single-wafer reactor” J. electrochem. SOC., 141(12), 3462(1994). [25] Kim, E. J.; Gill, W. N., “Low pressure chemical vapor deposition of silicon dioxide films by thermal decomposition of tetra-alkoxysilanes” J. electrochem. SOC., 142(2), 676(1995). [26] Kim, I. K.; Kim, W. S., “ Theoretical analysis of wafer temperature dynamics in a low pressure chemical vapor deposition reactor.” International Journal of Heat and Mass Transfer, 42(22), 4131(1999). [27] Kuiper, A. E. T.; Van Den Brekel, C. J. H.; De Groot, J.; Veltkamp, G. W., “Modeling of low-pressure CVD processes.” J. electrochem. SOC., 129(10), 2288(1982). [28] Middleman, S.; Yeckel, A.,“Model of the effects of diffusion and convention on the rate and uniformity of deposition in a CVD reactor.” J. electrochem. SOC., 133(9), 1951 (1986). [29] Xiao, H., Introduction to semiconductor manufacturing technology, Prentice Hall, New Jersey, USA (2001). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31699 | - |
| dc.description.abstract | 本研究以DRAM製程中薄膜沉積中的低壓化學氣相沉積(LPCVD)反應器為目標,欲建立一直立式批次LPCVD反應器的物理模式,以完整的描述出LPCVD反應器中薄膜沉積的狀況。在不同的操作狀況下提供不同的操作溫度,以降低製程所產生的失敗率,提高製程的良率。
本文所使用的反應動力式,是以文獻為基礎再用實驗值進行回歸,進行修正所求得,並探討了兩種不同的TEOS進料流量:380sccm和230sccm,在這兩種不同操作條件下進行模擬,並且分別操作在兩種不同的晶圓片數的情況下:100片與125片,以所得的模擬結果比對實驗值,驗證物理模式是否可以適用。並在以上四種不同的操作條件下,提出在該條件下適當的反應溫度。 由本文提出的物理模式除了可以應用在單一機台上,為了證明在不同的機台上也可以使用,因此我們也利用了不同機台的實際數據來進行比對,並由模擬結果來證明我們的物理模式可以應用在不同機台上。最後由模擬結果可以得知,本文所提出的物理模式可應用於不同的反應晶圓片數、不同的反應物進料流量和不同的操作機台上。 | zh_TW |
| dc.description.abstract | This work presents a physical model to simulate the film deposition in a batch LPCVD (Low Pressure Chemical Vapor Deposition) reactor for DRAM processing. The objective is to use this model to set proper reacting temperatures for lower defective rate and the higher yield of the process.
The reaction kinetics model is based on the literature result, and the parameters are modify by regression to fit experimental data. Two TEOS feed flow rates are considered: 380 sccm and 230 sccm. The process is simulated with different quantity of wafers, 100 pieces and 125 pieces. The simulation results are compared with the experimental date and we find that this model works well. Based on this model, suitable reacting temperature aimed to uniform deposition of films can be predicted individually under the operating conditions aforementioned. In proof of the applicability of this model, the simulation result is also applied to real operating data from different machine platform. The results show that this proposed model is suitable for simulating the film deposition in LPCVD reactor under various TEOS feed flow rate, wafer production rate and machine platform. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:17:53Z (GMT). No. of bitstreams: 1 ntu-95-R93524075-1.pdf: 3455474 bytes, checksum: d123fe1bfd34d89ef6ed12ee254387c8 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 致謝....................... I
摘要.......................III Abstract.......................V 目錄.......................VII 圖索引.......................IX 表索引.......................XI 1.. 緒論.......................1 1.1. 前言.......................1 1.2. 文獻回顧.......................5 1.3. 研究動機與目的 .......................9 1.4. 組織章節.......................10 2.. 化學氣相沉積反應器介紹.......................13 2.1. 前言.......................13 2.2. 薄膜沉積:化學氣相沉積.......................13 2.3. 化學氣相沉積反應器.......................18 2.3.1. 常壓化學氣相沉積反應器.......................18 2.3.2 低壓化學氣相沉積反應器.......................21 2.3.3 電漿增強型化學氣相沉積反應器.......................23 2.3.4 高密度電漿化學氣相沉積反應器.......................24 3.. LPCVD之模式建造.......................27 3.1. 前言.......................27 3.2. 模擬背景.......................28 3.2.1 四乙氧基矽烷(TEOS).......................28 3.2.2 反應動力式.......................29 3.2.3 LPCVD反應器的製程背景.......................30 3.3. 物理模式.......................33 3.3.1 條件假設.......................33 3.3.2 模式建立.......................33 4.. 模擬結果與討論.......................43 4.1. 數據回歸.......................43 4.2. 真實數據模擬:TESO進料流量為380sccm.................43 4.3. 真實數據模擬:TESO進料流量為230sccm.................45 4.4. 物理模式應用在不同操作機台上.......................58 5.. 操作溫度的最適化.......................67 6.. 結論.......................71 附錄A. DRAM製程介紹 73 A.1. 前言 73 A.2. DRAM產業簡介 74 參考文獻 87 作者簡介 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 低壓化學氣相沉積 | zh_TW |
| dc.subject | 薄膜沉積 | zh_TW |
| dc.subject | 四乙氧基矽烷 | zh_TW |
| dc.subject | LPCVD | en |
| dc.subject | deposition | en |
| dc.subject | TEOS | en |
| dc.subject | CVD | en |
| dc.title | 低壓化學氣相沉積之模式建造與製程改善 | zh_TW |
| dc.title | Modeling LPCVD for Improved Operation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余政靖(Cheng-Ching Yu),王國彬(Gow-Bin Wang),錢義隆(I-Lung Chien),黃奇(Chi Huang) | |
| dc.subject.keyword | 低壓化學氣相沉積,薄膜沉積,四乙氧基矽烷, | zh_TW |
| dc.subject.keyword | LPCVD,CVD,TEOS,deposition, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
