Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成
dc.contributor.authorLiang-Hsia Tsaien
dc.contributor.author蔡倆俠zh_TW
dc.date.accessioned2021-06-13T03:17:49Z-
dc.date.available2014-08-03
dc.date.copyright2011-08-03
dc.date.issued2011
dc.date.submitted2011-07-29
dc.identifier.citation參考文獻
[1] K. Jayaweera and B. Mason, 'The behaviour of freely falling cylinders and
cones in a viscous fluid,' Journal of Fluid Mechanics, vol. 22, pp. 709-720,
1965.
[2] D. Joseph, et al., 'Nonlinear mechanics of fluidization of spheres, cylinders and
disks in water,' 1986, p. 101.
[3] J. Feng, et al., 'Direct simulation of initial value problems for the motion of
solid bodies in a Newtonian fluid Part 1. Sedimentation,' Journal of Fluid
Mechanics, vol. 261, pp. 95-134, 1994.
[4] C. K. Aidun and E. J. Ding, 'Dynamics of particle sedimentation in a vertical
channel: Period-doubling bifurcation and chaotic state,' Physics of Fluids, vol.
15, p. 1612, 2003.
[5] T. W. Pan, et al., 'On the motion of a neutrally buoyant ellipsoid in a
three-dimensional Poiseuille flow,' Computer Methods in Applied Mechanics
and Engineering, vol. 197, pp. 2198-2209, 2008.
[6] Z. Xia, et al., 'Flow patterns in the sedimentation of an elliptical partic le,'
Journal of Fluid Mechanics, vol. 625, p. 249, 2009.
[7] H. H. Hu, et al., 'Direct Numerical Simulations of Fluid-Solid Systems Using
the Arbitrary Lagrangian-Eulerian Technique,' Journal of Computational
Physics, vol. 169, pp. 427-462, 2001.
[8] H. H. Hu, et al., Experiments and direct simulations of fluid particle motions:
Army High Performance Computing Research Center, 1992.
[9] H. H. Hu, et al., 'Direct simulation of fluid particle motions,' Theoretical and
Computational Fluid Dynamics, vol. 3, pp. 285-306, 1992.
[10] H. H. Hu, 'Direct simulation of flows of solid- liquid mixtures,' International
Journal of Multiphase Flow, vol. 22, pp. 335-352, 1996.
[11] N. A. Patankar, 'Numerical simulation of particulate two-phase flow,' 1997.
[12] A. A. Johnson and T. E. Tezduyar, 'Direct Numerical Simulation of
Fluid-Particle Flow with 1000 Spheres,' 1998.
[13] R. Glowinski, et al., 'Fictitious domain methods for incompressible viscous
flow around moving rigid bodies,' MATHEMATICS OF FINITE ELEMENTS
AND APPLICATIONS, vol. 9, pp. 155-174, 1996.
76
[14] R. Glowinski, et al., 'A Lagrange multiplier/fictitious domain method for the
numerical simulation of incompressible viscous flow around moving rigid
bodies:(I) case where the rigid body motions are known a priori,' Comptes
Rendus de l'Academie des Sciences-Series I-Mathematics, vol. 324, pp. 361-369,
1997.
[15] R. Glowinski, et al., 'A distributed Lagrange multiplier/fictitious domain
method for particulate flows,' International Journal of Multiphase Flow, vol. 25,
pp. 755-794, 1999.
[16] R. Glowinski, et al., 'A fictitious domain approach to the direct numerical
simulation of incompressible viscous flow past moving rigid bodies: Application
to particulate flow,' Journal of Computational Physics, vol. 169, pp. 363-426,
May 20 2001.
[17] A. J. Chorin, et al., 'Product formulas and numerical algorithms,'
Communications on Pure and Applied Mathematics, vol. 31, pp. 205-256, 1978.
[18] Z. Yu, et al., 'Viscoelastic mobility problem of a system of particles,' Journal of
Non-Newtonian Fluid Mechanics, vol. 104, pp. 87-124, 2002.
[19] F. Fonseca and F. Rodolfo, 'Sedimentation of Oblate Ellipsoids,' 2004.
[20] T. N. Swaminathan, et al., 'Sedimentation of an ellipsoid inside an infinitely
long tube at low and intermediate Reynolds numbers,' Journal of Fluid
Mechanics, vol. 551, p. 357, 2006.
[21] H. Lamb and S. H. Lamb, Hydrodynamics: Cambridge Univ Pr, 1997.
[22] J. Wu and R. Manasseh, 'Dynamics of dual-particles settling under gravity,'
International Journal of Multiphase Flow, vol. 24, pp. 1343-1358, 1998.
[23] Y. A. Chu, 'A distributed Lagrange multiplier/ fictitious domain method for
settling behavior of bidisperse suspension,' Master, Institute of Applied
Mechanics, National Taiwan University, Taipei, 2010.
[24] J. Feng, et al., 'Dynamic simulation of sedimentation of solid particles in an
Oldroyd-B fluid,' Journal of Non-Newtonian Fluid Mechanics, vol. 63, pp.
63-88, Mar 1996.
[25] J. Hao, et al., 'A fictitious domain/distributed Lagrange multiplier method for
the particulate flow of Oldroyd-B fluids: A positive definiteness preserving
approach,' Journal of Non-Newtonian Fluid Mechanics, vol. 156, pp. 95-111,
Jan 2009.
77
[26] D. Joseph, et al., 'Aggregation and dispersion of spheres falling in viscoelastic
liquids,' Journal of Non-Newtonian Fluid Mechanics, vol. 54, pp. 45-86, 1994.
[27] T. W. Pan, et al., 'Direct simulation of the motion of a settling ellipsoid in
Newtonian fluid,' Journal of Computational and Applied Mathematics, vol. 149,
pp. 71-82, Dec 1 2002.
[28] A. Prosperetti and G. Tryggvason, Computational methods for multiphase flow:
Cambridge Univ Pr, 2007.
[29] A. Wachs, 'A DEM-DLM/FD method for direct numerical simulation of
particulate flows: Sedimentation of polygonal isometric particles in a Newtonian
fluid with collisions,' Computers & Fluids, vol. 38, pp. 1608-1628, 2009.
[30] B. H. Yang, et al., 'Migration of a sphere in tube flow,' Journal of Fluid
Mechanics, vol. 540, pp. 109-131, Oct 10 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31696-
dc.description.abstract對於兩顆粒子間牛頓流體中的交互運動,在雷諾數30~100的範圍間,已更很
多學者透過實驗、理論及模擬分析作一系列的研究,Joseph(1987)等學者探討了此雷諾數區間下粒子運動的基礎控制機制,並以拖曳、接觸、翻滾(DKT)來描述這些交互機制。在本論文中,我們的主要研究方向在於:本研究中將粒子放於L/D=3~7等五種不同寬度之無限長通道,受重力沉降。分別討論兩顆圓形粒子、橢圓粒子與dipole 長體粒子在牛頓流體中的異常沉降行為,此異常沉降行為多發生在黏彈性非牛頓流體中的兩圓形粒子沉降,落後粒子會因受拉曳影響,使得兩粒子接觸而串連,如果流體的彈力夠強則粒子無翻滾與分開之運動。對於此二維的固液二相流系統,我們考慮液體為黏性且不可壓縮之牛頓流體,固體則為剛體圓形粒子、橢圓粒子與dipole 粒子,其密度與液體十分接近。本論文研究中以Navier-Stokes equation 來描述流體行為以及Euler-Newton equation 來描述剛體粒子運動,並利用Glowinski與Pan學者所發展出的分佈式拉格朗日乘數/虛擬區域法(DLM/FDM)來模擬流體與粒子的運動。在本研究中,我們定義臨界雷諾數(Recr),在雙粒子沉降系統中,此臨界雷諾數為不同寬度通道中能使兩粒子維持串連且垂直沉降的最大雷諾數。此外,為了與雙粒子所串連而成的長體沉降比較,臨界雷諾數在橢圓與dipole 長體粒子的沉降中則定義為能使長體粒子長軸平行於通道中心線並維持在通道中心垂直沉降的最大雷諾數。分析三種沉降系統下不同寬度通道中的臨界雷諾數,我們得到三種系統的臨界雷諾數會隨通道寬度增加而變小。進一步地,我們找出雷諾數之倒數(1/Recr)與通道寬度(L/D)之關係,發現在雙粒子沉降中,兩者之間更良好的線性關係,在橢圓與dipole 粒子中,兩者在較寬通道中的線性關係較為明顯。可以得知在窄通道中,壁面效應較大,即在較低黏滯力、較高慣性作用下,粒子仍可藉由壁面作用力的影響使兩顆粒子保持串連或使長體粒子的長軸平行於中心線並維持在通道中心垂直沉降。在寬通道中,壁面效應減弱,慣性作用增強,粒子則必頇在低雷諾數時,更較高的黏滯力才可以得到類似的結果。比較不同粒子系統的臨界雷諾數,在窄通道中,三種系統臨界雷諾數接近;而在寬通道中,長體粒子所受慣性作用較大,故其能保持垂直沉降的雷諾數範圍較小。
zh_TW
dc.description.abstractMany researcher have studied the interaction between two particles in a Newtonian
fluid at the Reynolds number 30~100. Joseph et al. (1987) studied the basic mechanism
controlling the motion and interactions of spherical at this Reynolds number interval.
They described these motions as drafting, kissing and tumbling (DKT). When two particles settling in a viscoelastic non-Newtonian fluid, the drafting effect makes the trailing particle accelerate to kiss the leading one, as well as they chain together without tumbling or separating if the effect of elasticity is strong enough. In this thesis, our study focus on the abnormal settling of two particles system and long body, such as ellipse particle and dipole particle due to the gravity in Newtonian fluid in an infinite channel of different width L/D, including 3, 4, 5, 6, 7, respectively, where D is the characteristic length. For two-dimensional solid- fluid two-phase system, we consider the fluid as a viscous and incompressible Newtonian fluid, and the solid as rigid circular particle, elliptic particle, or dipole particle, whose density is slightly heavier than the fluid. In this study, we use Navier-Stokes equation to model the fluid flow and Euler-Newton equation to model the rigid body motion. Furthermore, we use the
distributed Lagrangian multiplier/ fictitious domain method(DLM/FDM), which was developed by Glowinski and Pan, to simulate the fluid flow and the particle motion
directly. In this thesis, we define a critical Reynolds number (Recr) as the max Reynolds number which can make two particles keep chaining and settling vertically for two
particle system. To compare with the settling of the
long body formed by two particles, we define the critical Reynolds number for ellipse and dipole as the max number which can make the long axis of the long body parallel to
the central line of the channel and settle vertically in the middle of infinite channel. Analyzing the critical Reynolds number of these three systems, we have gotten the
result that the critical Reynolds number decreases as the channel width increases. In addition, we found the relation between 1/Recr and L/D. The relation is linear for two
particle settling. For ellipse and dipole cases, the relations are linear in wider channel. The simulation results indicate that in the narrow channel, the wall effect is stronger so that with a lower viscous force and higher inertia effect, two disks can chained together and a long body can settle vertically in the middle of the channel with its long axis parallel to the central line of the channel. In wide channel, the wall effect gets weaker, and the inertia effect gets stronger. The particle won’t behave similarly as that in the narrow channel unless the viscous force is large. In comparison of critical Reynolds
number among different particle systems, in narrow channel, the three Reynolds numbers of the three systems are close; in wide channel, the inertia effect imposing on long body is larger so that the range of Reynolds number, which can make the particles settle vertically, is smaller.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:17:49Z (GMT). No. of bitstreams: 1
ntu-100-R98543033-1.pdf: 5137140 bytes, checksum: 6df581666527384461ab5927aee56ed0 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖總表 viii
表格總表 xiv
Chapter 1 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 平行牆壁間的單顆粒子沉降 2
1.4 通道中雙粒子沉降的交互作用 8
1.5 Drafting-Kissing-Tumbling 13
1.6 研究目的 14
Chapter 2 數學模型 15
2.1 背景 15
2.2 運動方程式 15
2.2.1 分佈式拉格朗日乘數法 17
2.2.2 虛擬區域架構 19
Chapter 3 數值方法 21
3.1 Operator Splitting 21
3.2 空間與時間的離散(space and time discretization) 24
3.3 子問題求解 26
Chapter 4 結果與討論 28
4.1 單一圓形粒子沉降之測試問題 28
4.1.1 單一圓形粒子之阻力係數 28
4.1.2 單一圓形粒子之低雷諾數下的沉降軌跡 31
4.2 雙粒子的沉降 33
4.2.1 兩顆圓形粒子沉降的測試問題 33
4.2.2 不同壁面寬度下的粒子沉降行為兩顆粒子的沉降 36
4.3 橢圓粒子的沉降 47
4.3.1 橢圓粒子沉降的測試問題 47
4.3.2 與雙圓形粒子沉降對照之橢圓粒子沉降 50
4.4 dipole 粒子的沉降 60
Chapter 5 結論及未來展望 70
5.1 結論 70
5.2 未來展望 74
參考文獻 75
dc.language.isozh-TW
dc.subject臨界雷諾數zh_TW
dc.subject壁面效應zh_TW
dc.subject雙粒子沉降zh_TW
dc.subject粒子串連zh_TW
dc.subject低雷諾數zh_TW
dc.subject長體沉降zh_TW
dc.subjectWall effecten
dc.subjectCritical Reynolds numberen
dc.subjectLong body settlingen
dc.subjectLow Reynolds numberen
dc.subjectChain of disksen
dc.subjectDual-particle settlingen
dc.title以數值方法探討壁面效應對粒子沉降行為之影響zh_TW
dc.titleNumerical Investigation on the Wall Effect to the Motion of the Particle Sedimentationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor潘從輝
dc.contributor.oralexamcommittee朱錦洲,蘇正瑜,王繼宗
dc.subject.keyword壁面效應,雙粒子沉降,粒子串連,低雷諾數,長體沉降,臨界雷諾數,zh_TW
dc.subject.keywordWall effect,Dual-particle settling,Chain of disks,Low Reynolds number,Long body settling,Critical Reynolds number,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2011-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved