Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31692
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor梁庚辰(Keng-Chen Liang)
dc.contributor.authorShu-Tang Chaoen
dc.contributor.author趙樹堂zh_TW
dc.date.accessioned2021-06-13T03:17:43Z-
dc.date.available2007-08-01
dc.date.copyright2006-08-01
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citationAlkire, M. T., & Nathan, S. V. (2005). Does the amygdala mediate anesthetic-induced amnesia? Anesthesiology, 102, 754-760.
Alkire, M. T., Vazdarjanova, A., Dickinson-Anson, H., White, N. S., & Cahill, L. (2001). Lesions of the basolateral amygdala complex block propofol-induced amnesia for inhibitory avoidance learning in rats. Anesthesiology, 95, 708-715.
Amorapanth, P., Nader, K., & LeDoux, J. E. (1999). Lesions of periaqueductal gray dissociate-conditioned freezing from coditioned suppression behavior in rats. Learning and Memory, 6, 499.
Andrade, J. (1995). Learning during anaesthesia: A review. British Journal of Psychology, 86, 479-506.
Antognini, J. F., & Carstens, E. (1999). Isoflurane blunts electroencephalographic and thalamic-reticular formation response to noxious stimulation in goats. Anesthesiology, 91, 1770-1779.
Antognini, J. F., & Carstens, E. (2002). In vivo characterization of clinical anaesthesia and its components. British Journal of Anaesthesia, 89, 156-166.
Baldi, E., Lorenzini, C. A., & Bucherelli, C. (2005). Footshock intensity and generalization in contextual and auditory-cued fear conditioning in the rat. Neurobiology of Learning and Memory, 81, 162-166.
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18, 2103-2109.
Berntson, G. G., Shafi, R., Knox, D., & Sarter, M. (2003). Blockade of epinephrine priming of the cerebral auditory evoked response by cortical cholinergic deafferentation. Neuroscience, 116, 179-186.
Berridge, C. W., & Abercrombie, E. D. (1999). Relationship between locus coeruleus discharge rates and rates of norepinephrine release within neocortex as assessed by in vivo microdialysis. Neuroscience, 93, 1263-1270.
Budgell, B., Sato, A., Suzuki, A., & Uchida, S. (1997). Responses of adrenal function to stimulation of lumbar and thoracic interspinous tissues in the rat. Neuroscience Research, 28, 33-40.
Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149-186.
Chiang, C., & Aston-Jones, G. (1993). Response of locus coeruleus neurons to footshock stimulation is mediated by neurons in the rostral ventral medulla. Neuroscience, 53, 705-715.
Clark, R. E., Manns, J. R., & Squire, L. R. (2002). Classical conditioning, awareness, and brain systems. Trends in Cognitive Sciences, 6, 524-531.
Clayton, E. C., & Williams, C. L. (2000). Adrenergic activation of the nucleus tractus solitarius potentiates amygdala norepinephrine release and enhance retention performance in emotionally arousing and spatial memory tasks. Behavioural Brain Research, 112, 151-158.
Cooper, S. J. (2005). Donald O. Hebb synapse and learning rule: A history and commentary. Neuroscience and Biobehavioral Reviews, 28, 851-874.
Costa-Miserachs, D., Portell-Cortes, I., Aldavert-Vera, L., Torras-Garcia, M., & Morgado-Bernal, I. (1994). Long-term memory facilitation in rats by posttraining epinephrine. Behavioral Neuroscience, 108, 469-474.
Davis, M., Falls, W. A., Campeau, S., & Kim, M. (1993). Fear-potentiated startle: A neural and pharmacological analysis. Behavioural Brain Research, 58, 175-198.
Davis, M., Schlesinger, L. S., & Sorenson, C. A. (1989). Temporal specificity of fear conditioning: Effects of different conditioned stimulus-uncoditioned stimulus intervals on the fear-potentiated startle effect. Journal of Experimental Psychology: Animal Behavior Processes, 15, 295-310.
Deeprose, C., & Andrade, J. (2006). Is priming during anesthesia unconscious? Consciousness and Cognition, 15, 1-23.
Deeprose, C., Andrade, J., Varma, S., & Edwards, N. (2004). Unconscious learning during surgery with propofol anaesthesia. British Journal of Anaesthesia, 92, 171-177.
Dutton, R. C., Maurer, A. J., Sonner, J., Fanselow, M. S., Laster, M. J., & Eger II, E. I. (2001). The concentration of isoflurane required to suppress learning depends on the type of learning. Anesthesiology, 94, 514-519.
Edagawa, Y., Saito, H., & Abe, K. (1998). Serotonin inhibits the induction of long-term potentiated in rat primary visual cortex. Progress in Neuropsychopharmacology and Biological Psychiatry, 22, 983-997.
Eger II, E. I., Kobmin, D. D., Harris, R. A., Kendig, J. J., Pohorille, A., Halsey, M. J., et al. (1997). Hypothesis: Inhaled anesthetic produce immobility and amnesia by different mechanisms at different sites. Anesthesia and Analgesia, 84, 915-918.
Eger II, E. I., & Sonner, J. M. (2006). Anaesthesia define (Gentlemen, this is no humbug). Best Practice and Research Clinical Anaesthesiology, 20, 23-29.
Fanselow, M. S. (1982). The postshock activity burst. Animal Learning and Behavior, 10, 448-454.
Fendt, M., & Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews, 23, 743-760.
Fischer, Y., Gahwiler, B. H., & Thompson, S. M. (1999). Activation of intrinsic hippocampal theta oscillations by acetylcholine in rat septo-hippocampal cocultures. The Journal of Physiology, 519, 405-413.
Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., Bonhomme, V., et al. (1999). Brain mechanisms of propofol-induced loss of consciousness in humans: A postrion emission tomographic study. The Journal of Neuroscience, 19, 5506-5513.
Franks, N. P., & Lieb, W. R. (1998). Which molecular targets are most relevent to general anesthesia? Toxicology Letters, 100-101, 1-8.
Ghoneim, M. M., & Block, R. I. (1992). Learning and consciousness during general anesthesia. Anesthesiology, 76, 279-305.
Ghoneim, M. M., & Block, R. I. (1997). Learning and memory during anesthesia: An update. Anesthesiology, 87, 387-410.
Ghoneim, M. M., & Mewaldt, S. P. (1990). Benzodiazepines and human memory: A review. Anesthesiology, 72, 926-938.
Gidron, Y., Barak, T., Henik, A., Gurman, G., & Stiener, O. (2002). Implicit learning of emotional information under anesthesia. Neuroreport, 13, 139-142.
Gold, P. E., Weinberger, N. M., & Sternberg, D. B. (1985). Epinephrine-induced learning under anesthesia: Retention performance at several training-testing intervals. Behavioral Neuroscience, 99, 1019-1022.
Gross, M. A. F., Nager, W., Quandt, C., Muente, T. F., & Muente, S. (2004). Auditory processing in patients under general anaesthesia. An event releated brain potential (ERP) study in the operanting thearte. British Journal of Anaesthesia, 93, 486.
Groves, D. A., Bowman, E. M., & Brown, V. J. (2005). Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neuroscience Letters, 379, 174-179.
Hebb, D. O. (1949). The organization of behavior. New York: John Wiley & Sons.
Hebb, D. O. (1955). Drives and the CNS (conceptual nervous system). Psychological Review, 62, 243-254.
Holdefer, R. N., & Jensen, R. A. (1987). The effects of peripheral D-amphetamine, 4-OH amphetamine, and epinephrine on maintained discharge in the locus coeruleus with reference to the modulation of learning and memory by these substrate. Brain Research, 417, 108-117.
Huerta, P. T., & Lisman, J. E. (1993). Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature, 364, 723-725.
Introini-Collison, I., & McGaugh, J. L. (1986). Epinephrine modulates long-term retention of an aversively motivated discrimination. Behavioral and Neural Biology, 45, 358-365.
Introini-Collison, I., Saghafi, D., Novack, G. D., & McGaugh, J. L. (1992). Memory-enhancing effects of post-training dipivefrin and epinephrine: Involement of peripheral and central adrenergic receptors . Brain Research, 572, 81-86.
Izumi, Y., & Zorumski, C. F. (1999). Norepinephrine promotes long-term potentiaion in the adult rat hippocampus in vitro. Synapse, 31, 196-202.
Joels, M., Pu, Z., Wiegert, O., Oitzl, M., & Krugers, J. (2006). Learning under stress: How does it work? Trends in Cognitive Science, 10, 152-158.
Katsuki, H., Izumi, Y., & Zorumski, C. F. (1997). Noradrengic regulation of synaptic plasticity in the hippocampal CA1 region. Jounal of Neurophysiology, 77, 3013-3020.
Kim, E. H. J., Woody, C. D., & Berthier, N. E. (1983). Rapid acquisition of conditioned eye blink response in cats following pairing of an auditory CS with glabella tap US and hypothalamic stimulation. Journal of Neurophysiology, 49, 767-779.
Kim, S. D., Rivers, S., Bevins, R. A., & Ayres, J. J. B. (1996). Conditioned stimulus determinants of conditioned response form in Pavlovian fear conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 22, 87-104.
Konorski, J. (1967). Intergrative activity of the brain: An interdisplinary approach. Chicago and Lodon: University of Chicago Press.
Lawrence, A. J., Watkins, D., & Jarrott, B. (1995). Visualization of beta-adrenoceptor binding sites on human inferior vagal ganglia and their axonal transport along the rat vagus nerve. Journal of Hypertension, 13, 631-635.
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155-184.
Lee, E. H. Y., & Ma, Y. L. (1995). Amphetamine enhances memory retention and facilitates norepinephrine release from the hippocampus in rats. Brain Research Bulletin, 37, 411-416.
Lee, H. J., Berger, S. Y., Stiedl, O., Spiess, J., & Kim, J. J. (2001). Post-training injections of catecholaminergic drugs do not modulate fear conditioning in rats and mice. Neuroscience Letters, 303, 123-126.
Liang, K. C., Yen, Y. C., Chang, S. D., & Chen, D. Y. (2005). Epinephrine enhances latent learning in an inhibitory avoidance task involvement of amygdaloid influences on the hippocampus. Poster session at Neuroscience 2005 SfN 35th Ann Meeting 414.8
Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation-a decade of progress? Science, 285, 1870-1874.
Mashour, G. A., Forman, S. A., & Campagna, J. A. (2005). Mechanisms of general anesthesia: From molecules to mind. Best Practice and Research Clinical Anaesthesiology, 19, 349-364.
McCarty, R., & Gold, P. E. (1981). Plasma catecholamines: Effect of foot shock level and hormonal modulators of memory storage. Hormones and Behavior, 15, 168-182.
McGaugh, J. L. (1983). Hormonal influences on memory. Annual Review of Psychology, 34, 297-323.
McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experience. Annual Review of Neuroscience, 27, 1-28.
McIntyre, C. K., Power, A. E., Roozendaal, B., & McGaugh, J. L. (2003). Role of the basolateral amygdala in memory consolidation. Annals of the New York Academy of Sciences, 985, 273-293.
Merikle, P. M., & Daneman, M. (1996). Memory for unconsciously perceived events: Evidence from anesthetized patients. Consciousness and Cognition, 5, 525-541.
Miyashita, T., & Williams, C. L. (2004). Peripheral arousal-related hormones modulate norepinephrine release in the hippocampus via influences on brainstem nuclei. Behavioural Brain Research, 153, 87-95.
Miyashita, T., & Williams, C. L. (2006). Epinephrine administration increase neural impulses propagated along the vagus nerve: Role of peripheral β-adrenergic receptors. Neurobiology of Learning and Memory, 85, 116-124.
Newton, J. R., Ellsworth, C., Miyakawa, T., Tonegawa, S., & Sur, M. (2004). Acceleration of visually cued conditioned fear through the auditory pathway. Nature Neuroscience, 7, 968-973.
Packard, M. G., & Cahill, L. (2001). Affective modulation of multiple memory systems. Current Opinion in Neurobiology, 11, 752-756.
Quandt, C., Nager, W., Gross, M. A. F., Loffler, N., Piepenbrock, S. A., Muente, T. F., et al. (2004). Auditory perception during general anaesthesia with sevoflorane-event related potentials (ERP) indicate orienting mechanisms. British Journal of Anaesthesia, 93, 488.
Rosenkranz, J. A., & Grace, A. A. (2002). Dopamine-mediated modulation of odour-evoked amygdala potentials during Pavlovian conditioning. Nature, 417, 282-287.
Schafe, G. E., Nadel, N. V., Sullivan, G. M., Harris, A., & LeDoux, J. E. (1999). Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learning and Memory, 6, 97-110.
Shannon, H. E., & Lutz, E. A. (2000). Effect of the I1 imidazoline /α2-adrenergic receptor agonist moxonidine in comparison with clonidine in the formalin test in rats. Pain, 85, 161-167.
Shaw, F. Z., Chen, R. F., & Yen, C. T. (2001). Dynamic changes of touch- and laser heat-evoked field potentials of primary somatosensory cortex in awake and pentobarbital-anesthetized rats. Brain Research, 911, 105-115.
Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94, 439-454.
Shi, H. Y., Ban, Y. J., Lee, H. Y., Lim, H. J., & Yoon, S. M. (2004). Arousal with epinephrine depends on the depth of anesthesia. Canadian Journal of Anesthesia, 51, 880-885.
Sonner, J., Xing, Y., Zhang, Y., Maurer, A., Fanselow, M. S., & Dutton, R. C. (2005). Administration of epinephrine does not increase learning of fear to tone in rats anesthetized with isoflurane or desflurane. Anesthesia and Analgesia, 100, 1333-1337.
Steele, P. M., & Mauk, M. D. (1999). Inhibitory control of LTP and LTD: Stability of synapse strength. Journal of Neurophysiology, 81, 1559-1566.
Sternberg, D. B., Isaacs, K. R., Gold, P. E., & McGaugh, J. L. (1985). Epinephrine facilitation of appetitive learning: Attenuation with adrenergic receptor antagonists. Behavioral and Neural Biology, 44, 447-453.
Tatsumi, K., Hirai, K., Furuya, H., & Okuda, T. (1995). Effects of sevoflurane on the middle latency auditory evoked response and the electroencephalographic power spectrum. Anesthesia and Analgesia, 80, 940-944.
Wasserman, E. A. (1997). What's elementary about associative learning? Annual Review of Psychology, 48, 573-607.
Wei, H., Xiong, W., Yang, S., Zhou, Q., Liang, C., Zeng, B. X., et al. (2002). Propofol facilitates the development of long-term depression (LTD) and impairs the maintenance of long-term potentitation (LTP) in the CA1 region of the hippocampus of anesthetized rats. Neuroscience Letters, 324, 181-184.
Weil-Malherbe, H., Axelrod, J., & Tomchick, R. (1959). Blood-brain barrier for adrenaline. Science, 129, 1226-1227.
Weinberger, N. M. (1997). Learning-induced receptive field plasticity in the primary auditory cortex. Seminars in Neuroscience, 9, 59-67.
Weinberger, N. M., Gold, P. E., & Sternberg, D. B. (1984). Epinephrine enables Pavlovian fear conditioning under anesthesia. Science, 223, 605-607.
Williams, C. L., Men, D., Clayton, E. C., & Gold, P. E. (1998). Norephrine release in the amygdala after systemic injection of epinephrine or escapable footshock: Contribution of the nucleus of the solitary tract. Behavioral Neuroscience, 112, 1414-1422.
Zhao, Z., & Davis, M. (2004). Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. The Journal of Neuroscience, 24, 10326-10334.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31692-
dc.description.abstract時間接近性向來被視為造成連結學習的重要因素,但是刺激重要性所引發的興奮狀態也可以左右學習的強弱。人類的研究中發現,在學習時呈現嫌惡性刺激可以使得學習在麻醉狀態下發生。嫌惡刺激會引發身體釋放壓力激素,其中腎上腺素已被證明是調節記憶的內在因子。因此,嫌惡刺激所引發腎上腺素釋放的機制,可能足以獨立於主觀意識之外,傳達一般性的興奮訊息,影響中樞神經系統的學習記憶機制,使學習得以在麻醉狀態下發生。本研究企圖利用條件化僵直行為以及恐懼增益驚跳反應作為恐懼學習典範,驗證此一假說。研究的策略是先建立腎上腺素可以增強清醒狀態下的恐懼條件學習,建立此現象之後,再讓此恐懼條件學習在麻醉的狀態下進行,進行探討麻醉狀態下之恐懼條件學習是否受到周邊腎上腺素調節而增強。本研究發現在清醒狀態下進行刺激配對訓練,訓練後周邊注射腎上腺素,之後測試對特定條件刺激、訓練情境以及兩者共同呈現所分別表現的僵直反應。研究結果發現,無論利用視覺或是聽覺刺激作為條件刺激,腎上腺素均不影響條件化僵直反應的學習。相對的,訓練前周邊注射每公斤體重0.01毫克或是0.1毫克腎上腺素,有效增進清醒狀態下一次刺激配對的恐懼增益驚跳反應學習。訓練前周邊注射每公斤體重0.1毫克以及1.0毫克腎上腺素,有效增進麻醉狀態下五次刺激配對的恐懼增益驚跳反應學習。本研究顯示,在學習歷程中,除了主動注意可以反映刺激訊息的重要性外,腎上腺素可以在麻醉的無意識狀態下,表徵刺激以及經驗的重要性,傳達一般性的興奮訊息進入中樞神經系統,影響學習的發生。zh_TW
dc.description.abstractTemporal contiguity has been proved to be one of the most influential factors in associative learning. Stimulus saliency may also contribute significantly to learning. However, learning nonetheless happens without intention or even awareness. Thus, there should be mechanisms subserving the saliency function other than subjective awareness. Evidence indicated that learning under anesthesia occurs more during presentation of noxious stimuli that may release epinephrine. This study aimed to test whether epinephrine also modulates learning and memory processes under an anesthetic state. Conditioned freezing and conditioned potentiation of startle were chosen to assess memory of fear conditioned to a specific stimulus, the training environment or both using shock as unconditioned stimulus. The result showed that post-training epinephrine injections under an awake state did not modulate subsequent freezing behavior induced by the specific conditioned stimulus, the training environment or both of them. In contrast, pre-training epinephrine subcutaneous injection enhanced memory of fear-potentiated startle formed under awake and anesthetic states. In conclusion, epinephrine may be one of the mechanisms representing the stimulus saliency under awake and even anesthetic states.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:17:43Z (GMT). No. of bitstreams: 1
ntu-95-R92227006-1.pdf: 765957 bytes, checksum: d08f5cdc89ee95f9db58edfce33f6da9 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章緒論……………………………………………………………1
第二章實驗材料與方法………………………………………………14
第三章實驗結果………………………………………………………20
第四章綜合討論………………………………………………………36
參考文獻………………………………………………………………48
附圖說明………………………………………………………………59
附圖……………………………………………………………………62
dc.language.isozh-TW
dc.subject恐懼記憶zh_TW
dc.subject壓力激素zh_TW
dc.subject條件化僵直反應zh_TW
dc.subject恐懼增益驚跳反應zh_TW
dc.subject杏仁核zh_TW
dc.subjectfear-potentiated startleen
dc.subjectstress hormonesen
dc.subjectconditioned freezingen
dc.subjectamygdalaen
dc.title周邊腎上腺素對清醒與麻醉狀態下恐懼條件學習之調節作用zh_TW
dc.titleEpinephrine Modulation of Fear Conditioning under Awake and Anesthetic Statesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐嘉宏(Chia-Hung Hsu),蔡元奮(Yuan-Feen Tsai),廖瑞銘(Ruey-Ming Liao),嚴震東(Chen-Tung Yen)
dc.subject.keyword壓力激素,條件化僵直反應,恐懼增益驚跳反應,杏仁核,恐懼記憶,zh_TW
dc.subject.keywordstress hormones,conditioned freezing,fear-potentiated startle,amygdala,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
Appears in Collections:心理學系

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
748 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved