Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31690
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧茂華
dc.contributor.authorKwei-Fang Shiahen
dc.contributor.author夏葵芳zh_TW
dc.date.accessioned2021-06-13T03:17:40Z-
dc.date.available2008-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-29
dc.identifier.citation1. Avrami M. (1939) ”Kinetics of Phase Change. Ⅰ,” Journal of Chemical Physics, Vol. 7, p.1103-1112.
2. Avrami M. (1940) ”Kinetics of Phase Change. Ⅱ,” Journal of Chemical Physics, Vol. 7, p.1103-1112.
3. 梁家豪(2003),三種分析反應動力學及燒結資料的新方法。台灣大學
地質科學系研究所碩士論文,共159頁。
4. 吳慶豐,鄧茂華(1999)微細顆粒陶瓷粉末之主導燒結曲線。化工冶金
〔Engineering Chemistry&Metallurgy(china)〕第20卷增刊, p.401-404。
5. 陳英田(2000)數種常見氧化物陶瓷之主導燒結曲線及其應用。國立台
灣大學地質科學系研究所碩士論文,共112頁。
6. H.Su and D.L. Johnson(1996)”Master Sintering Curve: a Practical Approach
to Sintering,”Journal of the American Ceramic Society, Vol.79〔12〕p3211-3217.
7. 陳孟霞(2004),主導曲線模型運用在奈米氧化鋁和奈米二氧化鈦陶瓷粉
末燒結之研究。台灣大學地質科學系研究所碩士論文,共95頁。
8.大學普通化學實驗第九版。台灣大學化學系(1999)。
9. Dept. of Chemistry, U. of Illinois at Urbana-Champaign(1991)General Chemistry Experiments, Chemistry 102;Stipes Publishing Co.,
10. Skoog, D.A.; West, D.M.; Holler, F. J.(1988)Fundamentals of Analytical Chemistry; 5th ed., Saunders College Publishing: Chicago,;p.124-130.
11. Kissinger H. E.(1957)“Reaction Kinetics in Differential Thermal Analysis,”
Analytical Chemistry, Vol.29,p.1702-1706.
12. Ozawa, T.(1965)“A New Method of Analyzing Thermogravimetric Data,”
Bulletin Of the Chemical Society of Japan, Vol.38, p.1881-1886.
13. Joseph H. Flynn and Leo A. Wall(1966)“A quick, direct method for the determination of activation energy from thermogravimetric data,” Journal of polymer Science Part B, Vol.4〔5〕, p.323-328.
14. Ozawa T. (1992) ‘‘Estimation of activation energy by isoconversion metods, ” Thermochimica Acta, Vol.203, p. 159-165.
15. Ozawa T. (1999) ‘‘Thermal analysis - review and prospect, ”Thermochimica
Acta, Vol.355, p. 35-42.
16. Bischoff, F., Z. (1950) anorg. Chem. Vol.262, p.288-296.
17. Bramao, L., Cady, J.G., Hendricks, S. B., Swerdlow, M., (1952) Soil Sci. , Vol.73, p.273-287.
18. Britton, H. T. S., Gregg, S. J., Winsor, G. W., (1952) Trans, Faraday Soc. , Vol.48, p.63-69.
19. Garner, W. E., (1955) “Chemistry of the Solid State,” p.184-211, Academic Press, New York.
20. Glasstone, S., (1946) “Textbook of Physical Chemistry,” 2nd ed., p.1067, Van Nostrand, New York.
21. gregg, S. J., Razouk, R. T., (1949) J. Chem. Soc., S36-S44.
22. Kissinger, H. E., (1956) J. Research Natl. Bur. Standards Vol.57, p.217-221.
23. Mauer, F. A., (1954) Rev. Sci. Instr. Vol.25, p.598-602.
24. Murray, P., White, J., (1955) Trans. Brit. Ceram. Soc., Vol.54, p.151-187.
25. Sewell, E. C., (1955) Clay Minerals Bulll. Vol.2, p.233-241.
26. Ballentine, O. M., (1954) WADC Tech. Rept. P.54-417.
26. Shin h. (1974) Chem-Ing-Techn Vol. 46 p.579.
27. Shin H, Kaminsky W, Janning J. (1976) Angew Chem Vol.88 p.737.
28. Cooney JD, Day M, Wiles Dm. J (1983)Appl Polym Sci., Vol.28 p.737
29. Ebbinghaus BB, (1995)Combustion and Flame p.101-311.
30. Arisawas H, Brill TB. (1997) Combustion and Flame p.109-415.
31. Park SW, Lee JL, Seul SD. (1985) Hwahak Konghak p.23-125.
32. Petrovic ZS, Zavargo ZZ.J (1986) Appl Polym Sci., p.32-4353.
33. Nam JD, Seferis JC. J (1991) Polym Phys p.29-601.
34. Nam JD, Seferis JC. J (1992) Polym Phys p.30-455.
35. Jimenez A Berenguer V, Lopez J, Sanchez A. J (1993)Appl Polym Sci., p.50-1565.
36. Salin JM, Seferis JC. J(1993) Appl Polym Sci., p.47-847.
37. Denq BL, Chiu WY, Lim KF. J(1997) Appl Polym Sci., p.66-1855.
38. Turn SR. (1994) An introduction to combustion: concepts and applications. New York: McGraw-Hill,. p. 127.
39. Murray F, White J. (1955) Trans Brit Ceram soc p.54-151.
40. Ozawa TJ. (1970) Therm Anal p.2-301.
41. Flyrm J H, Wall LA. J (1966) Res Nat Bur Stand p.70A-A87.
42. Ozawa T. (1965) Bull Chem Soc Jpn p.38-1881.
43. Mucha M. J (1976) Polym Sci Symp p.7-25.
44. Urzendowski SR, Guenther AH. J (1971) Therm Anal p.3-379.
45. Wu Ch, Chang Cy, Hor JL, Shih SM, Chen LW, Chang FW. (1993) Pyrolysis Kinetics Waste Manage p.13-221.
46. Westerhout RWJ, wanders J, Kuipers JAM, van Saaij WPM. (1997) Inf Rnh Vhrm Trd p.36-1995.
47. Jellinek HHG. J (1950) Polym Sci., p.4-378.
48. Park, J. W, Oh, S. C. Lee, H. P, Kim H. T. and Yoo , K. O. Yoo(2000)“A
kinetic analysis of thermal degradation of polymers using a dynamic method,”
Polymer Degradation and Stability,Vol.67,p.535-540. 
49. 英中日化學大辭典 高立圖書有限公司(2004)。
50. 陳鴻文(2001),碳酸鈣的燒結行為與顏色之成因的初步研究。台灣大學地質科學系研究所碩士論文,共94頁。
51. 礦物學(Manual of Mineralogy 21st Ed) 地球科學文教基金會出版(2000)p294-p295。
52. 蕭敦仁(2005)石墨包裹鎳奈米晶粒在高溫高壓下何成鑽石的初步探討。台灣大學地質科學系研究所碩士論文,39-42頁。
53. 鄧茂華(2000) 編著儀器分析第五章,台灣大學地質科學系。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31690-
dc.description.abstract主導曲線模型(MCM)是一個可以準確預測各種動力學反應變化的全新模型-只要由實際的實驗數據得到其反應的主導曲線與一個最佳視活化能值,即可用來預測此種動力學反應變化的過程。相較於一般反應動力學必須先得知反應活化能Q、反應級數n、以及碰撞頻率K0等三個參數,再代入假設的反應數學式才能描述其反應的變化過程要簡單且客觀得多。
本研究團隊已證實主導曲線模型(MCM)可以用到複雜如陶瓷燒結的反應,不僅能準確預測微米及次微米級粉末的常壓燒結緻密化過程,更可應用在奈米陶瓷燒結緻密化過程之描述。本研究工作則進一步驗證主導曲線模型(MCM)是否也能準確預測簡單化學熱分解反應之反應過程。
本研究所選用的材料為碳酸鈣、硫酸銅、硫酸鈣以及碳酸鈉等四種粉末,每種粉末均以幾組不同升溫速率經由熱重分析儀TGA進行熱分解反應。其中碳酸鈣、硫酸銅及硫酸鈣三種粉末,在未經過研磨過篩之情況下進行之實驗分析,發現無法擬合出理想的主導曲線,但經過研磨過篩的粉末則可以得到較佳的主導曲線。顯示出未研磨之較大顆粒粉體可能會出現表面與內部反應不均一的問題。此外由於碳酸鈉之熱分解反應溫度太高,本文只探討其低溫之脫附水反應;由於脫附作用不是一個穩定的化學動力學反應,因此如預期地無法用主導曲線模型來分析與預測。
本研究之初步結果,證實主導曲線模型(MCM)的確可以找出碳酸鈣、硫酸銅與硫酸鈣等粉末的熱分解反應之溫度、時間與反應變化百分比的簡單關係,並準確預測簡單熱分解反應之反應過程。但是預測的準確性至少會受到兩個因素的影響:一個是前述的粉體顆粒的粒徑,另一個則是升溫速率。一般而言,較快的升溫速率會得到較大的視活化能,因此在使用主導曲線模型來分析預測熱分解反應時,應考慮升溫速率的影響,才不會造成太大的誤差。
zh_TW
dc.description.abstractMaster Curve Model (MCM) is probably a universal kinetic model, and can be
used to predict the variations of various kinetic reactions as long as we can derive the
master curves and best apparent activation energy from experimental data. Unlike
general chemical kinetic model, which needs all three parameters, i.e. activation
energy Q, reaction order n, and collision frequency Ko, to construct the model, MCM
is a much simpler and more objective method.
Our previous work has shown that MCM can be used to describe and predict
complicated ceramic sintering reactions, not only for micron-or submicron powders,
but also for nanocrystalline ceramic powders. The purpose of this research is to test
the applicability of MCM on some simple chemical thermal decomposition reactions.
Four powders, including CaCO3, CuSO4·5H2O, CaSO4·2H2O, and Na2CO3, had
been thermally decomposed at various heating rate by thermo gravimetric analysis
(TGA). Without grinding and sieving process, no acceptable master curves can be
derived from the powders, but after grinding and sieving, three powders (except
Na2CO3) gave much better master curves. It indicates that the reaction rates on the
surface of the particles are different from that inside the bulk. Below 600oC,
Na2CO3 only showed physical desorption reaction, which is not a stable chemical
kinetic reaction, therefore no kinetic model is expected to be able to adequately
describe the reaction.
With some limitations, the preliminary results show that MCM indeed can
be used to interpret and predict the thermal decomposition reactions of simple
compounds. At least two factors will influence the accuracy of predictions of
MCM, i.e. the particle sizes as we have mentioned earlier and the heating rates.
In general, a faster heating rate gives a larger apparent activation energy.
Therefore, heating rate is a must considered factor when using MCM on the
analysis of thermal decomposition reactions.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:17:40Z (GMT). No. of bitstreams: 1
ntu-95-P91224104-1.pdf: 1639532 bytes, checksum: ea085d0defbc047e54d624ef44b35f0d (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents致謝 Ⅰ
摘要 II
Abstract Ⅲ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
第一章 緒論 1
1-1 研究目的 1
1-2 本文內容 2
第二章 文獻回顧 3
2-1 反應動力學 3
2-2 反應動力學運用於不同的熱分析 5
2-3 熱分解與化學動力學 8
2-4 主導曲線模型(Master Curve Model) 12
第三章 實驗步驟與方法 14
3-1 粉末準備 14
3-2 粉末特性鑑定及儀器分 15
3-3 主導曲線模型分析 29
第四章 結果與討論 30
4-1 粉末加熱後之反應 30
4-1-1碳酸鈣粉末之分解反應 30
4-1-2硫酸銅粉末之脫水反應 31
4-1-3硫酸鈣粉末之脫水反應 32
4-1-4碳酸鈉粉末之低溫脫附反應 34

4-2 熱分解效應 35
4-2-1碳酸鈣粉末初步實驗結果 36
4-2-2硫酸銅粉末初步實驗結果 40
4-2-3硫酸鈣粉末初步實驗結果 44
4-2-4碳酸鈉粉末初步實驗結果 48
4-3 以MCM分析熱分解反應的可行性 52
第五章 結論 56
參考文獻 58
附錄目錄 62
dc.language.isozh-TW
dc.subject主導曲線模型zh_TW
dc.subject熱分解反應zh_TW
dc.subjectMaster Curve Modelen
dc.subjectthermal decomposition reactionsen
dc.title簡單化學熱分解反應之主導曲線初步研究zh_TW
dc.titlePreliminary Study of the Applications of Master Curve Model on Simple Chemical Thermal Decomposition Reactionsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅清華,吳樂群,鄧茂英
dc.subject.keyword主導曲線模型,熱分解反應,zh_TW
dc.subject.keywordMaster Curve Model,thermal decomposition reactions,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved