Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31689
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃武良(Huang-Wuu Liang)
dc.contributor.authorYing-Ju Changen
dc.contributor.author張英如zh_TW
dc.date.accessioned2021-06-13T03:17:38Z-
dc.date.available2006-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-29
dc.identifier.citationBarker, C., 1974. Pyrolysis techniques for source-rock evaluation. The American Association of Petroleum Geologists Bulletin, 58, No.11, pp.2349-2361.
Baskin, D. K., 1997. Atomic H/C ration of kerogen as an estimate of thermal maturity and organic matter conversion. The American Association of Petroleum Geologists Bulletin, 81, No. 9, pp. 1431-1450.
Bassett, W.A., 1979. The diamond cell and the nature of the earth’s mantle. Ann. Rev. Earth and Planetary Sci., 7, pp. 357-384.
Bassett, W.A. and Ming, L.C., 1972. Disproportionation of Fe2SiO4 to 2FeO+SiO2 at pressures up to 250 kbar and temperatures up to 3000˚C. Phys. Earth Planet. Inter., 6, pp. 154-160. Cited in, Bassett, W.A., 1979. The diamond cell and the nature of the earth’s mantle. Ann. Rev. Earth and Planetary Sci., 7, pp. 357-384.
Bassett, W.A., Shen, A.H., Bucknum, M.J. and Chou, I.M., 1993. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1200 °C, Review of Scientific Instruments, 64, pp. 2340-2345.
Bassett, W.A., Wu, T.C., Chou, I.-M., Haselton, H. T., Frantz, J., Mysen, B.O., Huang, W.L., Sharma, S.K. and Schiferl, D., 1996. The hydrothermal diamond anvil cell (HDAC) and its applications. In Mineral Spectroscopy: A Tribute to Roger G. Burns, ed. M. D. Dyar, C. McCammon and M. W. Schaefer, No. 5, pp. 261-272. The Geochemical Society Special Publication.
Behar, F. and Vandenbroucke, M., 1996. Experimental determining of the rate constants of the n-C25 thermal cracking at 120, 400 and 800 bar: implications for high pressure/high temperature prospects. Energy and Fuels 10, pp. 931–940.
Behar, F. and Vandenbroucke, M., 1997. Thermal cracking of kerogen in open and closed systems:determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry 26, pp. 321-339.
Benkhedda, Z., Landais, P., Kister, J., Dereppe, J.-M. and Monthioux, M., 1992. Spectroscopic analysis of aro-matic hydrocarbons extracted from naturally and artificially matured coals. Energy and Fuels 6, pp. 166-172.
Bertrand, P., Pittion, J.L. and Bernaud, C., 1986. Fluorescence of sedimentary organic matter in relation to its chemical composition. In Advances in Organic Geochemistry 1985. Organic Geochemistry 10, pp. 641-647.
Braun, R.L. and Burnham, A.K., 1987. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy and Fuels 1, pp. 153–161.
Breger, I. A., 1961, Kerogen. In:McGraw Hill Encyclopedia of Science and Technology, New York, McGraw Hill. Cited in, Tissot, B. and Welte, D. H., 1984. Petroleum formation and occurrence;a New approach to oil gas exploration, Springer-Verlag, Berlin, Heidelberg, NewYork, 131p.
Rahman, J.D., 1974. Microscopic examination of kerogen (dispered organic matter) in petroleum exploration. Geol. Soc. Am., Special Paper 153, pp. 19-30.
Burnham, A.K., Braun, R.L., Coburn, T., Sandvik, E.I. and Curry, D.J., 1996. An appropriate kinetic model for well-preserved algal kerogen. Energy and Fuels 10, pp. 49-59.
Crum-Brown, A., 1912. Oil shale of Lothians. Memoirs Geol. Survey, 143. Cited in, Brooks, J., 1981. Organic maturation of sedimentary organic matter and petroleum exploration – A review. In : Organic maturation studies and fossil fuel exploration (edited by J. Brooks), Academic Press, London, p. 1.
Dumke, I. and Teschner, M., 1988. Application of fluorescence spectroscopy to geochemical correlation problems. In: Advances in Organic Geochemistry 1987. Organic Geochemistry 13, Pergamon Press, Oxford, pp. 1067-1072.
Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J. and Boutefeu, A., 1977. Methode rapide de characterization des roches meres de leur potential petrolier et de leur degre devolution. Revue Institute Francais du Petrole 32, pp. 23–42.
Inan, S., Yalcin, M.N. and Mann, U., 1998. Expulsion of oil from petroleum source rocks: inferences from pyrolysis of samples of unconventional grain size. Organic Geochemistry 29, pp. 45–61.
Khavari Khorasani, G., 1987. Novel development in fluorescence microscopy of complex organic mixtures: application in petroleum geochemistry. Organic Geochemistry 11, pp. 157–168.
Kihle, J., 1993. Non-destructive fingerprinting of single hydrocarbon fluid inclusions: micro-luminescence spectroscopy: state of the art and prospects for tomorrow. In: Oygard, K.(Ed.), Proceeding of the International Meeting on Organic Geochemistry., pp. 784–790.
Kihle, J., 1996. Adaptation of fluorescence excitation - emission micro-spectroscopy for characterization of single hydrocarbon fluid inclusions. Organic Geochemistry 23, pp. 1029–1042.
Kissinger, H.E., 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry 29, pp. 1702–1706.
Lakowicz, J.R., 1983. Principle of Fluorescence Spectroscopy. Plenum Press, New York, 495p.
Lanford, F. F. and Blanc-Valleron, M. -M., 1990. Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon, The American Association of Petroleum Geologists Bulletin, 64, pp.799-804.
Lawson, A.W. and Tang, T.Y., 1950. Rev. sci. Instrum. 21, pp. 815. Cited in, Jarayaman, A., 1983. Diamond anvil cell and high-pressure physical investigations. Review of Modern Physics 55, No. 1, pp. 65-108. Cited in, Jarayaman, A., 1983. Diamond anvil cell and high-pressure physical investigations. Reviews of Modern Physics 55, No. 1, pp. 65-108.
Lewan, M.D., 1997. Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta 61, pp. 3691-3723.
Lewan, M.D. and Ruble, T.E., 2002. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis: Organic Geochemistry 33, pp. 1457-1475.
Lewan, M.D., Winters, J.C. and McDonald, J.H., 1979. Generation of oil-like pyrolyzates from organic-rich shales. Science 203, pp. 897–899.
Hirsch, K.R. and Holzapfel, W.B., 1981. Rev. Sci. Instrum., 52, pp. 52. Cited in, Jarayaman, A., 1983. Diamond anvil cell and high-pressure physical investigations. Reviews of Modern Physics 55, No. 1, pp. 65-108.
Horsifield, B., Rullkötter, J., 1994. Diagensis, catagenesis, and metagenesis of organic matter. In:Magoon, L.B., Dow, W.G., (Ed.), The petroleum system-from source to trap. AAPG memoir 60, AAPG, U.S.A., pp. 189-200.
Huang, H., Wang, S., Wang, K, Klein, M. T., and Calkins, W. H., 1999. Thermogravimetric and Rock-Eval studies of coal properties and coal rank, Energy & Fuels, 13, pp. 396-400.
Huang, W.L., 1996. A new pyrolysis technique using diamond anvil cell: in-situ visualization of kerogen transformation. Organic Geochemistry 24, pp. 95–107.
Huang, W.L. and Otten, G.A., 1998. Oil generation kinetics determined by DAC-FS/IR pyrolysis: technique development and preliminary results. Organic Geochemistry 29, pp. 1119–1137.
Huang, W.L. and Otten, G.A., 2001. Cracking kinetics of crude oil and alkanes determined by diamond anvil cell-fluorescence spectroscopy pyrolysis: technique development and preliminary results. Organic Geochemistry 32, pp. 817–830.
Hunt, J.M., 1996. Petroleum geochemistry and geology (2nd ed.), W. H. Freeman 65 and Company, New York, 743p.
Machnikowska, H., Krzton, A. and Machnikowski, J., 2002. The characterization of coal macerals by diffuse reflectance infrared spectroscopy. Fuel 81, No. 2, pp. 245-252
Merrill, L. and Bassett, W.A., 1974. Miniature diamond anvil pressure cell for single crystal X-ray diffraction studies. Review of Scientific Instruments, 45, pp. 290-294.
Pepper, A.S. and Corvit, P.J., 1995. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and Petroleum Geology 12 (3), 291–319.
Pepper, A.S. and Dodd, T.A., 1995. Simple kinetic models of petroleum formation. Part II: oil-gas cracking. Marine and Petroleum Geology 12 (3), pp. 321–340.
Peters, K.E. and Cassa, M.R., 1994. Applied source-rock geochemistry. In: Magoon, L.B., Dow, W.G.(Eds.), The petroleum system-from source to trap. American Association of Petroleum geologists memoir 60, pp.93-120
Pringsheim, P., 1949. Fluorescence and Phosphorescence. Interscience, New York, 794p.
Rahman, M. and Kinghorn, R. R. F., 1995. Apractical classification of
kerogens related to hydrocarbon generation. Journ. Petrol. Geol., 18, No. 1, pp. 91-102.
Reynolds, J.G., Burnham, A.K. and Mitchell, T.O., 1995. Kinetic analysis of California petroleum source rocks by programmed temperature micropyrolysis. Organic Geochemistry 23, Issue: 2, pp. 109-120
Ryder, A.G., Glynn, T.J., Feely, M. and Barwise, A.J.G., 2002. Characterization of crude oils using fluorescence lifetime data. Spectrochimica Acta Part A 58, pp. 1025–1037.
Stach, E., Mackowsky, M-Th., Teichmüller, M., Taylor, G..H., Chandra, D. and Teichmüller, R., 1982. Stach’s Textbook of Coal Petrology (3rd ed.), Berlin Stuttgar, Gebruder Borntraeger, 535p.
Tissot, B.P. and Welte, D.H., 1984. Petroleum formation and occurrence; a New approach to oil gas exploration, Springer-Verlag, Berlin, Heidelberg, NewYork, 699 p.
Waples, D. W., 1985. Geochemistry in petroleum exploration. D. Reidel
Publishing Co. Dordrecht Boston Lancaster. 232p.
Waples, D.W., 2000. The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics. Organic Geochemistry 31, pp. 553-575
Wehry, E.L., 1967. Structural and environmental factors in fluorescence. In: Guilbaut, G.G., (Ed.), Fluorescence: Theory, Instrumentation and Practice. Dekker, New York, pp. 37–132.
Weir, C.E., Lippincott, E.R., Van Valkenburg, A. and Bunting, E.N., 1959. Infrared studies in the 1-to 15-micron region to 30,000 atmospheres. J. Res. Natl. Bur. Stand. Sect. A 63, pp. 55-62. Cited in, Jarayaman, A., 1983. Diamond anvil cell and high-pressure physical investigations. Reviews of Modern Physics 55, No. 1, pp. 65-108.
Weng, R.F., Huang, W.L., Kuo, C.L. and lnan, S., 2003. Characterization of oil generation and expulsion from coals and source rocks using diamond anvil cell pyrolysis. Organ Geochemistry 34, pp. 771-787
Wijngaarden, R.J. and Silvera, I.F., 1980. Cited in, Jarayaman, A., 1983. Diamond anvil cell and high-pressure physical investigations. Reviews of Modern Physics 55, No. 1, pp. 65-108.
Wu, T.C., 1995. In-situ high pressure/temperature studies of olivine-to-spinel structural phase transformation, thermal equations of state of carbonates, and clay dehydration. PhD. Thesis, Cornell university. 228p.
Vandenbroucke, M., Behar, F. and Rudkiewicz, J.L., 1999. Kinetic modelling of petroleum formation and cracking: implication from the high pressure/high temperature Elgin Field (UK, North Sea). Organic Geochemistry 30, pp. 1105–1125.
Van Krevelen, D. W., 1961. Coal. Elsevier Scientific Publishing Co.,
Amsterdam-London-New York-Princeton, 514p.
Xiao, X., Wilkins, R.W.T., Liu, D., Liu, Z. and Shen, J., 2002. Laser-ind-uced fluorescence microscopy-application to possible high rank and carbonate source rocks. Coal Geology 51, pp. 129-141
Xu, J.A., Mao, H.K. and Hemley, R., 2002. The gem anvil cell: high-pressure behaviour of diamond and related materials. J. Phys: Condens. Matter 14, pp. 11549–11552
AIRAPT-18 symposium volume.
Zhu, Y. and Mullins, O.C., 1992. Temperature dependence of fluorescence of crude oils and related compounds. Energy and Fuels 6, pp. 545–552.
Zouboulis, E.S. and Grimsditch, M., 1991. Raman scattering in diamond up to 1900 K. Phys. Rev. B. 43, pp. 12490-12493.
沈俊卿、陳德權,1986,鏡煤素觀測前處理之工作簡化:探採研究所
第一屆提高生產力成果發表會成果報告。
沈俊卿、郭政隆,2002,石油及天然氣的誕生、漫游與定居,科學發展,第353期,第34-41頁。
高逢時,2003,黑夜的精靈-螢光體,科學發展,第367期,第64-69頁。
孫立中,2000,抑制鏡煤素反射率之量測成因—以分離臺灣裕峰煤為
例,國立中央大學地球物理研究所博士論文,共81 頁。
原振維等人,1982,石油地質淺說,中國石油學會。
張景廉、張虎權,2005,關於石油的成因理論的爭鳴,新疆石油地質,第26卷,第6期,第727-731頁。
莫慧偵,2004,有機物之生油潛能評估:鑽石砧熱裂解及紅外線光譜分析,國立台灣大學地質科學研究所碩士論文,共128頁。
黃怡禎,2002,探討地球內部的利器-鑽石高壓砧,科學發展,第358期,第34-39頁。
黃武良,1999,石油-大自然孕育千萬年的珍藏,地球科學園地,第十二期。
黃武良,2004,黑金傳奇石油的來龍去脈,科學發展,第382期,第6-11頁。
翁瑞富,2001,鑽石砧應用於石油生成模擬之研究:源岩熱裂解即時影像分析,國立台灣大學地質科學研究所碩士論文,共128頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31689-
dc.description.abstract摘要
石油系統中,若能有效地掌握源岩產油的條件(埋藏深度、時間),及分辨油氣生成先後,將能大大提升石油開採的經濟效益。有鑑於前人研究多以熱裂解(Rock-Eval Pyrolysis)方式分析源岩產油氣之總體潛能,而無法區分油氣生成的時間,因此,本研究嘗試利用鑽石的透光性,同時結合了生油岩裂解產生石油與天然氣時,唯石油有螢光反應的特性,針對有機物的熱裂解產油反應進行現場(in-situ)螢光光譜即時分析,並利用動力學原理計算反應活化能,進一步應用於已知深埋歷程的地層中,推估其產油的時間。
實驗樣品包括不同沉積環境之生油岩:八個海相生油岩(TypeⅡ),其中兩個為富含硫成份之樣品(TypeⅡS),四個湖相生油岩,以及從腐植煤中分離出的殼質組(liptinite),分別以五種加熱速率(1、3、8、25、50°C/min),在300°C~600°C範圍內量測螢光或產油反應。
實驗結果如下:(1) 不同沉積環境之源岩產生螢光之溫度區間以及光譜的變化不盡相同,例如達到最大螢光強度之溫度以海相476°C最低,湖相497°C次之,陸相之506°C為最高。同一樣品在五種升溫速率下之螢光強度變化,可做為計算生油反應動力學參數。(2)於設定頻率因子(A)的條件下,各生油岩之生油反應活化能(Ea)主要分布於每莫耳53~55仟卡(kcal/mol)之間。就單一樣品之活化能分布情形而言,皆集中於一至兩個值。(3)推算在每百萬年升高攝氏十度(10°C/my)之地質加熱速率下,各生油岩最高產油速率之溫度範圍為135°C ~167°C,若排除含藻煤之樣品,則各有機物之主要產油溫度區間則縮小至20°C左右的差距。(4)利用前人研究中已知頻率因子之相同樣品,求得產油反應活化能,結果發現log A對Ea作圖呈現與前人研究一致的線性關係,而活化能值則有些微差距,推測造成誤差的因素為前人實驗含有水的緣故,以及其萃取反應後浮在水面上的油進行分析,忽略了部份存在樣品中的油所致。這樣的結果顯示以螢光光譜之分析方法能有效辨識生油岩產油的時間並改善前人研究中無法代表自然界開放系統環境,另一方面,針對自然產油環境下,確實含有水分的存在,則是本研究未來需進一步探討的方向。
zh_TW
dc.description.abstractAbstract
In a petroleum system, if we can define the conditions, in particular, the relative timing when oil or gas was generated, we can greatly reduce the economic risk of exploration. Most conventional techniques for studying hydrocarbon generation, however, provide kinetic parameters for predicting only bulk hydrocarbon (oil + gas), and are unable to distinguish between oil and gas. The present study is developing a new technique using fluorescence spectroscopy to determine the kinetics for liquid petroleum(oil) generation in a closed system. The technique monitors in-situ the fluorescence response of oil newly generated from kerogen through an optical window of a diamond anvil cell during pyrolysis. Since the fluorescence response is proportional to the extent of oil generation only, the measurement can be used to calculate the kinetic parameters for oil generation and extrapolate to the source beds of known burial history for predicting the timing of oil generation. The starting samples include a variety of oil-prone source rocks from different depositional environments: six marine (Type II), two sulfur-rich marine (Type IIS), two lacustrine (type I) kerogens, one torbanite (boghead coal), and one liptinite separated from a humic coal. The pyrolysis experiments were conducted at five heating rates (1, 3, 8, 25, 50°C/min) at temperature from 300 to 600
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:17:38Z (GMT). No. of bitstreams: 1
ntu-95-R93224103-1.pdf: 5502920 bytes, checksum: 32083a78a9bed56973efd5460f2ef456 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝......................................Ⅰ
摘要......................................Ⅴ
Abstract..................................Ⅵ
目錄......................................Ⅶ
圖目......................................IⅩ
表目......................................ⅩI
第一章 緒論..............................1
第一節 前人研究............................1
1-1.1 螢光光譜在石油上的研究...............1
1-1.2 動力學於石油上的研究.................2
1-1.3 源岩的熱裂解研究.....................3
第二節 研究動機與目的......................7
第二章 研究背景............................9
第一節 認識石油............................9
2-1.1石油的元素組成........................9
2-1.2石油的化合物組成......................10
2-1.3石油的分類............................11
2-1.4石油的成因............................13
第二節 油母質的分類........................16
第三章 實驗儀器............................21
第一節 鑽石砧..............................21
3-1.1鑽石砧的結構..........................22
3-1.2鑽石砧的原理及種類....................23
3-1.3鑽石..................................23
3-1.4調校裝置..............................24
3-1.5溫控系統..............................25
第二節 螢光光譜............................27
3-2.1螢光之基本原理........................28
3-2.2螢光光譜之實驗架構....................30
第四章 實驗方法............................32
第一節 實驗樣品............................32
第二節 實驗流程............................34
4-2.1樣品之前處理..........................34
4-2.2鑽石砧實驗流程........................35
第五章、結果...............................39
第一節 生油岩產油過程之螢光強度變化........39
第二節 不同源岩生油過程螢光強度變化及其對應的溫度參數比較43
第三節 生油岩產油過程之螢光光譜偏移形......49
第四節 加熱速率與螢光強度變化之比較........51
第六章 生油反應動力學模式之討論………………53
第一節 以多項並行之一級反應動力學模式求得反應參數..53
6-1.1 頻率因子(A)的範圍對不同升溫速率之生油反應的影響...54
6-1.2 生油反應動力學參數---活化能(Ea).......56
第二節 以最大產油速率之溫度(TM)計算反應參數.61
第三節 不同動力學模式計算結果比較...........64
第四節 不同反應階段之動力學反應參數變異性...67
第五節 應用於自然深埋條件下預測源岩產油條件.70
第七章 結論.................................73
參考文獻....................................74
附錄A.......................................81
dc.language.isozh-TW
dc.subject螢光光譜zh_TW
dc.subject產油動力學zh_TW
dc.subject生油源岩zh_TW
dc.subject鑽石砧裂解zh_TW
dc.subjectfluorescenceen
dc.subjectDAC pyrolysisen
dc.subjectoil-prone source rocken
dc.subjectoil kineticsen
dc.title螢光光譜評估源岩之生油動力學初步研究zh_TW
dc.titleApplication of fluorescence spectroscopy to oil generation kineticsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧茂華(Teng-Mao Hua),吳素慧(Wu-Suh Huey),郭政隆(Kuo-Cheng Lung),林立虹(Lin-Li Hung)
dc.subject.keyword螢光光譜,產油動力學,生油源岩,鑽石砧裂解,zh_TW
dc.subject.keywordfluorescence,oil kinetics,oil-prone source rock,DAC pyrolysis,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2006-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved