請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31644完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳金洌(Jen-Leih Wu) | |
| dc.contributor.author | Tien-Lin Chang | en |
| dc.contributor.author | 張天麟 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:16:33Z | - |
| dc.date.available | 2008-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-28 | |
| dc.identifier.citation | Airaksinen S, Jokilehto T, Rabergh CM, Nikinmaa M. (2003) Heat- and cold-inducible regulation of HSP70 expression in Zebrafish ZF4 cells. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 136:275-282.
Ali KS, Dorgai L, Abraham M, Hermesz E. (2003) Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochem. Biophys. Res. Commun., 307:503-509. Anderson JV, Li QB, Haskell DW, Guy CL. (1994) Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol., 104:1359-1370. Bae W, Jones PG, Inouye M. (1997) CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. J. Bacteriol., 179:7081-7088. Bessman SP, Geiger PJ. (1981) Transport of energy in muscle: the phosphorylcreatine shuttle. Science, 211:448-452. Bukau B, Horwich AL. (1998) The Hsp70 and Hsp60 chaperone machines. Cell, 92:351–366. Carmona MC, Valmaseda A, Brun S, Vinas O, Mampel T, Iglesias R, Giralt M, Villarroya F. (1998) Differential regulation of uncoupling protein-2 and uncoupling protein-3 gene expression in brown adipose tissue during development and cold exposure. Biochem. Biophys. Res. Commun., 4;243(1):224-228. Culp P, Nusslein-Volhard C, Hopkins N. (1991) High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized Zebrafish eggs. Proc. Natl. Acad. Sci., 88:7953-7957. Fang L, Xia B, Inouye M. (1999) Transcription of cspA, the gene for the major cold-shock protein of Escherichia coli, is negatively regulated at 37 degrees C by the 5'-untranslated region of its mRNA. FEMS Microbiol. Lett., 176:39-43. Flaherty KM, DeLuca-Flaherty C, McKay DB. (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature, 346:623–638. Fred M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J.G. Seidman, John A. Smith, Kevin Struhl. (2003) “Current Protocols in Molecular Biology” John Wiley & Sons Inc. 2.1.1-2.2.3. Freeman BC, Morimoto RI. (1996) The human cytosolic molecular chaperones hsp90, hsp70 (hsc70), and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J., 15:2969–2979. Fujii S, Nakasone K, Horikoshi K. (1999) Cloning of two cold shock genes, cspA and cspG, from the deep-sea psychrophilic bacterium Shewanella violacea strain DSS12. FEMS Microbiol. Lett., 178:123-128. Giebel LB, Dworniczak BP, Bautz EK. (1988) Developmental regulation of a constitutively expressed mouse mRNA encoding a 72-kDa heat shock-like protein. Dev. Biol., 125:200-207. Gossen M, Bujard H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U.S.A., 15;89(12):5547-5551. Hartl FU. (1996) Molecular chaperones in cellular protein folding. Nature, 381:571–579. Imamura S, Ojima N, Yamashita M. (2003) Cold-inducible expression of the cell division cycle gene CDC48 and its promotion of cell proliferation during cold acclimation in Zebrafish cells. FEBS Lett., 14;549(1-3):14-20. Jager S, Evguenieva-Hackenberg E, Klug G. (2004) Temperature-dependent processing of the cspA mRNA in Rhodobacter capsulatus. Microbiology, 150:687-695. Johnston IA, Temple GK. (2002) Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J. Exp. Biol., 205:2305-2322. Jones PG, Inouye M. (1994) The cold-shock response--a hot topic. Mol. Microbiol., 11:811-818. Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR. (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol., 135(3):1710-1717. Kregel KCJ. (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Appl. Physiol., 92:2177–2186. Leandro NS, Gonzales E, Ferro JA, Ferro MI, Givisiez PE, Macari M. (2004) Expression of heat shock protein in broiler embryo tissues after acute cold or heat stress. Mol. Reprod. Dev., 67:172-177. Mayr B, Kaplan T, Lechner S, Scherer S. (1996) Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. J. Bacteriol., 178:2916-2925. Mitta M, Fang L, Inouye M. (1997) Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol. Microbiol., 26:321-335. Neven LG, Haskell DW, Guy CL, Denslow N, Klein PA, Green LG, Sliverman A. (1992) Association of 70-kilodalton heat- shock cognate proteins with acclimation to cold. Plant Physiol., 99:1362–1369. Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M. (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol., 22:877-882. Rinehart JP, Yocum GD, Denlinger DL. (2000) Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Ssarcophaga crassipalpis. Insect Biochem. Mol. Biol., 30:515-521. Rome LC, Loughna PT, Goldspink G. (1985) Temperature acclimation: improved sustained swimming performance in carp at low temperature. Science, 228:194-196. Santacruz H, Vriz S, Angelier N. (1997) Molecular characterization of a heat shock cognate cDNA of Zebrafish, hsc70, and developmental expression of the corresponding transcripts. Dev. Genet., 21:223-233. Snodgrass JW. (1991) Winter kills of Tilapia melanotheron in coastal Southeast Florida, 1989. Florida Science, 54:85-86. Sun HW, Hui CF, Wu JL. (1998) Cloning, characterization, and expression in Escherichia coli of three creatine kinase muscle isoenzyme cDNAs from carp (Cyprinus carpio) striated muscle. J. Biol. Chem., 273:33774-33780. Sun HW, Liu CW, Hui CF, Wu JL. (2002) The carp muscle-specific sub-isoenzymes of creatine kinase form distinct dimers at different temperatures. Biochem. J., 368:799-808. Tafuri SR, Wolffe AP. (1992) DNA binding, multimerization, and transcription stimulation by the Xenopus Y box proteins in vitro. New Biol. 4(4):349-359. Tanabe H, Goldstein J, Yang M, Inouye M. (1992) Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J. Bacteriol., 174:3867-3873. Wallimann T. (1994) Bioenergetics. Dissecting the role of creatine kinase. Curr. Biol., 4:42-46. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem. J., 281:21-40. Watabe S. (2002) Temperature plasticity of contractile proteins in fish muscle. J. Exp. Biol., 205:2231-2236. Westerfield M. (1995) “The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio)” Univ. of Oregon Press, Eugene. 2.1-2.10. Wise JP Sr., Winn RN, Renfro JL. (2002) Generating new marine cell lines and transgenic species--conference summary. J. Exp. Zool., 292:217-220. Xia B, Ke H, Jiang W, Inouye M. (2002) The Cold Box stem-loop proximal to the 5'-end of the Escherichia coli cspA gene stabilizes its mRNA at low temperature. J. Biol. Chem., 277:6005-6011. Yocum GD. (2001) Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. J. Insect Physiol., 47:1139-1145. Zuo J, Hare PD, Chua NH. (2006) Applications of chemical-inducible expression systems in functional genomics and biotechnology. Methods Mol. Biol., 323:329-342. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31644 | - |
| dc.description.abstract | 為解決冬季環境低溫造成之養殖漁業損失,我們已成功轉殖鯉魚肌肉第三型肌酸激脢進入模式魚種並有效提高其低溫活動力與存活率。但使用CMV基因表現系統其持續大量之基因表現卻造成基因轉殖魚壽命中期後死亡率急速增加等負面影響,是故我們希望能發展一溫度調控之基因表現系統以符合應用環境之需要。
熱休克蛋白為一被廣為研究探討之逆境誘導基因,而在論文研究中發現其在許多物種中具有可被冷刺激誘導表現之特性。為了更深入了解其冷誘導表現特性與應用潛力,我們由模式魚種斑馬魚的基因中選殖出熱休克蛋白持續型-70之5’上游序列並使用螢光蛋白作為報導基因進行啟動子活性分析。在原生熱休克蛋白持續型-70之低溫誘導表現試驗,我們發現給予16度的低溫刺激5小時後,其mRNA表現量可大幅提高10倍。而將其上游2kb長度之啟動子區間選殖作為活性分析之表現質體,其基因轉殖斑馬魚在經過5小時的16度低溫誘導之後亦能呈2-3倍的mRNA增加量,螢光蛋白之表現在紫外光激發下亦可見明顯之增加,至此確定發現一脊椎動物冷誘導啟動子。而為了更加了解其啟動子調控功能,根據序列分析結果選殖不同刪除長度之啟動子。分別構築螢光蛋白報導系統進行起動子活性分析,結果發現其最短刪除區間約200bp長度之啟動子仍保有冷誘導能力。 | zh_TW |
| dc.description.abstract | This study reports the in vivo expression research of hsc70 gene in zebrafish and the cloning of zebrafish hsc70 promoter for temperature induction study, trying to establish a cold-inducible gene expression system to replace the constitutive CMV promoter system, which we used before in our cold tolerance project.
Heat shock proteins (Hsps) are well-known stress-inducible chaperons. It had been reported can be induced by cold shock in many species from plant to vertebrate. To understand the regulation of cold-inducible gene expression, we identified the expression of zebrafish hsc70 by semi-quantitative real time-PCR, isolated the 5’-flanking sequence of zebrafish hsc70 gene and used a green fluorescent protein (GFP) for in vivo assay the promoter activity. In basal expression pattern assay, cold shock treatment resulted in a 10 folds enhanced induction of zebrafish hsc70 gene. In in vivo promoter assay, transient zebrafish showed an 2-3 folds enhanced induction. It’s clearly that we’ve identified a novel cold-inducible promoter in vertebrate. In order to further finding out the promoter function, a series deletion of the promoter region had been preformed. After in vivo expression assay we’ve found that the shortest promoter still keeps the cold-inducibility. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:16:33Z (GMT). No. of bitstreams: 1 ntu-95-R92b45011-1.pdf: 7227374 bytes, checksum: 491ac02787fc9827343ba7705f11c85b (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abstract i
中文摘要 ii Figure Content iii Introduction 1 Materials and Methods 6 Results 15 Discussion 19 References 21 Figure 29 Table 49 | |
| dc.language.iso | en | |
| dc.subject | 冷誘導 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 熱休克蛋白 | zh_TW |
| dc.subject | Heat shock protein | en |
| dc.subject | Cold-inducible | en |
| dc.subject | Zebrafish | en |
| dc.title | 斑馬魚HSC70啟動子作為脊椎動物模式創新冷誘導啟動子之研究 | zh_TW |
| dc.title | Zebrafish HSC70 promoter is a novel cold-inducible promoter from vertebrate organism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳志毅(Jyh-Yih Chen),李士傑(Shyh-Jye Lee) | |
| dc.subject.keyword | 熱休克蛋白,斑馬魚,冷誘導, | zh_TW |
| dc.subject.keyword | Heat shock protein,Zebrafish,Cold-inducible, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 7.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
