Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31620
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周宏農(Hong-Nong Chou)
dc.contributor.authorChang-Shian Yuen
dc.contributor.author余昌憲zh_TW
dc.date.accessioned2021-06-13T03:16:00Z-
dc.date.available2006-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-31
dc.identifier.citation盧重光 (2001). 台灣產兩種原甲藻之毒素研究。國立台灣大學海洋研究所,博士論文。
Anderson, D. M., Kulis, D. M., SULLIVAN, J. J., Hall, S. and Lee, C. (1990) Dynamics and physiology of saxitoxin production by the dinoflagellate Alexandrium spp. Mar. Biol. 104, 511-524.
Ben-Amotz, A. and Avron, M. (1983) On the Factors which determine massive beta-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol. 72, 593-597.
Bolier, G., Koningh, M. C. J. d., Schmale, J. C. and Donze1, M. (1992) Differential luxury phosphate response of planktonic algae to phosphorus removal. Hydrobiologia 243-244, 113 -118.
Borowitzka, M. A., Huisman, J. M. and Osborn, A. (1991) Cultures of the astaxanthin-producing green algae Haematococcus pluvialis. I. Effect of nutrient on growth and cell type. J. Appl. Phycol. 3, 295-304.
Boussiba, S. and Richmond, A. (1980) C-phycocyanin as a storage in the blue-green alga Spirulina platensis. Arch. Microbiol. 125, 143-147.
Boussiba, S. and Vonshak, A. (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32, 1077-1082.
Boyer, G. L., Sullivan, J. J., Anderson, R. J., Harrison, P. J. and Taylor, F. J. R. (1987) Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis. Mar. Biol. 96, 123-128.
Bravo, I., Fernandez, M. L., Ramilo, I. and Martinez, A. (2001) Toxin composition of the toxic dinoflagellate Prorocentrum lima isolated from different locations along the Galician coast (NW Spain). Toxicon 39, 1537-1545.
Burkhardt, S., Zondervan, I. and Reibesell, U. (1999) Effect of CO2 concentration on C:N:P ratio in marine plankton: a species comparition Limnol. Oceanog. 44, 683-690.
Burmaster, D. E. (1979) The unsteady continuous culture of phosphate-limited Monochrysis lutheri Droop: Experimental and theoretical analysis. J. Exp. Mar. Biol. Ecol. 39, 167-186.
Burns, D. J. W. and Beever, R. E. (1979) Mechanism controlling the two phosphate uptake systems in Neurospora crassa. J. Bacteriol. 139, 195-204.
Carpenter, E. J. and Romans, K. (1991) Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254, 1356-1358.
Chen, F. and Johns, M. (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. Appl. Phycol. 3, 203–209.
Chisholm, S. W. and Stross, R. G. (1976) Phosphate uptake kinetics in Euglena gracilis (Z) (Euglenophyceae) grown in light/dark cycles. II. Phased PO4-limited cultures. J. Phycol. 12, 217-222.
Daranas, A. H., Fernandez, J. J., Norte, M., Gavin, J. A., Suarez-Gomez, B. and Souto, M. L. (2004) Biosynthetic studies of the DSP toxin skeleton. Chem. Rec. 4, 1-9.
Fabregas, J., Dominguez, A., Alvarez, D. G., Lamela, T. and Otero, A. (1998) Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol. Lett. 20, 623 -626.
Flynn, K., Franco, J. M., Fernandez, P., Reguera, B., Zapata, M., Wood, G. and Flynn, K. J. (1994) Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen or phosphorus stress. Mar. Ecol. Prog. Ser. 111, 99-109.
Geider, R. J. and La Roche, J. (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1-17.
Goldman, J. C. and Carpenter, E. J. (1974) A kinetic approach to the effect of temperature on algae growth. Limnol. Oceanogr. 19, 756-766.
Goldman, J. C., Hansell, D. A. and Dennett, M. R. (1992) Chemical charaterization of 3 large oceanic diatom: potential impact on water column chemistry. Mar. Ecol. Prog. Ser. 88, 257-270.
Gotham, I. J. and Rhee, G.-Y. (1981) Comparative kinetic studies of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture. J. Phycol. 17, 257-265.
Grobbelaar, J. U. (2004) Algal Nutrient: Mineral Nutrition. In: Handbook of Mcroalgae Clture: Biotechnology and Applied Phycology, Richmond A. (ed.), Blackwell, Ames, pp. 97-116.
Hanisak, M. D. and Harlin, M. M. (1978) Uptake of inorganic nitrogen by Codium fragile subsp. tomentosoides (Chlorophyta). J. Phycol. 14, 450-454.
Harris, G. P. (1978) Photosynthesis, productivity and growth: the physiologycal ecology of phytoplankton. Arch. Hydrobiol. Beih., Ergebn. Limnol. 10, 1-171.
Heredia-Tapia, A., Arredondo-Vega, B.O., Nunez-Vazquez E.J., Yasumoto T., Yasuda M., Ochoa J. L. (2002) Isolation of Prorocentrum lima (Syn. Exuviaella lima) and diarrhetic shellfish poisoning (DSP) risk assessment in the Gulf of California, Mexico. Toxicon 40, 1121-1127.
Hodgkiss, I. J. and Ho, K. C. (1997) Are changes in N:P ratios in coastal waters the key to increased red tide blooms? Hydrobiologia 352, 141-147.
Hu, T., deFreitas, A. S., Curtis, J. M., Oshima, Y., Walter, J. A. and Wright, J. L. (1996) Isolation and structure of prorocentrolide B, a fast-acting toxin from Prorocentrum maculosum. J. Nat. Prod. 59, 1010-1014.
John, E. H. and Flynn, K. J. (2000) Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N:P supply ratios on internal toxin and nutrient levels. Euro. J. Phycol. 35, 11-23.
Kao, C. Y. and NishIyama, A. (1965) Actions of saxitoxin on peripheral neuromuscular systems. J. Physiol. 180, 50-66.
Keller, M. D., Selvin, R. C., Claus, W. and Guillard, R. R. L. (1987) Media for the culture of oceanic ultraphytoplankton. J. Phycol. 23, 633-638.
Khozin-Goldberg, I., Bigogno, C., Shrestha, P. and Cohen, Z. (2002) Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green algae Parietochloris incisa (Trebuxiophyceae). J. Phycol. 38, 991-994.
Kylin, A. (1966) The influence of photosynthetic factors and metabolic inhibitors on the uptake of phosphate in P-deficient Scenedesmus. Physiol. Plant 19, 644-649.
La Roche, J., Geider, R. J., Graziano, L. M., Murry, H. and Lewis, K. (1993) Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-, or nitrogen-deficient conditions. J. Phycol. 29, 767-777.
Lababpour, A., Shimahara, K., Hada, K., Kyoui, Y., Katsuda, T. and Katoh, S. (2005) Fed-batch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. J. Biosci. Bioeng. 100, 339-342.
McLachlan, J. L., Marr, J. C., Conlon-Kelly, A. and Adamson, A. (1994) Effects of nitrogen concentration and cold temperature on DSP-toxin concentrations in the dinoflagellate Prorocentrum lima (Prorocentrales, Dinophyceae). Nat. Toxins 2, 263-270.
Morlaix, M. and Lassus, P. (1992) nitrogen and phosphorus effects upon division rate and toxicity of Prorocentrum lima (Ehrenberg) Dodge. Crypt. Algol. 13, 187-195.
Morton, S. and Tindall, D. (1995) Morphological and biochemical variability of the dinoflagellate Prorocentrum lima isolated from three locations at the Heron Island, Australia. J. Phycol. 31, 914-921.
Murakami, Y., Oshima, Y. and Yasumoto, T. (1982) Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Bull. Jap. Soc. Sci. Fish. 48, 69-72.
Murata, M., Shimitami, M., Sugitani, H., Oshima, Y. and Yasumoto, T. (1982) Isolation and structural elucidation of the causative toxin of the causative diarrhetic shellfish poisoning. Bull. Jap. Soc. Sci. Fish 48, 549-552.
Nascimento, S., Purdie, D. and Morris, S. (2005) Morphology, toxin composition and pigment content of Prorocentrum lima strains isolated from a coastal lagoon in southern UK. Toxicon. 45, 633-649.
Nielsen M. V. (1992) Irradiance and daylength effects on growth and chemical composition of Gymnodinium aureolum Hulburt in culture. J. Plankton Res. 14, 811-820.
Pan, Y., Cembella, A. D. and Quilliam, M. A. (1999) Cell cycle and toxin production in the benthic dinoflagellate Prorocentrum lima. Mar. Biol. 134, 541-549.
Parsons, T. R., Stephens, k. and Strickland, J. D. H. (1961) On the chemical composition of eleven species of marine phytoplankters. J. Fish. Res. Bd. Can. 18, 1001-1016.
Perry, M. J. (1976) Phosphate utilization by an oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the central North Pacific. Limnol. Oceanogr. 21, 88-107.
Persson, B. L., Petersson, J., Fristedt, U., Weinander, R., Berhe, A. and Pattison, J. (1999) Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim. Biophys. Acta 1422, 255-272.
Phadwal, K. and Singh, P. K. (2003) Effect of nutrient depletion on beta-carotene and glycerol accumulation in two strains of Dunaliella sp. Bioresour. Technol. 90, 55-58.
Portielje, R. and Lijklema, L. (1994) Kinetics of luxury uptake of phosphate by algae-dominated benthic communities. Hydrobiologia 275-276, 349-358.
Raven, J. A. (1974) Energetics of active phosphate influx in Hydrodictyon africanum. J. Exp. Bot. 25, 221-229.

Raven, J. A. and Glidewell, S. M. (1975) Sources of ATP for active phosphate transportor in Hydrodictyon africanum: evidence for pseudocyclic photophosphorylation in vivo. New Phytol. 75, 197-204.
Redfield, A. C. (1958) The biologycal control of chemical factors in the enviroment. Am. Sci. 46, 205-211.
Reshkin, S. J. and Knauer, G. A. (1979) Light stimulation of phosphate uptake in natural assemblages of phytoplankton Limnol. Oceanogr. 24, 1121-1124.
Rhee, G.-Y. (1973) A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9, 495-506.
Rhee, G.-Y. (1974) Phosphate uptake under nitrate imitation by Scenedesmus sp. and its ecological implications. J. Phycol. 10, 470-475.
Rhee, G.-Y. and Gotham, I. J. (1981) The effect of envirometal factors on phytoplankton growth: Temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26, 635-648.
Rivkin, R. B. and Swift, E. (1982) Phosphate uptake by the oceanic dinoflagellate Pyrocystis noctiluca. J. Phycol. 18, 113-120.
Ryther, J. H. and Dunstan, W. M. (1971) Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171, 1008-1013.

Sakshaug, E., Andersen, K., Myklestad, S. and Olsen, Y. (1983) Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as revealed by their chemical composition. J. Plankton Res. 5, 175-196.
Shi, X.-M., Jiang, Y. and Chen, F. (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Prog. 18, 723-727.
Shimizu, Y. (1996) Microalgal metabolites: a new perspective. Annul. Rev. Microbiol. 50, 431-465.
Simon, R. D. (1971) Cyanophycin granules from the blue-green alga Anabaena cylindrica: a reserve material consisting of copolymers of aspartic acid and arginine. Proc. Natl. Acad. Sci. U. S. A. 68, 265-267.
Smith, F. A. (1966) Active phosphate uptake by Nitella translucens. Biochim. Biophys. Acta 129, 94-99.
Terry K. L., Hirata J. and Laws, E. A. (1983) Light limit growth of two strains of marine diatom Phaeodactylum tricornutum Bohlin: chemical comsuption carbone partitioning and the diel periodicity of physiological processes. J. Exp. Mar. Biol. Ecol. 68, 323-329.
Tilman, D. and Kilham, S. S. (1976) Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12, 375-383.
Tomas, C. R. (1979) Olisthodiscus luteus (Chrysophyceae). III. Uptake and utilization of nitrogen and phosphorus. J. Phycol. 15, 5-12.
Tomas, C. R. and Baden, D. G. (1993) The influence of phosphorus source on the growth and cellular toxin content of the benthic dinoflagellate Prorocentrum lima. Developments In: Toxic Phytoplankton Blooms in the Sea, T. J. Smayda and Y. Shimizu (ed.), Elsevier, Amsterdam, pp. 565-570.
Torigoe, K., Murata, M., Yasumoto, T. and Iwashita, T. (1988) Prorocentrolide, a toxic nitrogenous macrocycle from a marine dinoflagellate, Prorocentrum lima. J. Am. Chem. Soc. 110, 7876-7877.
Wang, D. Z. and Hsieh, D. (2002) Effects of nitrate and phosphate on growth and C2 toxin productivity of Alexandrium tamarense CI01 in culture. Mar. Pollut. Bull. 45, 286-289.
Wang, L., Yan, T., Tan, Z. and Zhou, M. (2003) Effects of Alexandrium tamarense and Prorocentrum donghaiense on rotifer Brachionus plicatilis population. Ying Yong Sheng Tai Xue Bao 14, 1151-1155.
Worm B. and Sommer U. (2000) Rapid direct and indirect effects of a single nutrient pulse in a seaweed-epiphyte-grazer system. Mar. Ecol. Prog. Ser. 202, 282-288.
Yamamoto, T., Oh, S. and Kataoka, Y. (2004) Growth and uptake kinetics for nitrate, ammonium and phosphate by the toxic dinoflagellate Gymnodinium catenatum isolated from Hiroshima Bay, Japan. Fish. Sci. 70, 108-115.
Yamamoto, T. and Tarutani, K. (1999) Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seto Inland Sea, Japan. Phycol. Res. 47, 27-32.
Yashida F., Yamane T. and Nakamoto K.-I. (1973) Fed-batch hydrocarbon fermentation with colloidal emulsion feed. Biotechnol. Bioeng. 15, 257-270.
Zehr, J. P., Carpenter, E. J. and Villareal, T. A. (2000) New perspectives on nitrogen-fixing microorganisms in tropical and subtropical oceans. Trends Microbiol. 8, 68-73.
Zhang, X. W., Gong, X.-D. and Chen, F. (1999) Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis. J. Indust. Microbiol. Biotech. 23, 691-696.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31620-
dc.description.abstract藻類能夠利用水中的氮、磷等無機元素,配合光合作用而生長,而藻類成長所需的氮和磷這兩種營養鹽的供應與其間的濃度比例,對細胞的成長和密度的維持有著顯著的影響,並可能影響其天然物的生合成。渦鞭毛藻Prorocentrum lima的培養經常使用K培養基,其所含氮、磷營養鹽包括有883 uM的硝酸鹽,50 uM的氨鹽10 uM的磷酸鹽,氮磷比遠超過一般認知的最適氮磷比,4~16,以致於藻細胞密度難以提升。為改善培養提升細胞生長,首先比較了三種不同濃度,10 uM (低)、50 uM (中)、100 uM (高) 的磷酸鹽提供對P. lima生長的影響,並測定其培養基中營養鹽的變化。結果顯示P. lima對磷酸鹽的吸收快速,其培養基中磷酸鹽在消耗殆盡後,藻細胞仍能持續生長一段時間,顯示和其他藻類ㄧ樣存在一種奢華吸收的現象,同時也發現生長初期以10 uM磷鹽供應的培養最為快速; 然而10 uM的磷酸鹽供應相較於50 uM與100 uM的供應在成長末期並無法支持較高的藻細胞密度,同時實驗所採最高磷酸鹽 (100 uM) 的也無法支持50 uM磷酸鹽所獲的細胞密度。後續實驗以最終50 uM的磷酸鹽濃度為基準,在培養過程中採用不同週期的脈頻方式每次添加10 uM磷鹽培養P. lima,在靜置狀態培養下,不同週期的添加皆受到碳源的限制,添加點間的比成長率隨添加次數下降快速,在改以震盪狀態下培養後,培養的細胞達到更高的最終細胞密度,並分析添加點間的比成長率,發現密集式的補充磷鹽相較長間隔下能維持較高的生長速率。同時也發現在單位細胞內總磷最小於12 fg/cell時,細胞將不再增殖,推測其為渦鞭毛藻株PL08維持細胞存活的最低含磷量。在不同週期脈頻方式添加磷鹽的實驗下,PL08單位細胞所含天然物prorocentrolide的變化顯示在細胞生長指數期的末段有ㄧ定程度蓄積而後,下降再蓄積,培養基中磷鹽濃度的高低與添加模式並不會影響該物在細胞內的含量。zh_TW
dc.description.abstractAlgae absorb inorganic elements, such as nitrogen, phosphorus, etc., in order to grow based on their photosynthesis. The supply of nitrogen and phosphorus nutrients and their relative abundance significantly affect the growth, cell concentration, or even the bioorganic components of the algae. K-medium, one of the commonly-used media for the dinoflagellate cultures, containing 883 uM nitrate, 50 uM ammonia and 10 uM phosphate was applied in this experiment as basal medium for Prorocentrum lima. Cells of P lima hardly reached the expected concentration in K-medium, since the N:P ratio of K medium is far beyond the known optimal value, 4~16. In order to improve the growth of P. lima for prorocentrolide and okadaic acid production, three levels of phosphate concentration, 10 uM (low), 50 uM (medium), and 100 uM (high) were tested with other ingredients of K-medium in P. lima cultures, in which the cell density and nitrogen and phosphorous concentration were analyzed along the growth period. Preliminary results showed that phosphate nutrients of all three levels depleted rapidly and the cells kept to grow for sometime while the medium phosphate were used up. This phenomenon indicated a luxurious consumption of phosphate in P. lima, same as in some other algal species. It was also found in the early stage that the algae had a better growth in 10 uM phosphate than in other groups of higher phosphate concentration. However, low phosphate concentration could only support the least cell density at the end of the experiments, then the highest phosphate concentration, 100 uM, could not support a higher cell concentration than 50 uM either. So, in the continuing 10 uM pulse-fed experiments of phosphate and the control were based on a 50 uM phosphate in total of K-medium. The pulse-fed experiments of 10 uM phosphate were designed by the different intervals of 3, 5, 7, and 9 days, in a condition with or without shaking. Generally cultures without shaking had lower growth rates and less cell densities at the end of experiments than cultures with shaking. The specific growth rate between each pulse-fed declined along with the culturing period. The older culture had the lower specific growth rate, the shorter interval of pulse-fed phosphate had higher specific growth rate. A minimal content of phosphorous in P lima was found to be 12 fg/ml. At this status the cell remained dormant without the increase of cell number. Productivity of procentrolide in P. lima showed two peaks during the experiment period, one is at the end of log phase the other one is at the start of stationary phase. Procentrolide was once accumulated at the end of log phase and declined to the minimum in the following days before stationary phase and then continued accumulation during stationary phase.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:16:00Z (GMT). No. of bitstreams: 1
ntu-95-R92b45022-1.pdf: 516499 bytes, checksum: afaf517b5d3744ca6a290863fda0d098 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄 1
中文摘要 3
英文摘要 5
第一章 前言: 6
第二章 材料與方法 16
一、基本方法 16
1. 藻株與培養基 16
2. 培養液中氮磷含量分析 16
2-1培養基中硝酸氮的檢測 16
2-2培養基中磷酸鈉的檢測 17
3. 細胞內氮磷含量分析 17
3-1 細胞內總氮含量分析 17
3-2 細胞內總磷含量分析 18
4. 藻毒的萃取與分析 18
5. prorocentrolide檢量線的製作 19
6. 淨產毒率的算 19
7. 磷鹽淨吸收的計算 20
8. 薻培養比成長率的計算 20
二、實驗 20
1. 不同濃度磷鹽處理下的培養模式 20
2. 脈頻式添加磷鹽處理下的培養模式 20
第三章 結果與討論 22
ㄧ、磷鹽濃度對細胞生長的影響 22
1. 藻細胞的生長速率與密度 22
2. 藻細胞吸收硝酸鈉與磷酸鈉的速率 25
二、脈頻式添加磷鹽處理下的培養模式 27
1. 藻細胞的生長速率 27
2. 藻細胞吸收磷酸鈉的速率 29
3. 細胞生長與磷鹽供需關係 29
4. 細胞內氮磷鹽含量 31
5. prorocentrolide毒素含量變化 34
第四章 結論: 36
附圖 38
圖一、Michaelis-Menten酵素動力公式 38
圖二、不同濃度磷酸鹽培養下的細胞生長曲線 38
圖三、培養基中硝酸氮變化 39
圖四、不同磷鹽濃度培養下細胞吸收磷鹽 39
圖五、脈頻添加磷鹽實驗於靜置下的細胞生長曲線 40
圖六、脈頻添加磷鹽實驗於震盪下的細胞生長曲線 40
圖七、靜置培養下各添加點間的細胞生長速率 41
圖八、震盪培養下各添加點間的細胞生長速率 41
圖九、脈頻添加磷鹽實驗中培養基的磷酸鈉濃度變化 42
圖十、比成長率與細胞對磷的淨吸收量關係 43
圖十一、磷鹽濃度對細胞生長與吸收營養鹽速率影響示意圖 44
圖十二、prorocentrolide檢量線 45
圖十三、PL08藻株內prorocentrolide成分的高效液相層析圖 45
圖十四、單位細胞含毒量 46
圖十五、淨產毒率 47
附表 48
表一、K培養基 48
表二、整理文獻中Prorocentrum lima的培養 49
表三、不同磷酸鈉濃度培養下細胞吸收磷酸鈉的速率 51
表四、脈頻添加實驗平均比成長率和單位細胞獲磷量 51
表五、脈頻添加實驗之細胞內總磷量 52
表六、細胞內氮磷元素比 52
表七、不同磷酸鈉濃度培養下細胞吸收硝酸鈉的速率 52
參考資料 53
dc.language.isozh-TW
dc.subject磷營養鹽zh_TW
dc.subject原甲藻zh_TW
dc.subject渦鞭毛藻zh_TW
dc.subject大環內酯zh_TW
dc.subjectprorocentrum limaen
dc.subjectprorocentrolideen
dc.subjectnutrienten
dc.subjectphosphateen
dc.title磷營養鹽供應模式在利瑪原甲藻生長及生產大環內酯天然物的影響zh_TW
dc.titleEffects of phosphate supplying mode on the growth and prorocentrolide productivity of Prorocentrum limaen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王瑋龍(Wei-Lung Wang,),吳俊宗(Jiunn-Tzong Wu),黃 穰(Rang Huang),蘇惠美
dc.subject.keyword原甲藻,渦鞭毛藻,磷營養鹽,大環內酯,zh_TW
dc.subject.keywordprorocentrolide,phosphate,prorocentrum lima,nutrient,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2006-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
504.39 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved