Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31612
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州
dc.contributor.authorChien-Cheng Chenen
dc.contributor.author陳建誠zh_TW
dc.date.accessioned2021-06-13T03:15:49Z-
dc.date.available2007-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-31
dc.identifier.citation1. C. A. Rosen, Solid State Magnetic and Dielectric Devices, John Wilay & Sons, New York, 1959 1st ed., chap. 5, p.170
2. Y. Jin, C. F. Foo, and W. G. Zhu, “Three-Dimensional Simulation of Piezoelectric Transformer for the Switching Power Supply,” Industrial Electronics Society, 1999. IECON '99 Proceedings. The 25th Annual Conference of the IEEE, Vol. 1, 29 Nov.-3 Dec. 1999, Pages:295 - 299 vol.1.
3. J. H. Hu, H. L. Li, H. L. W. Chan, and C. L. Choy, “A ring-shaped piezoelectric transformer operating third symmetric extensional vibration mode,” Sensors and Actuators A88 (2001), pp. 79-86.
4. H. L. Li, J. H. Hu, and H. L. W. Chan, “Finite Element Analysis on Piezoelectric Transformer,” 2002 IEEE Ultrasonics Symposium, pp. 1177-1180.
5. M. Yamamoto, Y. Sasaki, A. Ochi, T. Inoue, and S. Hamamura, “Step-Down Piezoelectric Transformer for AC-DC Converters,” Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 3637-3642, Part 1, No. 5B, May 2001.
6. B. Koc, Y. Gao, and K. Uchino, “Design of a Circular Piezoelectric Transformer with Crescent-Shape Input Electrodes,” Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 509-514, Part 1, No. 2A, February 200A.
7. T. Tsuchiya, Y. Kagawa, N. Wakatsuki, and H. Okamura, “Finite Element Simulation of Piezoelectric Transformers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, July 2001.
8. Y. Sasaki. M. Umeda, S. Takahashi, M. Yamamoto, A. Ochi, and T. Inoue, 'High-power characteristics of multilayer piezoelectric ceramic transducers,” Jpn. J. Appl. Phys. Vol. 40, pp. 5743-5746, 2001.
9. K. Kanayama, “Thermal analysis if a piezoelectric transformer,” In Proc. IEEE Ultrason. Symp., 1998 pp.901-904.
10. J. H. Hu, “Analyses of the Temperature Field in a Bar-Shaped Piezoelectric Transformer Operating in Longitudinal Vibration Mode,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 50, No. 6, June 200A.
11. V. Loyau, G. Feuillard, and L. P. Tran-Huu-Hue, “Modeling of the Temperature Increase in Ultrasonic Transducers,” 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference.
12. Y. Kagawa and H. Meada, 'Finite element approach to frequency-temperature characteristic prediction of rotated quartz crystal plate resonators,' IEEE Trans. Sonics Ultrason., vol. SU-28, no. 4, pp. 257-264, July 1981.
13. Y. Kagawa, Finite Element Method for Vibration and acoustical Engineering/Theory and applications Tokyo: Baifukan ch. 9, 1981 (in Japanese), pp. 173-176
14. E. Ando, T. Yamabuchi ,and Y. Kagawa, “Finite element simulation of steady-state heat problem in ultrasonic transducers,” in Proc. 7th Simulation Technol. Conf., Japan Soc. Simulation Technol., June 1988 (in Japanese), pp. 173-176.
15. Ei’ichi Ando and Yukio Kagawa, 'Finite-Element Simulation of Transient Heat Response in Ultrasonic Transducers,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, No. 3, May 1992.
16. N. Abboud, J. Mould, G. Wojcik, D. Vaughan, D. Powell, V. Murray, and C. MacLean, “Thermal Generation, Diffusion and Dissipation in 1-3 Piezocomposite Sonar Transducers: Finite Element Analysis and Experimental Measurements,” In Proc. IEEE Ultrason. Symp., 1997, pp 895-900.
17. D. Royer and E. Dieulesaint, Elastic Waves in Solid I –Free and Guided Propagation, Springer, 2000.
18. H. Allik and T. J.R. Hughes, “Finite Element Method For Piezoelectric Vibration,” International Journal For Numerical Methods In Engineering, Vol.2, p.p151-157(1970).
19. X. Cai, H.Yie, P. Osterberg, J. Gilbert, S. Senturia, and J. White, 'A Relaxation/Multi-Accelerated Scheme Self-Consistent Electromechanical Analysis of Complex 3-D Microelectromechanical Structures,' Proc. Int. Conf. on Computer-Aided Design, Santa Clara, CA, November 1993, pp.270-274.
20. W. H. Hsiao, “Theory and Experiments of Innovative Piezoelectric Transformer/Converters: Application of Pseudo Actuator and Wave Propagation Concepts,” M. S. Dissertation, Institute of Applied Mechanics, National Taiwan University, 2000.
21. H. Jaffe and D. A. Berlincourt, “Piezoelectric Transducer Materials,” Proceedings of the IEEE, Vol. 53, NO.10, October 1965.
22. Matthew W. Hooker, “Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C,”. NASA/CR-1998-208708, September 1998.
23. Murata Manufacturing co., “Piezoelectric Ceramic Sensors (PIEZOTITE),” pp. 8-9.
24. W. Huang, “Design of a Radial Mode Piezoelectric Transformer for a Charge Pump Electronic Ballast with High Power Factor and Zero Voltage Switching”, Master of Science in Electric Engineering.
25. H. Kawai, Y. Sasaki, T. Inoue, T. Inoi, and S. Takahashi, “Higher Power Transformer Employing Piezoelectric Ceramics”, Jpn. J. Appl. Phys. Vol. 35 (1996) pp. 5015-5017, Part 1, No. 9B, September 1996.
26. T. Futakuchi, H. Sugimori, K. Horii, A. Yanagawa, and M. Adachi, “Preparation of Piezoelectric Ceramic Transformer Operation in Bending Vibration Mode”, Jpn. J. Appl. Phys. Vol. 38 (1999) pp. 3596-3599, Part 1, No. 6A, June 1999.
27. J. Yoo, K. Yoon, Y. Lee, S. Suh, J. Kim, and C. Yoo, “Electrical Characteristic of the Contour-Vibration-Mode Piezoelectric Transformer with Ring/Dot Electrode Area Ratio”, Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 2680-2684,
28. J. Yoo, K. Yoon, S. Hwang, S. Suh, J. Kim, and C. Yoo, “Electrical characteristic transformer for 28W fluorescent lamp”, Sensor and Actuator A 90 (2001) pp. 132-137.
29. H. W. Kim, S. Dong, P. Laoratanakul, K. Uchino, and T. G. Park, “Novel Method for Deriving the Ultrasonic Motor”, IEEE Transaction on Ultrasonics and Frequency Control, Vol. 49, No. 10, October 2002.
30. P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, “Unipoled Disk-type Piezoelectric Transformer”, Jpn. J. Appl. Phys. Vol. 41 (2002) pp. 1446-1450.
31. S. Manuspiya, P. Laoratanakul, and K. Uchino, “Integration of a piezoelectric transformer and an ultrasonic motor”, Ultrasonics 41 (2003) pp. 83-87.
32. N. Y. Wong, Y. Zang, H. L. W. Chan, and C. L. Choy, “A bilayer piezoelectric transformer operating in a bending vibration mode”, Material Science and Engineering B99 (2003) pp. 164-167.
33. B. Koc, Y. Gao, and K. Uchino, “Design of a Circular Piezoelectric Transformer with Crescent-Shaped Input Electrodes”, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 509-514.
34. T. Endow, and S. Hirose, “Multilayer Piezoelectric Transformer for Small Power Supplies”, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 6128-6130.
35. K. Kanayama, N. Maruko, and H. Saigoh, “Development of the Multilayer Alternately Poled Piezoelectric Transformers”, Jpn. J. Appl. Phys. Vol. 37 (1998) pp. 2891-2895.
36. Y. Sasaki, M. Yamamoto, A. Ochi, T. Inoue, and S. Takahashi, “Small Multilayer Piezoelectric Transformer with High Power Density—Characteristic of Second and Third-Mode Reson-Type Transformers—”, Jpn. J. Appl. Phys. Vol. 38 (1999) pp. 5598-5602.
37. M. Yamamoto, Y. Shimada, Y. Sasaki, T. Inoue, K. Nakamura, and S. Ueha, “A Multilayer Piezoelectric Transformer Operation in the Third Order Longitudinal Mode and Its Application for an Inverter”, IEICE Trans. Electron., Vol. E85-C, No. 10 October 2002, pp. 1824-1832.
38. Y. H. Hsu, C. K. Lee, and W. H. Hsiao, “Optimizing Piezoelectric Transformer for Maximum Power Transfer”, Smart Mater. Struct. 12 (2003) pp. 373-38A.
39. R. Lerch, “Simulation of Piezoelectric Devices by Two- and Three-Dimension Finite Elements”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.37, NO. 2, May 1990, pp. 233-247.
40. A. Chattopadhyay, J. Li, and H. Gu, “Coupled Thermo-Piezoelectric-Mechanical Model for Smart Composite Laminates”, AIAA Journal, Vol. 37, No. 12, December 1999, pp. 1633-1638.
41. H. Guo and A. Lal, “Flexural Plate Wave Excitation Using Bulk Modes”, 2001 Ultrasonics Symposium, pp. 799-802.
42. C. M. Landis, “A New finite-element formulation for electromechanical boundary value problems”, International Journal for Numerical Method in Engineering, Int. J. Numer. Meth. Engng 2002;55:613-628.
43. C. –C. Xu, Terri. S. Fiez, and K. Mayaram, “Nonlinear Finite Element Analysis of a Thin Piezoelectric Laminate for Micro Power Generation”, Journal of Microelectromechanical Systems, Vol. 12, No. 5, October 200A.
44. S. Valliappan and K. Qi, “Finite element analysis of a ‘smart’ damper for a seismic structural control”, Computers and Structures 81 (2003) 1009-1017.
45. Y. Kagawa and T. Yamabuchi, “Finite element simulation of a composite piezoelectric ultrasonic transducer”, IEEE Transactions on sonic and ultrasonics, Vol. SU-26, NO. 2, March 1979, pp.81-88.
46. D. Boucher, M. Lagier, and C. Maerfeld, “Computation of the Vibraton Modes for Piezoelectric Array Transducers using a Mixed Finite Element-Perturbation Method”, IEEE Transactions on sonic and ultrasonics, Vol. SU-28, NO. 5, September 1981, pp.318-330.
47. W.-S. Hwang and H. C. Park, “Finite element modeling of a piezoelectric sensor and actuators”, AIAA Journal, Vol. 31, No. 5, May 1993, pp. 930-937.
48. H. S. Tzou and C. I. Tseng, “Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter system : a piezoelectric finite element approach”, Journal of Sound and Vibration (1990) 138(1), pp.17-34.
49. V. V. Varadan, L.-C. Chin, and V. K. Varadan, “Hybrid finite element methods for the numerical simulation of the sensor and actuator performance of composite transducers including the effect of fluid loading”, 1990 Ultrasonics symposium, pp.1177-1181.
50. S. K. Ha, C. Keilers, and F.-K. Chang, “Finite Element Analysis of Composite Structures Containing Distributed Piezoelectric Sensors and Actuators”, AIAA Journal, Vol. 30, No.3 , March 1992, pp. 772-780.
51. M. Asano, T. Matsuoka, H. Okamoto, and T. Matsui, “Study for Micro Mobile Machine with Piezoelectric Deriving Force Actuator”, IEEE International Conference on Robotics and Automation, 1995, pp. 2955-2960.
52. A. Daugela, H. Fujii, C. E. Jeronymo, and A. Misaki, “Piezo Ceramic Based Locomotive Derive”, Six International Symposium on Micro Machine and Human Science, 1995, pp. 187-192.
53. W. Qi and W. Cao, “Finite Element Study on Random Design of 2-2 Composite Transducer”, IEEE, 1996.
54. D. M. Mills and S. W. Smith, “Combining Multi-Layer and Composites to Increase SNR for Medical Ultrasonic Transducers”, 1996 IEEE Ultrasonic Symposium, pp. 1509-1512.
55. S. Alkoy, A. Dogan, A. –C. Hladky, P. Langlet, J. K. Cochran, and R. E. Newnham, “Miniature Piezoelectric Hollow Sphere Transducers (BBs)”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 44, No. 5, September 1997, pp. 1067-1076.
56. G. Wojcik, J. Mould, D. Tennant, R. Richards, H. Song, D. Vaughan, N. Abboud, and D. Powell, “Studies of Broadband PMN Transducer Based on Nonlinear Models”, 1997 IEEE Ultrasonic Symposium, pp. 1051—1056.
57. S. W. Or, H. L. Chan, V. C. Lo, and C. W. Yuen, “Dynamic of an Ultrasonic Transducer Used for Wire Bonding”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 45, No. 6, November 1998, pp.1453-1460.
58. B. Piranda, W. Steichen, and S. Ballandras, “Model Updating Applied to Ultrasound Piezoelectric Transducers”, 1998 IEEE Ultrasonic Symposium, pp. 1057-1060.
59. D. M. Mills and S. W. Smith, “Multi-layer PZT/Polymer Composite to Increase Single to Noise Ratio and Resolution for Medical Ultrasound Transducers”, 1998 IEEE Ultrasonic Symposium, pp. 1873-1876.
60. J. S. Wang and D. F. Ostergaard, “A Finite-Element Circuit Coupled Simulation Method for Piezoelectric Transducer”, 1999 IEEE Ultrasonic Symposium, pp. 1105-1108.
61. D. M. Mills and S. W. Smith, “Multi-Layered PZT/Polymer Composites to Increase Signal-to-Noise Ratio and Resolution for Medical Ultrasound Transducers”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 46, No. 4, July 1999, pp.961-971.
62. R. Simkovics, H. Landes, M. Kaltenbacher, and R. Lerch, “Nonlinear finite element analysis of piezoelectric transducers”, 1999 IEEE Ultrasonic Symposium, pp. 1057-1060.
63. H. Watanabe, “A New Tractile Sensor Using the Edge Mode in a Piezoelectric-Ceramic Bar”, Jpn, J. Appl. Phys. Vol. 40 (2001), pp. 3704-3706, Part 1, No. 5B, May 2001.
64. S. S. Jarng, “Comparison of Barrel-Stave Sonar Transducer Simulation Between a Coupled FE-BEM and ATILA”, IEEE Sensor Journal, Vol. 3, No. 4, August 2003, pp. 439-446.
65. R. Leletty, F. Claeyssen, P. Gonnard, and B. Hamonic, “Combined Finite-Normal Mode Expansion Methods for Ultrasonic Motor Modeling”, 1994 Ultrasonics Symposium, pp. 531-534.
66. S. –H. Jeong, H.- K. Lee, Y. –J. Kim, H.-H. Kim, and K.-J. Lim, “Vibration Analysis of the stator in Ultrasonic Motor by FEM”, Proceeding of the 5th International Conference on Properties and Application of Dielectric Materials, May 25-30, 1997, Seoul, Korea, pp. 1091-1094.
67. S. Dong, S. Wang, W. Shen, and L. Li, “A Miniature Piezoelectric Ultrasonic Motor Based on Circular Bending Vibration Mode”, IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 4, December 2000, pp. 325-330.
68. Y. Ting, J. –S. Huang, F.-K. Chuang, and C.-C. Li, “Dynamic Analysis and Optimal Design of a Piezoelectric Motor”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 50, No. 6, June 2003, pp.601-61A.
69. H. Sato, T. Fukuda, F. Arai, K. Itoigawa, and Y. Tsukshara, “Improvement of Sensing and Actuating Property of Parallel Beam Gyroscope”, 1999 International Symposium Micromechatronics and human science, pp. 249-254.
70. J. Bennett and G. Hayward, “Design of 1-3 Piezocomposite Hydrophones Using Finite Element Analysis”, IEEE Transonic on Ultrasonics, Ferroelectric and Frequency Control, Vol. 44, No. 3, March 1997, pp. 565-574.
71. K. Saitoh, M. Koshiba, and Y. Tsuji, “Numerical Analysis of Integrated Acoustooptic Tunable Filters with Weighted Coupling”, Journal of Lightwave Technology, Vol. 17, No. 2, February 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31612-
dc.description.abstract在本文中,我們發展一套三維有限元素法的壓電分析程式NTUPZE-T來分析壓電變壓器。這套軟體包含可以分析壓電元件的熱效應。為了要得到壓電元件的溫度分布,我們計算了因為阻尼效應所產生的能量損耗,將這些能量損耗當作熱源帶入熱傳方程式用來計算壓電元件的溫度分布。壓電材料參數通常跟溫度有關。溫度變化常常會影響壓電材料的參數,所以在本研究中需要一個自我一致(Self-consistent)的熱與壓電分析程序。鬆弛演算法(Relaxation algorithm)在本研究中被使用來偶合熱分析與壓電分析。經過計算後可得在不同頻率不同外加負載下的壓電變壓器升壓比、相位差、效率比也和溫度分布一樣可以由這套軟體可以求得。在NTUPZE-T中,我們採用20個節點的三次元有限元素(20-node brick element)來建立模型。使用NTUPZE-T,我們分析了Rosen-modal-type壓電變壓器,包含不同負載下的最高升壓比、效率、共振頻、升溫,並且與實驗進行比較。zh_TW
dc.description.abstractIn this work, we develop a 3-D FEM solver, NTUPZE-T for analyzing piezoelectric transformers. This solver is capable of estimating the device thermal effects. In order to estimate the device temperature distribution when the device operates, we calculate the dissipation of energy based on the internal damping effects. The dissipated energy is considered as the heat source of the heat transfer equation for calculating the temperature distribution of a device. Material constants of piezoelectric materials are usually dependent on temperature. Therefore, a self-consistent thermo-piezoelectric analysis procedure is proposed. In this work, we employ the relaxation algorithm for self-consistently computing the solutions in the piezoelectric domain and the thermal domain. Then the voltage gains, phase difference, efficiencies, as well as the temperature distribution of the device at difference frequencies and loadings can be obtained by the solver. The solver employs 20-node brick-element formulation for the discretization. We analyzed Rosen -modal-type piezoelectric transformer. The simulated results of voltage gains, efficiencies, resonant frequencies, and temperature increase of the device were also verified with the measured results.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:15:49Z (GMT). No. of bitstreams: 1
ntu-95-R93522710-1.pdf: 444168 bytes, checksum: ba738832ac1d51afdbc089f758c92216 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsACKNOWLEDGEMENT 1
摘要 2
ABSTRACT 3
CHAPTER 1 INTRODUCTION 6
CHAPTER 2 FEM FORMULATION FOR PIEZOELECTRIC TRANSFORMER 9
CHAPTER 3 METHODOLOGY OF COUPLED THERMAL AND PIEZOELECTRIC ANALYSIS 14
CHAPTER 4 CASE STUDIES: ROSEN-MODEL-TYPE PIEZOELECTRIC TRANSFORMER 17
4.1 THE CHARACTERISTIC OF ROSEN-MODAL-TYPE PIEZOELECTRIC TRANSFORMER 17
4.2 EXPERIMENT SETUP 19
4.3 EXPERIMENT AND SIMULATION RESULTS 21
CHAPTER 5 CONCLUSIONS 32
REFERENCES 33
APPENDIX A FINITE ELEMENT FORMULATION OF PIEZOELECTRIC MATERIAL 40
APPENDIX B FINITE ELEMENT FORMULATION OF HEAT TRANSFER EQUATION 57
APPENDIX C NATURAL COORDINATE AND INTERPOLATION FUNCTION OF FINITE ELEMENT FORMULATION 60
C.1 LINEAR HEXAHEDRAL ELEMENT 60
C.2 QUADRATIC HEXAHEDRAL ELEMENT 62
dc.language.isoen
dc.subject鬆弛演算法zh_TW
dc.subject有限元素法zh_TW
dc.subject壓電變壓器zh_TW
dc.subjectFinite element methoden
dc.subjectRelaxation algorithmen
dc.subjectPiezoelectric Transformeren
dc.title有限元素法於壓電變壓器的熱壓電分析zh_TW
dc.titleA Thermo-piezoelectric Finite-element Solver for Piezoelectric Transformersen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張復瑜,施文彬
dc.subject.keyword有限元素法,壓電變壓器,鬆弛演算法,zh_TW
dc.subject.keywordFinite element method,Piezoelectric Transformer,Relaxation algorithm,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2006-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
433.76 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved