請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31609
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張宏鈞 | |
dc.contributor.author | Jui-Lun Chiang | en |
dc.contributor.author | 江瑞倫 | zh_TW |
dc.date.accessioned | 2021-06-13T03:15:46Z | - |
dc.date.available | 2006-08-01 | |
dc.date.copyright | 2006-08-01 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-31 | |
dc.identifier.citation | [1] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic
waves,” J. Comp. Phys., vol. 114, pp. 185–200, 1994. [2] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguides structures,” IEEE Trand. Microwave Theory Tech., vol. 34, pp. 1104–1113, 1986. [3] Cendes, Z. J., and P. Silvester, “Numerical solution of dielectric loaded waveguides: I-Finite-Element Analysis,” IEEE Trand. Microwave Theory Tech., vol. MTT-18, pp. 1124–1131, 1970. [4] Chen, H. J., Hybrid-elements FEM based complex mode solver for optical waveguides with triangular-mesh generator. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [5] Chiang, Y. C., Y. P. Chiou, and H. C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index pro- files,” J. Lightwave Technol., vol. 20, pp. 1609–1618, 2002. [6] Fujisawa, T., and M. Koshiba, “Full-vector finite-element beam propa- gation method for three-dimensional nonlinear optical waveguides,” J. Lightwave Technol., vol. 20, pp. 1876–1884, 2002. [7] Fujisawa, T., and M. Koshiba, “Finite element characterization of chromatic dispersion in nonlinear holey fibers,” Opt. Express., vol. 11, pp. 1481–1489, 2003. [8] Fujisawa, T., and M. Koshiba, “Finite-element mode-solver for nonlinear periodic optical waveguides and its application to photonic crystal circuits,” J. Lightwave Technol., vol. 23, pp. 382–387, 2005. [9] Hadley, G. R., and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol., vol. 13, pp. 465–469, 1995. [10] Hsu, S. M., Full-vectorial finite element beam propagation method based on curvilinear hybrid edge/nodal elements for optical waveguide problems. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. [11] Koshiba, M., Optical Waveguide Theory by the Finite Element Method. Tokyo, Japan: KTK Scientific/Kluwer, 1992. [12] Koshiba, M., and K. Inoue, “Simple and efficient finite-element analysis of microwave and optical waveguides,” IEEE Trand. Microwave Theory Tech., vol. 40, pp. 371–377, 1992. [13] Koshiba, M., and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol., vol. 18, pp. 737–743, 2000. [14] Koshiba, M., S. Maruyama, and K. Hirayama, “A vector finite element method with the high-order mixed-interpolation type triangular elements for optical waveguide problems,” J. Lightwave Technol., vol. 12, pp. 495–502, 1994. [15] Kuhlmey, B. T., T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B, vol. 19, pp. 2331–2340, 2002. [16] Laurie, D. P., “Automatic numerical integration over a triangle,“ SIR Spec. Rep., WISK 273, National Research Institute of Mathematical Sciences, Pretoria, 1977. [17] Lee, J. F., Finite element method with curvilinear hybrid edge/nodal triangular-shape elements for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2002. [18] Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides using tangential vector finite elements,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991. [19] L¨usse, P., P. St¨uwe, J. schule, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by an new finite difference method,” J. Lightwave Technol., vol. 12, pp. 487–493, 1994. [20] Lyness, J. N., C. Ronalds, “A survey of numerical cubature over triangles,” http://citeseer.ist.psu.edu/lyness94survey.html [21] Obayya, S. S. A., and B. M. A. Rahman, “Full-vectorial finite-element beam propagation method for nonlinear directional coupler devices,” IEEE J. Quantum Electronics, vol. 36, pp. 556–562, 2000. [22] Panoiu, N. C., M. Bahl, and R. M. Osgood Jr, “All-optical tunability of a nonlinear photonic crystal channel drop filter” Opt Express, vol. 12, pp. 1605–1610, 2004. [23] Peterson, A. F., “Vector finite element formulation for scattering from two-dimensional heterogeneous bodies,” IEEE Trans. Antennas Propagat., vol. AP-43, pp. 357–365, 1994. [24] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat., vol. 43, pp. 1460–1463, 1995. [25] Saitoh, K., and M. Koshiba, ”Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal Fibers,” IEEE J. Quantum Electron., vol. 38, pp. 927– 933, 2002. [26] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, ”Mixed finite element beam propagation method,” J. Lightwave Technol., vol. 16, pp. 1336–1341, 1998. [27] Scrymgeour, D., N. Malkova, S. Kim, and V. Gopalan, “Electro-optic control of the superprism effect in photonic crystals,” Appl. Phys. Lett., vol. 82, pp. 3176–3178, 2003. [28] Selleri, S., L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” IEEE J. Quantum Electron., vol. 33, pp. 359–371, 2001. [29] Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, “Analysis of the apectral index method for vector modes of rib waveguides,” Inst. Elec. Eng. Proc. -J., vol. 137, pp. 21–26, 1990. [30] White, T. P., B. T. Kuhlmey, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B, vol. 12, pp. 2322–2330, 2002. [31] Yasumoto, K., and J. Jia, “Modal analysis of the two-dimensional photonic crystal waveguides using lattice sums techniquie,” 3rd International Conference on Microwave and Millimeter wave Technology proceeding, pp. 1063–1066, 2002. [32] Yoshino, K., Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquidcrystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett., vol. 75, pp. 932–934, 1999. [33] Yu, C. P., and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron., vol. 36, pp. 145–163, 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31609 | - |
dc.description.abstract | 本研究採用以曲線式混合基底元素之全向量有限元素模態解析法來分析光波導模態,並在此架構上實現非線性波束傳播法探討非線性光波傳播特性。本論文藉由模態解析法搭配完美匹配邊界層作為邊界條件以吸收超出數值空間之電磁波,可準確的計算損耗波導的能量散逸,並建立非線性光波導模態解析,以與非線性波束傳播法搭配研究非線性現象。對於完美金屬導體與完美磁性導體,本研究也提出精確的邊界設定演算法。另外,為了分析二維傳播方向週期性排列的線性與非線性光波導,本論文採用二階三角曲線式元素搭配週期性邊界條件發展另ㄧ模態解析法。本論文模擬分析結構包括圓柱型光纖、三維抗諧振反射光波導、不同空氣孔洞數目的多孔光纖、非線性方向性耦合器以及二維線性與非線性光子晶體波導,並針對損耗波導的橫截面方向發展出能量流場圖。 | zh_TW |
dc.description.abstract | In this research, we improve an optical waveguide mode solver based on the fi-
nite element method (FEM) and curvilineal hybrid edge/nodal elements, and implement a nonlinear beam propagation method (BPM) numerical model based on the related FEM scheme. The FEM mode solver is incorporated into it the perfectly matched layer (PML) absorbing boundary condition and can solve the leaky waveguide mode very accurately. We refine the algorithms of the mode solver related to rigorous boundary setting involving perfect electric conductor (PEC) and perfect magnetic conductor (PMC) and numerical implementation of PMLs. The mode solver is further generalized to the analysis of nonlinear waveguide modes for working together with the nonlinear BPM model. Another FEM based mode solver for two-dimensional (2-D) linear and nonlinear periodic optical waveguides is also implemented with second order triangular elements. Periodic boundary conditions are properly imposed in the propagation direction for efficient analysis. Numerical examples considered in this research include circular waveguide, 3-D antiresonant reflecting optical waveguide (ARROW), holey fibers of various numbers of air holes, nonlinear directional coupler, and 2-D linear and nonlinear photonic crystal waveguides. We in particular develop a scheme to present power flow diagrams in the cross-sectional plane for leaky modes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:15:46Z (GMT). No. of bitstreams: 1 ntu-95-R93942072-1.pdf: 2314473 bytes, checksum: a83cc8d0df9480f6ce8d14493ba857d7 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Formulation and Related Techniques 5 2.1 The Perfectly Matched Layers . . . . . . . . . . . . . . . . . . 5 2.2 The Finite Element Mode Solver . . . . . . . . . . . . . . . . 7 2.3 The Finite Element Nonlinear Beam Propagation Method . . 13 2.4 Gauss Legendre Quadrature Integration Formulas . . . . . . . 18 2.5 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . 19 3 Numerical Results 29 3.1 Effect of Numerical Integration . . . . . . . . . . . . . . . . . 29 3.2 Power Flow Diagrams of Leaky Modes . . . . . . . . . . . . . 30 3.3 Triangular Holey Fibers . . . . . . . . . . . . . . . . . . . . . 31 3.4 Nonlinear Directional Coupler Devices . . . . . . . . . . . . . 35 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Analysis of Linear/Nonlinear Periodic Optical Waveguides 63 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Basics of Nonlinear Periodic Optical Waveguides Mode Solver 64 4.3 Linear PC waveguides with Square Lattice . . . . . . . . . . . 68 4.4 Nonlinear PC Waveguides with Square Lattice . . . . . . . . . 68 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Conclusion 77 | |
dc.language.iso | en | |
dc.title | 以有限元素法分析光波導傳播特性之研究 | zh_TW |
dc.title | Analysis of Optical Waveguide Propagation Characteristics Using Finite Element Methods | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俊雄,鍾世忠,吳宗霖 | |
dc.subject.keyword | 有限元素法,光波導, | zh_TW |
dc.subject.keyword | FEM,waveguide, | en |
dc.relation.page | 83 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-31 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。