Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31609
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞
dc.contributor.authorJui-Lun Chiangen
dc.contributor.author江瑞倫zh_TW
dc.date.accessioned2021-06-13T03:15:46Z-
dc.date.available2006-08-01
dc.date.copyright2006-08-01
dc.date.issued2006
dc.date.submitted2006-07-31
dc.identifier.citation[1] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic
waves,” J. Comp. Phys., vol. 114, pp. 185–200, 1994.
[2] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of
rectangular dielectric waveguides structures,” IEEE Trand. Microwave
Theory Tech., vol. 34, pp. 1104–1113, 1986.
[3] Cendes, Z. J., and P. Silvester, “Numerical solution of dielectric loaded
waveguides: I-Finite-Element Analysis,” IEEE Trand. Microwave Theory
Tech., vol. MTT-18, pp. 1124–1131, 1970.
[4] Chen, H. J., Hybrid-elements FEM based complex mode solver for optical
waveguides with triangular-mesh generator. M. S. Thesis, Graduate
Institute of Electro-Optical Engineering, National Taiwan University,
Taipei, Taiwan, June 2004.
[5] Chiang, Y. C., Y. P. Chiou, and H. C. Chang, “Improved full-vectorial
finite-difference mode solver for optical waveguides with step-index pro-
files,” J. Lightwave Technol., vol. 20, pp. 1609–1618, 2002.
[6] Fujisawa, T., and M. Koshiba, “Full-vector finite-element beam propa-
gation method for three-dimensional nonlinear optical waveguides,” J.
Lightwave Technol., vol. 20, pp. 1876–1884, 2002.
[7] Fujisawa, T., and M. Koshiba, “Finite element characterization of chromatic
dispersion in nonlinear holey fibers,” Opt. Express., vol. 11, pp.
1481–1489, 2003.
[8] Fujisawa, T., and M. Koshiba, “Finite-element mode-solver for nonlinear
periodic optical waveguides and its application to photonic crystal
circuits,” J. Lightwave Technol., vol. 23, pp. 382–387, 2005.
[9] Hadley, G. R., and R. E. Smith, “Full-vector waveguide modeling using
an iterative finite-difference method with transparent boundary conditions,”
J. Lightwave Technol., vol. 13, pp. 465–469, 1995.
[10] Hsu, S. M., Full-vectorial finite element beam propagation method based
on curvilinear hybrid edge/nodal elements for optical waveguide problems.
M. S. Thesis, Graduate Institute of Electro-Optical Engineering,
National Taiwan University, Taipei, Taiwan, June 2003.
[11] Koshiba, M., Optical Waveguide Theory by the Finite Element Method.
Tokyo, Japan: KTK Scientific/Kluwer, 1992.
[12] Koshiba, M., and K. Inoue, “Simple and efficient finite-element analysis
of microwave and optical waveguides,” IEEE Trand. Microwave Theory
Tech., vol. 40, pp. 371–377, 1992.
[13] Koshiba, M., and Y. Tsuji, “Curvilinear hybrid edge/nodal elements
with triangular shape for guided-wave problems,” J. Lightwave Technol.,
vol. 18, pp. 737–743, 2000.
[14] Koshiba, M., S. Maruyama, and K. Hirayama, “A vector finite element
method with the high-order mixed-interpolation type triangular
elements for optical waveguide problems,” J. Lightwave Technol., vol.
12, pp. 495–502, 1994.
[15] Kuhlmey, B. T., T. P. White, G. Renversez, D. Maystre, L. C. Botten,
C. M. de Sterke, and R. C. McPhedran, “Multipole method for
microstructured optical fibers. II. Implementation and results,” J. Opt.
Soc. Am. B, vol. 19, pp. 2331–2340, 2002.
[16] Laurie, D. P., “Automatic numerical integration over a triangle,“ SIR
Spec. Rep., WISK 273, National Research Institute of Mathematical
Sciences, Pretoria, 1977.
[17] Lee, J. F., Finite element method with curvilinear hybrid edge/nodal
triangular-shape elements for optical waveguide problems. M. S. Thesis,
Graduate Institute of Communication Engineering, National Taiwan
University, Taipei, Taiwan, June 2002.
[18] Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric
waveguides using tangential vector finite elements,” IEEE Trans.
Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991.
[19] L¨usse, P., P. St¨uwe, J. schule, and H. G. Unger, “Analysis of vectorial
mode fields in optical waveguides by an new finite difference method,”
J. Lightwave Technol., vol. 12, pp. 487–493, 1994.
[20] Lyness, J. N., C. Ronalds, “A survey of numerical cubature over triangles,”
http://citeseer.ist.psu.edu/lyness94survey.html
[21] Obayya, S. S. A., and B. M. A. Rahman, “Full-vectorial finite-element
beam propagation method for nonlinear directional coupler devices,”
IEEE J. Quantum Electronics, vol. 36, pp. 556–562, 2000.
[22] Panoiu, N. C., M. Bahl, and R. M. Osgood Jr, “All-optical tunability of
a nonlinear photonic crystal channel drop filter” Opt Express, vol. 12,
pp. 1605–1610, 2004.
[23] Peterson, A. F., “Vector finite element formulation for scattering from
two-dimensional heterogeneous bodies,” IEEE Trans. Antennas Propagat.,
vol. AP-43, pp. 357–365, 1994.
[24] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly
matched anisotropic absorber for use as an absorbing boundary condition,”
IEEE Trans. Antennas Propagat., vol. 43, pp. 1460–1463, 1995.
[25] Saitoh, K., and M. Koshiba, ”Full-vectorial imaginary-distance beam
propagation method based on a finite element scheme: application to
photonic crystal Fibers,” IEEE J. Quantum Electron., vol. 38, pp. 927–
933, 2002.
[26] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, ”Mixed finite
element beam propagation method,” J. Lightwave Technol., vol. 16, pp.
1336–1341, 1998.
[27] Scrymgeour, D., N. Malkova, S. Kim, and V. Gopalan, “Electro-optic
control of the superprism effect in photonic crystals,” Appl. Phys. Lett.,
vol. 82, pp. 3176–3178, 2003.
[28] Selleri, S., L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM
modal solver of optical waveguides with PML boundary conditions,”
IEEE J. Quantum Electron., vol. 33, pp. 359–371, 2001.
[29] Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, “Analysis of the
apectral index method for vector modes of rib waveguides,” Inst. Elec.
Eng. Proc. -J., vol. 137, pp. 21–26, 1990.
[30] White, T. P., B. T. Kuhlmey, G. Renversez, D. Maystre, L. C. Botten,
C. M. de Sterke, and R. C. McPhedran, “Multipole method for
microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B, vol.
12, pp. 2322–2330, 2002.
[31] Yasumoto, K., and J. Jia, “Modal analysis of the two-dimensional photonic
crystal waveguides using lattice sums techniquie,” 3rd International
Conference on Microwave and Millimeter wave Technology proceeding,
pp. 1063–1066, 2002.
[32] Yoshino, K., Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki,
“Temperature tuning of the stop band in transmission spectra of liquidcrystal
infiltrated synthetic opal as tunable photonic crystal,” Appl.
Phys. Lett., vol. 75, pp. 932–934, 1999.
[33] Yu, C. P., and H. C. Chang, “Applications of the finite difference mode
solution method to photonic crystal structures,” Opt. Quantum Electron.,
vol. 36, pp. 145–163, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31609-
dc.description.abstract本研究採用以曲線式混合基底元素之全向量有限元素模態解析法來分析光波導模態,並在此架構上實現非線性波束傳播法探討非線性光波傳播特性。本論文藉由模態解析法搭配完美匹配邊界層作為邊界條件以吸收超出數值空間之電磁波,可準確的計算損耗波導的能量散逸,並建立非線性光波導模態解析,以與非線性波束傳播法搭配研究非線性現象。對於完美金屬導體與完美磁性導體,本研究也提出精確的邊界設定演算法。另外,為了分析二維傳播方向週期性排列的線性與非線性光波導,本論文採用二階三角曲線式元素搭配週期性邊界條件發展另ㄧ模態解析法。本論文模擬分析結構包括圓柱型光纖、三維抗諧振反射光波導、不同空氣孔洞數目的多孔光纖、非線性方向性耦合器以及二維線性與非線性光子晶體波導,並針對損耗波導的橫截面方向發展出能量流場圖。zh_TW
dc.description.abstractIn this research, we improve an optical waveguide mode solver based on the fi-
nite element method (FEM) and curvilineal hybrid edge/nodal elements, and
implement a nonlinear beam propagation method (BPM) numerical model
based on the related FEM scheme. The FEM mode solver is incorporated into
it the perfectly matched layer (PML) absorbing boundary condition and can
solve the leaky waveguide mode very accurately. We refine the algorithms of
the mode solver related to rigorous boundary setting involving perfect electric
conductor (PEC) and perfect magnetic conductor (PMC) and numerical
implementation of PMLs. The mode solver is further generalized to the analysis
of nonlinear waveguide modes for working together with the nonlinear
BPM model. Another FEM based mode solver for two-dimensional (2-D)
linear and nonlinear periodic optical waveguides is also implemented with
second order triangular elements. Periodic boundary conditions are properly
imposed in the propagation direction for efficient analysis. Numerical examples
considered in this research include circular waveguide, 3-D antiresonant
reflecting optical waveguide (ARROW), holey fibers of various numbers of air
holes, nonlinear directional coupler, and 2-D linear and nonlinear photonic
crystal waveguides. We in particular develop a scheme to present power flow
diagrams in the cross-sectional plane for leaky modes.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:15:46Z (GMT). No. of bitstreams: 1
ntu-95-R93942072-1.pdf: 2314473 bytes, checksum: a83cc8d0df9480f6ce8d14493ba857d7 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Formulation and Related Techniques 5
2.1 The Perfectly Matched Layers . . . . . . . . . . . . . . . . . . 5
2.2 The Finite Element Mode Solver . . . . . . . . . . . . . . . . 7
2.3 The Finite Element Nonlinear Beam Propagation Method . . 13
2.4 Gauss Legendre Quadrature Integration Formulas . . . . . . . 18
2.5 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . 19
3 Numerical Results 29
3.1 Effect of Numerical Integration . . . . . . . . . . . . . . . . . 29
3.2 Power Flow Diagrams of Leaky Modes . . . . . . . . . . . . . 30
3.3 Triangular Holey Fibers . . . . . . . . . . . . . . . . . . . . . 31
3.4 Nonlinear Directional Coupler Devices . . . . . . . . . . . . . 35
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Analysis of Linear/Nonlinear Periodic Optical Waveguides 63
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Basics of Nonlinear Periodic Optical Waveguides Mode Solver 64
4.3 Linear PC waveguides with Square Lattice . . . . . . . . . . . 68
4.4 Nonlinear PC Waveguides with Square Lattice . . . . . . . . . 68
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 Conclusion 77
dc.language.isoen
dc.title以有限元素法分析光波導傳播特性之研究zh_TW
dc.titleAnalysis of Optical Waveguide Propagation Characteristics Using Finite Element Methodsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊雄,鍾世忠,吳宗霖
dc.subject.keyword有限元素法,光波導,zh_TW
dc.subject.keywordFEM,waveguide,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2006-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved