Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31604
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲
dc.contributor.authorChun-Hao Linen
dc.contributor.author林君豪zh_TW
dc.date.accessioned2021-06-13T03:15:40Z-
dc.date.available2006-12-30
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-31
dc.identifier.citation[1] http://www.interactivetvweb.org
[2] http://www.mhp.org
[3] http://www.dvb.org
[4] http://www.tivo.com
[5] http://www.irt.de
[6] http://www.amazon.com/
[7] http://www.tektronix.com/
[8] L. Ardissono, C. Gena, P. Torasso, F. Bellifemine, A. Chiarotto, A. Difino, and B. Negro. Personalized Recommendation of TV Programs. Proceedings of the 8th AI*IA Conference, Pisa, 2003.
[9] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of Predictive Algorithms for Collaborative Filtering. Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pages 43-52, 1998.
[10] A. L. Buczak, J. Zimmerman, and K. Kurapati. Personalization: Improving Ease-of-Use, Trust and Accuracy of a TV Show Recommender. Proceedings of the AH 2002 Workshop on Personalization in Future TV , 2002.
[11] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin. Combining Content-based and Collaborative Filters in an Online Newspaper. Proceedings of ACM SIGIR Workshop on Recommender, August 1999.
[12] P. Cotter and B. Smyth. PTV: Intelligent Personalised TV Guides. Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artifiial Intelligence, pages 957-964, 2001.
[13] M. Fujiwara1, T. Isobe1, N. Uratani, and T. Morita. Advanced TV Navigation System with Easy Program Selection Method. IBC 2003 Conference Publication, pages 32-41, 2003.
[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional. 1st edition, 1995.
[15] S. Guha, R. Rastogi, and K. Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. 15th International Conference on Data Engineering, 1999.
[16] J. Hatano, K. Horiguchi, M. Kawamori, and K. Kawazoe. Content Recommendation and Filtering Technology. NTT Technical Review, Vol.2 No.8, August 2004.
[17] T. Isobe, M. Fujiwara, H. Kaneta,T. Morita, and N. Uratani. Development of a TV Reception Navigation System Personalized with Viewing Habits. IEEE Transactions on Consumer Electronics, Vol. 51, No. 2, May 2005.
[18] K. Kurapati, S. Gutta, D. Schaffer, J. Martino, and J. Zimmerman. A Multi-Agent TV Recommender. User Modeling 2001: Personalization in Future TV Workshop (UM), Sonthofen, Germany, July 13-17, 2001.
[19] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76--80, 2003.
[20] H. Liu and P. Maes. InterestMap: Harvesting Social Network Profiles for Recommendations. Proceedings of the Beyond Personalization 2005 Workshop, January 9, 2005, San Diego, CA, USA, to appear. ACM Press 2005.
[21] J. McCrae, A. Piatek, and A. Langley. Collaborative Filtering. 2004.
[22] M. O'Conner and J. Herlocker. Clustering Items for Collaborative Filtering. Proceedings of the ACM SIGIR Workshop on Recommender Systems, 1999.
[23] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An Open Architecture for Collaborative Filtering of Netnews. Proceedings of the ACM Conference on Computer Supported Cooperative Work, pages 175-186, 1994.
[24] B. M. Sarwar, et al. Item-Based Collaborative Filtering Recommendation Algorithms. 10th Int'l World Wide Web Conference, ACM Press, pages 285-295, 2001.
[25] L. Ungar and D. Foster. Clustering Methods for Collaborative Filtering. Proceedings of the Workshop on Recommendation Systems at the 15th National Conf. on Artificial Intelligence. Menlo Park, CA: AAAI Press.
[26] J. Xu, L. J. Zhang, H. Lu, and Y. Li. The Development and Prospect of Personalized TV Program Recommendation Systems. IEEE Fourth International Symposium on Multimedia Software Engineering (MSE'02), 2002.
[27] G. R. Xue, C. Lin, Q. Yang, W. Xi, H. J. Zeng, Y. Yu, and Z. Chen. Scalable collaborative filtering using cluster-based smoothing. Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2005.
[28] H. Zhang, S. Zheng, and J. Yuan. A personalized TV guide system compliant with MHP. Consumer Electronics, IEEE Transactions on Volume 51, Issue 2, pages 731 – 737 , May 2005 .
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31604-
dc.description.abstract就目前的有線電視或是未來的數位電視而言,使用者將會接收到上百個節目頻道,粗略地估計,以一個星期來說,使用者可能將會有近千個電視節目要做選擇。很明顯地,使用者將很難按照自己的需求去選擇適合自己的電視節目,因此,對於大部份的使用者來說,看電視變成一種被動的習慣,使用者經常沒辦法有效地選擇自己喜愛的節目,或是自己需要的節目。因此,在未來的電視系統裡,提供一種有效地電視瀏覽以及推薦系統將是非常必要的。
數位電視將在2010年全面取代傳統的類比電視。初期的數位電視將以訊號數位化為主,然而,未來的數位電視將更進一步地提供使用者豐富的互動功能。在本篇論文中,我們提出了一個數位電視的個人化節目推薦以及導覽系統。個人化的節目導覽系統,能將收看電視這個行為由傳統上被動、漫無目地的收看,轉變為主動有明確目的的、有效率的一個行為。
在我們提出的系統中,「推薦伺服器」應用了協同過濾的技術,利用收集到的使用者收視喜好,計算出所有使用者的喜好模式。在數位電視機上盒我們採用「多媒體家庭平台」做為我們的「中介軟體」,在機上盒之上,我們設計了一個簡潔的導覽介面,並且提供使用者個人化節目推薦的服務。伺服端以及客戶端的溝通在回傳部份使用機上盒的網路回傳,而推薦資料則是透過廣播的方式,傳送到所有的客戶端,因此,能夠提供所有使用者節目推薦的服務。
zh_TW
dc.description.abstractIn this thesis, we present a novel framework and an algorithm for digital TV users with the program recommendation on a different navigation interface. Traditionally, users often watch TV passively. However, we provide a concept of watching TV on user's own initiative and on his/her demand. We apply a pattern-based clustering algorithm for collaborative recommendation on back-end computation. Compared with traditional clustering algorithms which cluster points base on distance, our algorithm clusters all connotative patterns of each transaction. Hence, our algorithm is suitable for Digital TV recommender system. In addition, our system is built on MHP platform of Interactive Broadcast Profile to provide personalized electronic program guide and support the clients without return channel. Therefore, this system is suitable for the people's demand in the coming era of Digital TV.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:15:40Z (GMT). No. of bitstreams: 1
ntu-95-R93921119-1.pdf: 1610859 bytes, checksum: f9fdbdfd6af251f15a7ef9663a2749c3 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Introduction to Digital TV 1
Chapter 2 Preliminaries 3
2.1 DVB and MHP 3
2.2 Recommender System 8
2.3 Related Work 10
Chapter 3 System Architecture 12
Chapter 4 Pattern-Based Clustering 21
4.1 Algorithm Design 21
4.2 Clustering Example 24
4.3 Discussion 26
Chapter 5 Implementation and Experimental Result 28
Chapter 6 Conclusion and Future Work 37
dc.language.isoen
dc.subject推薦系統zh_TW
dc.subject數位電視zh_TW
dc.subject家用多媒體平台zh_TW
dc.subjectDTVen
dc.subjectRecommender Systemen
dc.subjectMHPen
dc.title建構於數位電視平台上之電視節目推薦系統zh_TW
dc.titleTV Recommender System with Pattern-Based Clusteringen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖婉君,黃寶儀,郭天穎,王凡
dc.subject.keyword數位電視,推薦系統,家用多媒體平台,zh_TW
dc.subject.keywordDTV,Recommender System,MHP,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2006-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved