Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31581
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖中明(Chung-Min Liao)
dc.contributor.authorHuan-Hsiang Shenen
dc.contributor.author沈煥翔zh_TW
dc.date.accessioned2021-06-13T03:15:13Z-
dc.date.available2008-08-09
dc.date.copyright2006-08-09
dc.date.issued2006
dc.date.submitted2006-07-31
dc.identifier.citationAndersen, M. E., Clewell, H. J., Gargas, M. L., Smith, F. A., Reitz, R. H. 1987. Physiologically based pharmacokinetics and the risk assessment process for methylene-chloride. Toxicology and Applied Pharmacology 87: 185−205.
Andreae, M. O. 1978. Distribution and speciation of arsenic in natural-waters and some marine-algal. Deep Sea Research 25:391−402.
Barron, M. G. 1990. Bioconcentration. Environmental Science and Technology 24: 1612−1618.
Buchet, J. P., Lauwerys, R., Roels, H. 1981a. Comparison of the urinary excretion of arsenic metabolites after a single dose of sodium arsenite monomethyl arsonate or dimethyl arsenate in man.International Archives of Occupational and Environmental Health 48: 71−79.
Buchet, J. P., Lauwerys, R., Roels, H. 1981b. Urinary-excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium meta-arsenite by volunteers. International Archives of Occupational and Environmental Health 48: 111−118.
Chan P. C., Huff, J. 1997. Arsenic carcinogenesis in animals and humans:mechanistic, experimental, and epidemiological evidence. Journal of Environmental Science and Health, Part C - Environmental Carcinogenesis & Ecotoxicology Reviews 15: 83−122.
Chen, C. J., Wu, M. M., Lee, S. S., Wang, J. D., Cheng, S. H., Wu, H. Y. 1980. Atherogenicity and carcinogenicity of high-arsenic artesian well water - multiple risk-factors and related malignant neoplasms of blackfoot disease. Artheriosclerosis 8: 452−460.
Chen, C. L., Hsu, L. I., Chiou, H.Y., Hsueh, Y. M., Chen, S. Y., Wu, M. M., Chen, C. J. 2004. Ingested arsenic, cigarette smoking, and lung cancer risk: a follow-up study in arseniasis-endemic areas in Taiwan. Journal of the American Medical Association 292: 2984−2990.
Chen, K. P., Wu, H. Y., Wu, T. C. 1962. Epidemiologic studies on blackfoot disease in Taiwan. 3. Physicochemical characteristics of drinking water in endemic blackfoot disease area. In: Memoris, College of Medicine, National Taiwan University, Taipei. 8:115−129.
Chen, S. L., Yeh, S. J., Yang, M. H., Lin, T. H. 1995. Trace element concentration and arsenic speciation in the well water of a Taiwan area with endemic blackfoot disease. Biological Trace Element Research 48(3): 263−274.
Chiou, H. Y., Chiou, S. T., Hsu, Y. H., Chou, Y. L., Tseng, C. H., Wei, M. L., Chen, C. J. 2001. Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8102 residentsin an arseniasis-endemic area in northeastern Taiwan. American Journal of Epidemiology 153: 411−418.
Clewell, H. J., Gearhart, J. M., Gentry, P. R., Covington, T. R.,VanLandingham, C. B., Crump, K. S., Shipp, A. M. 1999. Evaluation of the uncertainty in an oral reference dose for methylmercury due to interindividual variability in pharmacokinetics. Risk Analysis 19:547−558.
Corley, R. A., Gordon, S. M., Wallace, L. A. 2000. Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures. Toxicological Sciences 53: 13−23.
Donohue, J. M., Abernathy, C. O. 1999. Exposure to inorganic arsenic from fish and shellfish. In: Arsenic Exposure and Health Effects p89−98.
Finley, B., Lau, V., Paustenbach, D. 1992. Using an uncertainty analysis of direct and indirect exposure to contaminated groundwater to evaluate EPA’s MCLs and health-based cleanup goals. Journal of Hazardous Materials 32: 263−274.
Gentry, P., Covington, T., Mann, S., Shipp, A., Yager, J., Clewell III, H. 2004. Physiologically based pharmacokinetic modeling of arsenic in the mouse. Journal of Toxicology and Environmental Health 67: 43−71.
Geyer, H. J., Rimkus, G. G., Scheunert, I., Kaune, A., Kettrup, K. W. S. A., Zeeman, M., Muir, D. C. G., Hansen, L. G., Mackay, D. 2001. Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans. In: Beek B (eds) The handbook of environmental chemistry. Springer-Verlag. Berlin. p1−166.
Guo, H. R. 2002. Cancer risk assessment for arsenic exposure through oyster consumption. Environmental Health Perspectives 110:123−124.
Guthrie, R. K., Davis, E. M., Cherry, D. S., Murray, H. E. 1979.Biomagnification of heavy-metals by organisms in a marine microcosm. Bulletin of Environmental Contamination and Toxicology 21: 53−61.
Han, B. C., Jeng, W. L., Chen, R. Y., Fang, G. T., Hung, T. C., Tseng, R. J. 1998. Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Archives of Environmental Contamination and Toxicology 35: 711−720.
Harrison, S. E., Klaverkamp, J. F. 1989. Uptake, elimination and tissue distribution of dietary and aqueous cadmium by rainbow-trout (Salmo-gairdneri Richardson) and lake whitefish (Coregonusclupeaformis Mitchill). Environmental Toxicology 8: 87−97.
Hissink, A. M., Wormhoudt, L. W., Sherratt, P. J., Hayes, J. D., Commandeur, J. N. M., Vermeulen, N. P. E., Van Bladeren, P. J. 2000. A physiologically-based pharmacokinetic (PB-PK) model for ethylene dibromide: relevance of extrahepatic metabolism. Food and Chemical Toxicology 38: 707−716.
International Agency for Research on Cancer (IARC). 1987. Evaluation of carcinogenic risks to humans. International Agency for Research on Cancer. Supplement 7: 100−106.
Jha, A. N., Noditi, M., Nilson, R., Natarajan, A. T. 1992. Genotoxic effects of sodium arsenite on human cells. Mutation Research 284:215−221.
Kitchin, K. T. 2001. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicology and Applied Pharmacology 172: 249−261.
Lamm, S. H., Engel, A., Penn, C. A., Chen, R., Feinleib, M. 2006. Arsenic cancer risk confounder in southwest Taiwan data set. Environmental Health Perspectives 114(7): 1077−1082.
Leblanc, G. A. 1995. Trophic-level differences in the bioconcentration of chemicals − implications in assessing environmental biomagnification. Environmental Science and Technology 29(1):154−160.
Lee, T. C., Tanaka, N., Lamb, P. W., Gilmer, T. M., Barrett, J. C. 1988. Induction of gene amplification by arsenic. Science 241: 79−81. Licata, A. C., Dekant, W., Smith, C. E., Borghoff, S. J. 2001. A physiologically based pharmacokinetic model for methyl tart-butyl ether in humans: implementing sensitivity and variability analyses.
Toxicological Sciences 62: 191−204.
Lin, M. C., Liao, C. M., Liu, C. W., Singh, S. 2001. Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from the blackfoot disease area in Taiwan. Bulletin of Environmental Contamination and Toxicology 67: 91−97.
Lin, T. H., Huang, Y. L., Wang, M. Y. 1998. Arsenic species in drinking water , hair, fingernails, and urine of patients with blackfoot disease. Journal of Environmental Science and Health A33: 85−93.
Mann, S., Droz, P. O., Vahter, M. 1996a. A physiologically based pharmacokinetic model for arsenic exposure. I. Development in hamsters and rabbits. Toxicology and Applied Pharmacology 137: 8−22.
Mann, S., Droz, P. O., Vahter, M. 1996b. A physiologically based pharmacokinetic model for arsenic exposure. II. Validation and application in humans. Toxicology and Applied Pharmacology 140:471−486.
Menzel, D., Ross, M., Oddo, S., Bergstrom, P., Greene, H., Roth, R. 1994. A physiologically based pharmacokinetic model for ingested arsenic. In: Arsenic: Exposure and Health p209−218.
Morales, K. H., Ryan, L., Kuo, T. L., Wu, M. M., Chen, C. J. 2000. Risk of internal cancers from arsenic in drinking water. Environmental Health Perspectives 108: 655−661.
National Research Council (NRC). 1983. Risk assessment in the federal government: managing the process. NAS Press, Washington DC. National Research Council (NRC). 2001. Arsenic in drinking water. Washington, DC: National Academy Press. National Rural Water Association (NRWA). 2003. White Paper: Approaches to determining “Unreasonable risk to health”.http://www.nrwa.org.
Reddy, M. B., Yang, R. S. H., Clewell III, H. J., Andersen, M. E. 2005. Physiologically Based Pharmacokinetics: Science and Applications. John Wiley & Sons. Inc., Hoboken, New Jersey.
Schoof, R. A., Yost, L. J., Eickhoff, J., Crecelius, E. A., Cragin, D. W., Meacher, D. M., Menzel, D. B. 1999. A market basket survey of inorganic arsenic in food. Food and Chemical Toxicology 37:839−846.
Schüürmann, G., Markert, B. 1998. Ecotoxicology: ecological
fundamentals, chemical exposure, and biological effects. John Wiley & Sons. NY.
Smith, A. H., Lopipero, P. A., Bates, M. N., Steinmaus, C. M. 2002. Arsenic epidemiology and drinking water standards. Science 296: 2145−2146.
Sullivan, R. J. 1969. Preliminary air pollution survey of arsenic and its compounds. Aliterature review. US Department of Health, Education and welfare, National Air Pollution Control Administration, Raleigh, NC.
Tchounwou, P. B., Centeno, J. A., Patlolla, A. K. 2004. Arsenic toxicity, mutagenesis, and carcinogenesis – a health risk assessment and management approach. Molecular and Cellular Biochemistry 225: 47–55.
Tchounwou, P. B., Patlolla, A. K., Centeno, J. A. 2003. Carcinogenic and systemic health effects associated with arsenic exposure – a critical review. Toxicologic Pathology 31: 575−588.
Tsuji, J. S., Benson, R., Schoof, R. A., Hook, G. C. 2004. Health effect levels for risk assessment of childhood exposure to arsenic. Regulatory Toxicology and Pharmacology 39: 99−110.
Uno, S., Shiraishi, H., Hatakeyama, S., Otsuki, A. 1997. Uptake and depuration kinetics and BCFs of several pesticides in three species of shellfish (Corbicula leana, Corbicula japonica, and Cipangopludina chinensis): comparison between field and laboratory experiment. Aquatic Toxicology 39: 23−43.
USEPA. 1989. Guidance manual for assessing human health risks from chemically contaminated, fish and shellfish. US Evironmental Protection Agency. Washington DC.
USEPA. 2000. Estimated per capita water ingestion in the United States:
Based on data collected by the United States Department of
Agriculture’s (USDA). 1994-1996 Continuing survey of food intakes by individuals. EPA-822-00-008. Office of Water, Office of Standards and Technology, U.S. Environmental Protection Agency.
USFDA. 1993. Guidance document for arsenic in shellfish. US Food and Drug Administration. Washington, DC. p25−27.
Vahter, M. 2002. Mechanism of arsenic biotransformation. Toxicology 181: 211−217.
Vose, D. 2000. Risk analysis: a quantitative guide, 2nd Ed. John Wiley & Sons Ltd, Chicester, England.
World Health Organization (WHO). 1980. IARC monographs on the evaluation of the carcinogenic risk of chemical to humans: some metal and metallic compounds. International Agency for Research on Cancer.
World Health Organization (WHO). 1981. Environmental Health Criteria 18: Arsenic. Geneva: World Health Organization.
World Health Organization (WHO). 2001. Arsenic in drinking water. http://www.who.int/mediacentre/factsheets/fs210/en.
World Health Organization (WHO). 2003. United nations synthesis report on arsenic in drinking water.
Wu, M. M., Chiou, H. Y., Wang, T. W., Hsueh, Y. M., Wang, I. H., Chen, C. J., Lee, T. C. 2001. Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environmental Health Perspectives 109: 1011−1017.
Yager, J. W., Wiencke J. K. 1993. Enhancement of chromosomal damage by arsenic: implications for mechanism. Environmental Health Perspectives 101(suppl. 3): 79−82.
Yu, D. 1998. Uncertainties in a pharmacokinetic modeling for inorganic arsenic. Journal of Environmental Science and Health A33: 1369−1390.
Yu, D. 1999. A pharmacokinetic modeling of inorganic arsenic: a short-term oral exposure model for humans. Chemosphere 39:2737−2747.
Yu, D., Kim, J. K. 2004. A physiologically based assessment of human exposure to radon released from groundwater. Chemosphere 54:639−645.
行政院環保署。1998。地面水體分類及水質標準。行政院環保署水字
第0002599 號令修正發布。
行政院農委會漁業署。2000。台灣西南沿海烏腳病疫區地下水養殖之
砷污染現況調查及其風險評估。行政院農委會漁業署。
行政院農委會漁業署。2003。中華民國台閩地區漁業統計年報。
行政院衛生署。2002。癌症防治:肝癌。http://www.doh.gov.tw
行政院衛生署食品衛生處。2002。台灣地區居民體位及肥胖狀況。http://www.doh.gov.tw。
陳建仁。1999。流行病學:原理與方法。聯經出版事業股份有限公司。90pp。
陳健民。2002。環境毒物學。新文京開發出版有限公司。p226−228。
黃玉琪。2000。簡明解剖生理學(三版):第十四章 體液、電解質及
酸鹼平衡。麥麗敏,祁業榮,廖美華,鍾麗琴,戴瑄,黃玉琪合著。匯華圖書出版有限公司。p589−609。
邱弘毅,薛玉梅,許益祥,黃偉益,陳相志,朱子賢,魏敏澧,許鈴
宜,謝芳宜,陳吳銓,陳建仁。1996。無機砷與內臟癌相關之流
行病學研究。中華民國公共衛生雜誌。15: 92-108。
邱弘毅,葉錦瑩,薛玉梅,陳建仁。1994。台灣地區砷、汞、鎘及其
化合物之用途和用量調查研究。中華民國公共衛生雜誌。13:
113−125。
邱弘毅。1996。台灣西南沿海烏腳病盛行地區及蘭陽盆地居民無機砷
之代謝能力與健康危害之流行病學研究。台灣大學博士論文。
黃詠愷。2002。烏腳病盛行地區養殖魚貝類砷物種分析研究。台北醫
學大學公共衛生研究所碩士論文。
許鈴宜。2001。台灣烏腳病盛行地區移形上皮癌之流行病學研究。台
灣大學公共衛生學院流行病學研究所博士論文。p39−53。
廖國盟,陳淑媛,陳建仁。2002。肺癌之流行病學:世界與地區特徵。台灣內科醫學會91 年會員大會學術演講論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31581-
dc.description.abstract本研究以台灣砷盛行區域之西南沿海烏腳病地區與東北蘭陽平原之流行病學調查資料為基礎,利用Weibull模式建構砷暴露劑量、年齡與反應的關係,結合以生理為基礎的藥理動力學(PBPK)模式模擬人體代謝機制並探討飲水率所造成體內濃度變化,以評估飲用水含砷安全量。針對攝食西南沿海含砷養殖池之吳郭魚進行人體砷暴露健康風險評估,進而利用生物累積模式推求吳郭魚養殖池含砷安全量。生命階段之PBPK模式描述人體對主要代謝物種砷:As5+,As3+,MMA及DMA之吸收、分佈、代謝與排除,並考量年齡生理狀態之潛在變化,強化攝食無機砷之風險評估。結果顯示膀胱癌、腎癌、尿道癌與肺癌之累積發生率,與年齡及劑量呈現明顯相關趨勢。以男性終生年齡75歲為例,膀胱癌為參考癌症,累積發生率10-4下所推估飲用水含總砷安全量為3.4 μg L-1,但考量人體生理代謝機制與飲水率變化 (1.08-6.52 L d-1)時,飲用水含總砷安全量介於1.9-10.2 μg L-1間,其所推估之累積發生率則為2.84×10-5-1.96×10-4間。根據攝食西南沿海地區含砷養殖池吳郭魚之健康風險評估,顯示布袋、義竹、北門及學甲區域風險均未超過10-4,而此地區90%致癌風險落於2.0×10-5範圍內。利用生物累積模式推求養殖吳郭魚水質顯示建議含無機砷安全量為45 μg L-1。本研究結合人體健康風險與環境評估步驟,整合流行病學與環境生物檢測研究,可提供建構環境風險管理架構以訂定規範與執行依據。zh_TW
dc.description.abstractThe purpose of this thesis is to evaluate a reasonable range of drinking water standard based on the arsenic epidemiological data in the southwestern Blackfoot disease-endemic area and northeastern Lanyang Plain in Taiwan. We present an integrated approach by linking the Weibull model-based dose-response profile and a physiologically based pharmacokinetic (PBPK) model to construct the interplay among arsenic exposure dose, age and response, and to model arsenic concentration varied with methylating activity and drinking water consumption rates. Furthermore, we use bioaccumulation model to establish a risk assessment for ingesting farmed tilapia in southwestern coast to estimate the pond water quality criteria. A life-stage PBPK model is used to describe the absorption, distribution, metabolism, and excretion of the four major metabolites: arsenate (As5+), arsenite (As3+), methylarsonic acid (MMA) and dimethylarsinic acid (DMA) in target tissue groups, considering the potential impact by physiologically life-stage differences. The results show that arsenic exposure dose, age and the cumulative incidence ratio of the bladder, kidney, urinary and lung cancers are correlated significantly. The safe arsenic drinking water standard is estimated to be 3.4 μg L-1 based on the index cancer (bladder cancer) with cumulative incidence ratio equals 10-4 for a life time 75-yr male. The standard concentration and cumulative incidence ratio range from 1.9 – 10.2 μg L-1 and 2.84×10-5 – 1.96×10-4, respectively, which are varied with the drinking water consumption rates ranging from 1.08 – 6.52 L d-1. The risk of ingesting farmed tiliapia are lower than 10-4 in Putai, Yichu, Paiman and Hsuehchia, and the average risk of 90% belows 2.0×10-5 in southwestern coast. The pond water standard of inorganic arsenic for farmed tilapia is estimated to be 45 μg L-1. In conclusion, this study offers a environmental-risk-management framework to establish regulations and administrating process by linking epidemiological data and environmental bioassays.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:15:13Z (GMT). No. of bitstreams: 1
ntu-95-R91622032-1.pdf: 1055228 bytes, checksum: c13e34d808f11fb87027e28ae58e194c (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents口試委員會審定書
謝誌
中文摘要 I
英文摘要 II
表目錄 VI
圖目錄 VIII
符號說明 IX
第一章 前言 1
第二章 動機與目的 2
2.1 研究動機 2
2.2 研究目的 2
第三章 文獻回顧 3
3.1 砷之物化性質與環境分佈 3
3.2 砷之毒理與人體代謝 7
3.3 台灣地區飲用含砷井水之流行病學調查 14
3.4 以生理為基礎之藥理動力學模式(PBPK model) 18
3.5 劑量反應模式 22
3.6 生物累積作用 30
3.7 風險評估 31
第四章 材料與方法 34
4.1 風險分析架構 34
4.2 台灣烏腳病地區與蘭陽平原流行病學資料與分析 36
4.3 Weibull劑量反應模式 40
4.4 生命階段之PBPK模式 42
4.5 變異性分析 56
4.6 生物累積模式 59
第五章 結果與討論 64
5.1 烏腳病地區與蘭陽地區暴露劑量與各癌症關係 64
5.2 人體內器官之砷濃度動態變化 68
5.3 飲水量、體重與人體內砷濃度變異分析 74
5.4 飲用水含砷量安全量分析 79
5.5 結合PBPK模式探討水質含砷安全量與風險值影響 85
5.6 地區性攝食含砷食物致癌風險分析 90
5.7 流行病學應用於環境管理 95
第六章 結論與未來研究建議 97
6.1 結論 97
6.2 未來研究建議 99
參考文獻 101
附錄A:癌症追蹤人數、發生病例數與累積發生率 111
附錄B:Comparison population data (Taiwan), 1973–1986. 119
dc.language.isozh-TW
dc.title結合生命階段之PBPK模式與流行病學資料評估人體砷暴露之致癌風險zh_TW
dc.titleLinking a life-stage PBPK model and epidemiological data to enhance cancer risk assessment of human exposed to arsenicalsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉振宇(Chen-Wuing Lin),林明炤(Ming-Chao Lin),陳祁玲(Chi-Ling Chen),陳柏青(Bo-Ching Chen)
dc.subject.keyword砷,Weibull模式,PBPK,飲用水標準,吳郭魚,風險評估,流行病學。,zh_TW
dc.subject.keywordArsenic,Weibull model,PBPK,Drinking water standard,Tilapia,Risk assessment,Epidemiology,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2006-08-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved