請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31556
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馬小康(Xiao-Kang Ma) | |
dc.contributor.author | Chun-Bin Huang | en |
dc.contributor.author | 黃春濱 | zh_TW |
dc.date.accessioned | 2021-06-13T03:14:45Z | - |
dc.date.available | 2006-08-03 | |
dc.date.copyright | 2006-08-03 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-08-01 | |
dc.identifier.citation | [1] 林振江、施保重,“混合動力車的理論與實際”,全華科技圖書股
份有限公司,2002年。 [2] 盧昭輝,“循環分析~引擎性能計算”,機械工業雜誌,1985年5 月出版。 [3] 林建成,“甲醇燃料在汽油引擎上之應用”,國立台灣大學機械工 程研究所碩士論文,1999年6月。 [4] 陳吏鋒,“九八無鉛汽油添加甲醇對汽油引擎性能與排氣之影 響”,國立台灣大學機械工程研究所碩士論文,2000年6月。 [5] Larbey, R.J., “Motor Transport Fuel Additives for Today and Tomorrow: Environmental Issue”, Issues Relating to Air Quality and Wastes, pp.27-43, Chemicals in The Environment, British, 1994. [6] Braschkat, J., Gartner, S.O., Reinhardt, G.A. and Uihlein A., “Biogas Versus Other Bio-fuels: A Comparative Assessment”, The future of biogas in Europe II, 2003. [7] Palmer, F.H., “Vehicle Performance of Gasoline Containing Oxygenates”, Int. Conf. On Petroleum Based and Automotive Application, London, U.K., pp.25-26, 1986. [8] Sinor, J.E. and Bailey, B.K., “Current and Potential Future Performance of Ethanol Fuels”, SAE Paper 930376, 1993. [9] Adams, W.E. and Boldt, K., “Propane Versus Gasoline: Effects on Engine Performance and Economy”, SAE Paper 650921, 1965. [10] Kramer, M., Bintz, L.J. and Tappenden, T.A., “Light Duty Fleet Experience with LP-Gas”, LP-Gas Engine Fuels, ASTM STP 525, pp.92-111, 1973. [11] Nichols, R.J. and Roberta, J., “Further Development of The Methanol-Fueled Escort”, SAE Paper 830900, 1983. [12] Baxter, M.C. and Milton C., “LP-Gas-A Superior Motor Fuel”, SAE Paper 670054, 1967. [13] Neitz, A., “Man Methanol Engines for Use in Buses”, Man Nurnberg, Germany, SAE Paper 885178, 1988. [14] Shiao, Y. and Moskwa, J.J., “Cylinder Pressure and Combustion Heat Release Estimation for SI Engine Diagnostics Using Nonlinear Sliding Observers”, IEEE trans. Vo1.3, No.1, 1995. [15] Woschni, G.A., “A Universally Applicable Equation for The Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine”, SAE Paper 670931, 1967. [16] Rassweiler, G.M. and Withrow, L., “Motion Pictures of Engine Flames Correlated with Pressure Cards”, SAE paper 800131, 1980. [17] Gatowski, J.A., Balles, E.N., Chun, K.M., Nelson, F.E., Ekchian, J.A. and Heywood, J.B., “Heat Release Analysis Engine Pressure Data”, SAE Paper 841359, 1984. [18] “Gasoline Direct Injection Engine”, Mitsubishi Motors Corporation, 1996. [19] 交通部運輸研究所/工研究經資中心ITIS計畫,2001。 [20] 林成原、馬小康、吳浴沂、吳贊鐸,“複合動力低污染公車排放空氣污染物減量效益評估及規劃推動方案”,環保署/國科會空污防制科研合作計畫,2005年。 [21] 周俊男,“火花點火引擎燃燒熱效率之探討”,私立大葉大學機械工程研究所碩士論文,2000年6月。 [22] 趙志剛,“綠色運具與內燃機引擎除碳之研究”,國立台灣大學機械工程研究所碩士論文,2005年7月。 [23] Ferguson, Colin R., “Internal Combustion Engines-Applied Thermosciences”, John Wiley & Sons, Inc., 1986. [24] Stull, D.R. and Sinke, G.C., “The Chemical Thermodynamics of Organic Compounds”, John Wiley & Sons, Inc., 1969. [25] Svehla, R.A. and McBride, B.H., “Fortran IV Computer Program for Calculation of Thermodynamic and Transport Properties of Complex Chemical Systems”, NASA TND-7056, 1973. [26] Reynolds, W., “The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN”, M.E. Dept., Stanford University, 1986. [27] Olikara, C. and Borman, G.L., “A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines”, SAE paper 750468, 1975. [28] Horlock, J.H. and Winterbone, D.E., “The Thermodynamics and Gas Dynamics of Internal Combustion Engine”, Oxford University Press, Vol.2, 1986. [29] Heywood, J.B., “Internal Combustion Engine Fundamentals”. McGraw-Hill, New York, 1988. [30] Paulina, S.K., “Cylinder Pressure in a Spark-Ignition Engine: A Computational Model”, Master Dissertation, 1996. [31] “日產汽車直接噴射引擎新科技-汽油篇” http://www.cmvttc.gov.tw/page_a4.htm,交通部公路局中部汽車技術訓練中心。 [32] http://auto.tfol.com/10091/auto/jintai/car/camry/index.htm,“成都錦泰豐田汽車”。 [33] http://auto.tfol.com/10091/auto/jintai/car/prius/prius3.shtml,“成都 錦泰豐田汽車”。 [34] http://www.engr.colostate.edu/~allan/thermo/page1/page1f.html, “Internal Combustion Engine Thermodynamics Outline”, CSU Engines and Energy Conversion Lab. [35] http://automobiles.honda.com/models/model_overview.asp?Model Name=Civic+Hybrid,“Honda Civic Hybrid”. [36] http://www.toyota.com/prius/,“Toyota Prius Hybrid”. [37] http://www.fordvehicles.com/escapehybrid/home/index.asp,“Ford Escape Hybrid”. [38] http://www.fueleconomy.gov/feg/hybridtech.shtml,“Hybrid Vehicles-How Hybrid Works”. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31556 | - |
dc.description.abstract | 為因應全球能源日益枯竭與溫室氣體效應之問題,本研究係利用Fortran 95和引擎性能分析軟體建立之零次元模型的熱釋放分析模式,針對豐田汽車Camry 2.0引擎性能,改變其燃燒相關參數(例如:燃燒開始角、燃燒持續角、當量比…等等)與替代燃料(甲醇、汽油、甲烷),探討最大指示熱效率及指示平均有效壓力時的操作參數。引擎性能模擬分析中則採用韋伯函數經驗式(Wiebe function)來描述燃燒過程,即已燃質量分率隨曲柄角變化的曲線。
經由初始輸入數據為燃燒持續角為400,韋伯效率因子為5及形狀因子為3,進氣溫度300K,進氣壓力100kPa,汽缸壁溫400K,當量比為0.8,引擎轉數5600rpm,則模擬分析結果顯示,在當量比0.8時,以甲醇與汽油作燃料時,韋伯效率因子為5及形狀因子為1,燃燒開始角為150 btdc,燃燒持續角為350,而以甲烷作燃料時,韋伯效率因子為6及形狀因子為1,燃燒開始角為150 btdc,燃燒持續角為350,Camry 2.0具有最大指示熱效率及指示平均有效壓力。 此外,本文亦比較混合動力車Prius 1.5與汽油車Camry 2.0的油耗、動力及排氣污染。當兩車在不同操作條件下,(1)兩車以30%於市區行駛及70%於高速路行駛與(2)以70%於市區行駛及30%於高速路行駛時,結果顯示,在油耗方面,Prius 1.5每行駛10,000km比Camry 2.0燃油消耗分別省下5445元及9372元。在排氣污染方面,當兩車以上述兩種模式行駛時,Camry 2.0排放的CO幾乎是Prius 1.5的2.53倍及4.09倍,排放的NMHC是Prius 1.5的3.18倍及5.11倍;而排放的NOx是Prius 1.5的5.05倍及12.70倍。在動力方面,由於Prius 1.5為雙動力源(汽油引擎及電力)驅動,動力不足的部份可由電瓶提供電力給馬達,提供額外動力;多餘動力的部份,馬達可將動能轉成電能加以回收,儲存在電瓶中,整體性能可媲美一般2.0升汽油車Camry 2.0。 | zh_TW |
dc.description.abstract | In attempt to cope with the global problem of energy crisis and greenhouse gas effect, this study utilizes Fortran 95 and Engine Performance Analysis Software to set up Zero-Dimension Heat Release Model. For engine performance of Toyota Camry 2.0, we change the combustion parameters(Ex: Ignition Angle、Duration of Combustion、Equivalence Ratio, etc) and alternative fuels(methanol、gasoline、methane) to develop the optimum operating condition for maximum engine thermal efficiency and the indicated mean effective pressure. By input data--burn duration is 400, Weibe efficiency factor is 5, Weibe form factor is 3, intake temperature is 300K, intake pressure is 300kPa, cylinder temperature is 400K, phi is 0.8, engine speed is 5600rpm, therefore the simulation analysis results show that Camry 2.0 has the maximum engine thermal efficiency and the indicated mean effective pressure for phi is 0.8 when ignition angle is 150 btdc, burn duration is 350, Weibe efficiency factor is 5, Weibe form factor is 1 for using methanol、gasoline and ignition angle is 150 btdc, burn duration is 350, Weibe efficiency factor is 6, Weibe form factor is 1 for using methane.
In addition, the study also compares the fuel economy、power output and pollutant emission for Hybrid Prius 1.5 and Gasoline Vehicle Camry 2.0. When two cars drive under different operation conditions, for fuel economy, (1)Prius 1.5 saves 5445 dollars per 10,000km than Camry 2.0 when two cars drive 30% in city and 70% on highway. (2)Prius 1.5 saves 9372 dollars per 10,000 km than Camry 2.0 when two cars drive 70% in city and 30% on highway. For emission pollution, the CO emissions of Camry 2.0 is almost 2.53 times and 4.09 times as Prius 1.5, the NMHC emissions of Camry 2.0 is 3.18 times and 5.11 times higher than Prius 1.5, and the NOx emissions of Camry 2.0 is 5.05 times and 12.70 times as Prius 1.5 when two cars drive 30% in city and 70% on highway or drive 70% in city and 30% on highway. For power output, Due to Prius 1.5 drives by dual power source(gasoline engine and electricity), battery can offer electricity to motor when power is insufficient; in addition, motor can transform surplus kinetic energy into electricity energy to store in the battery. Prius 1.5 can compare favorably with general Gasoline Vehicle Camry 2.0 in the whole performace. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:14:45Z (GMT). No. of bitstreams: 1 ntu-95-R93522314-1.pdf: 2238188 bytes, checksum: ed42be66d10032e850efbe7846bcebb1 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 摘 要 I
ABSTRACT II 目錄 III 章節目錄 IV 表目錄 VI 圖目錄 VIII 符號說明 X 章節目錄 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究目的 11 第二章 汽油引擎與替代燃料之發展現況 13 2.1 汽油引擎噴射系統之基本原理及發展現況 13 2.1.1 噴射系統之類別 13 2.1.2 噴射系統之基本原理 14 2.1.3 日產汽車NEO Di直接噴射式汽油引擎 16 2.2 替代燃料的發展現況 18 2.2.1 生質柴油 18 2.2.2 二甲醚 19 2.2.3 醇類燃料 20 2.2.4 壓縮天然氣 21 2.2.5 液化石油氣 23 第三章 預先混合噴射引擎理論模式之建立 25 3.1 化學計量 26 3.1.1 化學計量之燃燒 26 3.1.2 富燃料之燃燒 27 3.1.3 貧燃料之燃燒 28 3.2 四衝程奧圖循環理論模式之建立 32 3.3 引擎性能與已燃燃料質量分率分析 35 3.3.1 已燃燃料質量分率分析 35 3.3.2 壓力與曲軸角間之關係分析 36 3.3.3 Woschni correlation之對流熱傳係數分析 41 第四章 混合動力車發展背景、車款及系統操作模式 44 4.1 混合動力車之簡介 44 4.2 現有混合動力車車款之介紹 47 4.3 混合動力車系統及運作模式 50 4.3.1 混合動力車系統 50 4.3.2 混合動力車運作模式 50 第五章 汽油車Camry 2.0引擎性能分析結果與討論 53 5.1 韋伯函數及幾何參數之確立 53 5.1.1 點火提前角分析 53 5.1.2 燃燒持續角分析 54 5.1.3 韋伯效率因子及形狀因子分析 54 5.1.4 當量比分析 55 5.1.5 最佳操作值之探討 56 5.2 韋伯函數及幾何參數對引擎性能之影響 57 5.2.1 點火提前角對引擎性能之影響 57 5.2.2 燃燒持續角對引擎性能之影響 59 5.2.3 當量比對引擎性能之影響 60 第六章 混合動力車Prius 1.5與汽油車Camry 2.0油耗、動力、污染排放之比較 64 6.1 混合動力車Prius 1.5與汽油車Camry 2.0之油耗分析 65 6.2 混合動力車Prius 1.5與汽油車Camry 2.0之動力分析 66 6.3 混合動力車Prius 1.5與汽油車Camry 2.0之排放分析 72 第七章 結論與建議 74 7.1 結論 74 7.2 建議 76 參考文獻 77 | |
dc.language.iso | zh-TW | |
dc.title | 替代燃料對汽油車與混合動力車之性能探討 | zh_TW |
dc.title | Study of Gasoline Vehicles and Hybrid Electric Vehicles Performance Using Alternative Fuels | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施陽正(Yang-Zheng Shi),王興華(Xing-Hua Wang) | |
dc.subject.keyword | 汽油引擎,替代燃料,混合動力車, | zh_TW |
dc.subject.keyword | gasoline engine,alternative fuel,hybrid vehicle, | en |
dc.relation.page | 110 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。