請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31541完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卿建業 | |
| dc.contributor.author | Wen-Ting Lee | en |
| dc.contributor.author | 李文婷 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:14:30Z | - |
| dc.date.available | 2011-08-03 | |
| dc.date.copyright | 2011-08-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-29 | |
| dc.identifier.citation | 秦中天、鄭在仁、劉泉枝 (1989). 臺北沉泥之不排水剪力強度與過壓密比之關係. 中國土木水利工程學刊,1(3), 245-250.
歐章煜、蕭文達 (1994). K0壓密及平面應變下臺北粉質黏土之不排水剪力強度. 中國土木水利工程學刊,6(4), 383-388. 秦中天、劉泉枝 (1997). 台北粉質黏土體積變化與不排水行為. 中國土木水利工程學刊,9(4), 665-678. Aas,G., Lacasse,S., Lunne,T. and Hoeg,K. (1986). Use of In-Situ Tests for Foundation Design on Clay. Use of In-Situ Tests in Geotechnical Engineering (GSP6), Ed. S. P. Clemence, ASCE, New York, 1-30. Anderson, T.C, Koutsoftas, D.C., Ramalho-Ortigao, J.A. and Costa-Filho, L.M.(1982). Discussion to Cam-Clay Predictions of Undrained Strength. Journal of the Geotechnical Engineering Division, ASCE, 108(1), 176-183. Andersen, K.H., Pool, J.H., Brown, S.F. and Rosenbrand, W.F. (1980). Cyclic and Static Laboratory Tests on Drammen Clay. Journal of the Geotechnical Engineering Division, ASCE, 106(5), 499-529. Azzouz, A.S. and Lutz, D.G. (1986). Shaft Behavior of a Model Pile in Plastic Empire Clays. Journal of Geotechnical Engineering, 112(4), 389-406. Berre, T. and Bjerrum, L. (1973). Shear Strength of Normally Consolidated Clays. Proceedings of 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, 1.1, 39-49. Bjerrum, L. (1972). Embankments on Soft Ground. Proceedings, Specialty Conference on Performance of Earth and Earth-Supported Structures, ASCE, Lafayette, 2, 1-54. Bozozuk, M. and Leonards, G. A. (1972). The Gloucester Test Fill. Proceedings, Performance of Earth and Earth-Supported Structures, 1(1), 299-317. Broms, B.B. and Ratnam, A.M. (1963). Shear Strength of an Anisotropically Consolidated Clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 89(6), 1-26. Brand, E.W. (1984). Time Effects on the Stress-Strain Behavior of Natural Soft Clays. Geotechnique, 34(3), 435-438. Chandler, R.J. (1988). The In-Situ Measurement of the Undrained Shear Strength of Clays Using the Field Vane. Vane Shear Strength Testing in Soils: Field and Laboratory Studies, ASTM STP 1014, Philadelphia, 13-44. Chen, Y.J. and Kulhawy, F.H. (1993). Undrained Strength Interrelationships Among CIUC, UU, and UC Tests. Journal of Geotechnical Engineering, ASCE, 119(11), 1732-1750. Coutinho, R.Q. (2007). Characterization and Engineering Properties of Recife Soft Clays-Brazil. Characterisation and Engineering Properties of Natural Soil: Proceedings of the International Workshop, Singapore, 2049-2099. Croce, A., Japelli, R., Pellegrino, A. and Viggiani, C. (1969). Compressibility and Strength of Stiff Intact Clays. Proceedings, 7th International Conference on Soil Mechanics and Foundation Engineering, 1, 81-89. Crooks, J.H.A. (1981). A Qualitative Stress-Strain (Time) Model for Soft Clays. Laboratory Shear Strength of Soil, ASTM STP740, 685-699. D'Appolonia, D.J., Lambe, T.W. and Poulos, H.G. (1971). Evaluation of Pore Pressures Beneath an Embankment. Journal of the Soil Mechanics and Foundations Division, ASCE, 97(6), 881-897. D'Appolonia, D.J. and Saada, A.S.(1972). Bearing Capacity of Anisotropic Cohesive Soil. 126-135. Dascal, O., and Tournier, J.P.(1975). Embankments on Soft and Sensitive Clay Foundations. Journal of Geotechnical Engineering Division, ASCE, 101(3), 297-314. Degroot, D.J. and Lutenegger, A.J. (2003). Geology and Engineering Properties of Connecticut Valley Varved Clay. Characterisation and Engineering Properties of Natural Soils, 1, 695-724. Duncan, J.M. and Seed, H.B. (1966). Anisotropy and Stress Reorientation in Clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 92(5), 21-50. Eden, W.J. and Crawford, C.B. (1957). Geotechnical Properties of Leda Clay in the Ottawa Area. Proceedings 4th International Conference on Soil Mechanics and Foundation Engineering, 22 -27. Eide, O. and Holmberg, S. (1972). Test Fills to Failure on the Soft Bangkok Clay. Proceedings, Specialty Conference on Performance of Earth and Earth-Supported Structures, ASCE, 1, 1-12. Hanzawa, H. (1977a). Field and Laboratory Behaviour of Khor Al-Zubair Clay, Iraq. Soils and Foundations, 17(4), 17-30. Hanzawa, H. (1977b). Geotechnical Properties of Normally Consolidated Fao Clay, Iraq. Soils and Foundations, 17(5), 1-15. Hanzawa, H. (1979). Undrained Strength and Stability Analysis of Soft Iraqi Clays. Soil and Foundations, 19(2), 1-14. Hight, D.W. and Leroueil, S. (2003). Characterisation of Soils for engineering Purposes. Characterisation and Engineering Properties of Natural Soils, 1, 255-360. Holtz, R.D. and Holm, B.G. (1973). A Test Embankment on an Organic Sulphide Clay. Swedish geotechnical Institute Internal Peport to the National Swedish Road Board, 79-86. Josseaume, H. and Pilot, G. (1977). Parametres de Comportement Non Draine des Argiles Molles. Proceedings of 9th International Conference on Soil Mechanics and Foundation Engineering, 1, 137-140. Karlsrud, K. and Myrvoll, F. (1976). Performance of a Strutted Excavation in Quick-Clay. Norwegian Geotechnical Institute, 111, 9-16. Kinner, E.B. and Ladd, C.C. (1970). Load-Deformation Behavior of Saturated Clays During Undrained Shear. Research in Earth Physics Phase Report, Massachusetts Institute of Technology. Department of Civil and Environmental Engineering. Research Report R70-27, 13, 302P. Koutsoftas, D. and Fischer, J.A. (1976). In-Situ Undrained Shear Strength of Two Marine Clays. Journal of the Geotechnical Engineering Division, ASCE, 102(9), 989-1005. Koutsoftas, D.C. (1981). Undrained Shear Behavior of a Marine Clay. Laboratory Shear Strength of Soil, ASTM STP740, 254-276. Koutsoftas, D.C. and Ladd, C.C. (1985). Design Strengths for an Offshore Clay. Journal of Geotechnical Engineering, ASCE, 111(3), 337-355. Koutsoftas, D.C., Foott, R. and Handfelt, L.D. (1987). Geotechnical Investigations Offshore Hong Kong. Journal of Geotechnical Engineering, ASCE, 113(2), 87-105. Kulhawy, F.H. and Mayne, P.W. (1990). Manual on Estimating Soil Properties for Foundation Design. EPRI EL-6800 Project 1493-6 Final Report, 300P. Lacasse, M.S., Ladd, C.C. and Barsvary, A.K. (1977). Undrained Behavior of Embankments on New Liskeard Varved Clay. Canadian Geotechnical Journal, 14, 367-388. Lacasse, S. and Lunne, T. (1982). In-Situ Horizontal Stress From Pressuremeter Tests. Proceedings of 1st International Symposium on Pressuremeter and Its Marine Applications, Paris:187-208. Lacasse, S., Berre, T. and Lefebvre, G. (1985). Block Sampling of Sensitive Clays. Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, 2, 887-892. Ladd, C.C. and Lambe, T.W. (1963). The Strength of 'Undisturbed' Clay Determined from Undrained Tests. Laboratory Shear Testing of Soils, ASTM , 361, 342-371. Ladd, C.C. (1964). Stress-Strain Modulus of Clay in Undrained Shear. Journal of the Soil Mechanics and Foundation Engineering, ASCE, 90(5), 103-132. Ladd, C.C. and Edgers, L. (1971). Consolidated-Undrained Dirct-Simple Shear Tests on Saturated Clays. Research in Earth Physics Phase Report, No.16. 368P. Ladd, C.C. (1972). Test Embankment on Sensitive Clay. Proceedings, Performance of Earth and Earth-Supported Structures, 1(1), 101-128. Ladd, C.C. and Foott, R. (1974). New Design Procedure for Stability of Soft Clays. Journal of the Geotechnical Engineering Division, ASCE, 100(7), 763-786. Ladd, C.C. et al.(1977). Stress Derormation and Strength Characteristics. Proceedings of 9th International Conference on Soil Mechanics and Foundation Engineering, 2, 421-494. Ladd, C.C. and Azzouz, A.S. (1983). Stress History and Strength of Stiff Offshore Clays. Proceedings, Geotechnical Practice in Offshore Engineering, ASCE, 65-80. Ladd, C.C. (1991). Stability Evaluation During Staged Construction. Journal of Geotechnical Engineering, 117(4), 540-615. Larsson, R. (1980). Undrained Shear Strength in Stability Calculation of Embankments and Foundations on Soft Clays. Canadian Geotechnical Journal, 17(4), 591-602. Lacasse, S., Jamiolkowski, M., Lancellotta, R. and Lunne, T. (1981). In Situ Characteristics of Two Norwegian Clays Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering, 2, 507-511. Leathers, F. D. and Ladd, C. C. (1978). Behavior of an Embankment on New York Varved Clay. Canadian Geotechnical Journal, 15(2), 250-268. Lefebvre, G. and LeBoeuf, D. (1987). Rate Effects and Cyclic Loading of Sensitive Clays. Journal of Geotechnical Engineeringl, ASCE, 113(5), 476-489. Mayne, P.W. (1980). Cam Clay Predictions of Undrained Strength. Journal of the Geotechnical Engineering Division, ASCE, 106(11), 1219-1242. Mayne, P.W. (1985a). Stress Anisotropy Effects on Clay Strength. Journal of Geotechnical Engineering, ASCE, 111(3), 356-366. Mayne, P.W. (1985b). A Review of Undrained Strength in Direct Simple Shear. Soils and Foundations, 25(3), 64-72. Mayne, P.W. (1988). Determining OCR in Clays from Laboratory Strength . Journal of Geotechnical Engineering, ASCE, 114(1), 76-92. Marsal, R.J. (1957). Unconfined Compression and Vane Shear Tests in Volcanic Lacustrine Clays. Conference on Soils for Engineering Purposes(STP232), ASTM, 229-241. Mesri, G., Member ASCE and Huvaj, N. (2007) Shear Strength Mobilized in Undrained Failure of Soft Clay and Sity Deposits. Advances in Measurement and Modeling of Soil Behavior, GPS173, 1-22. Ng, R.M.C. and Lo, K.Y. (1985). The Measurements of Soil Parameters Relevant to Tunnelling in Clays. Canadian Geotechnical Journal, 22(3), 375-391. Parry, R.H.G. (1960). Triaxial Compression and Extension Tests on Remoulded Saturated Clay. Geotechnique, 10(4), 166-180. Parry, R.H.G. and Nadarajah. (1974). Observations on Laboratory Prepared Lightly Overcinsolidated Specimens of Kaolin. Geotechnique, 24(3), 345-350. Phoon, K.K. (1995). Reliability-Based Design of Foundations for Transmission Line Structures. Ph.D. Dissertation, Cornell University, Ithaca, NY. Quiros, G.W. and Young, A.G. (1988). Comparison of Field Vane, CPT, and Laboratory Strength Data at Santa Barbara Channel Site. Vane Shear Strength Testing in Soils: Field and Laboratory Studies, ASTM STP 1014, 306-317. Raymond, G.P. (1973). Foundation Failure of New Liskeard Embankment. Highway Research Board Bulletin, 463, 1-17. Rochelle, P.L., Zebdi, M., Leroueil, S., Tavenas, F. and Virely, D. (1988). Piezocone Tests in Sensitive Clays of Eastern Canada. Proceedings of the 1st International Symposium on Penetration Testing, 1, 831-841. Roy, M., Tremblay, M., Tavenas, F. and Rochelle P. L. (1982). Development of a Quasi-Static Piezocone Apparatus. Canadian Geotechnical Journal, 19(2), 180-188. Sanchez, J.M., Sagaseta, C. and Ballester, F. (1979). Influence of Stress History on Undrained Behaviour of Soft Clays. Proceedings of 7th European Conference on Soil Mechanics and Foundation Engineering, 1, 257-261. Skempton, A.W. and Bishop, A.W. (1954). Building Materials: Their Elasticity and Inelasticity (Ed: M. Reiner). North Holland Pub. Co., Amsterdam., 417-482. Tavenas, F.A., Blanchette, G., Leroueil, S., Roy, M. and Rochelle, P. L. (1975). Difficulties in the In-situ Determination of ko in Soft Sensitive Clays. Proceedings of the Conference on Insitu Measurement of Soil Properties, 1, 450-476. Tanaka, H., Ritoh, F. and Omukai, N. (2003). Geotechnical Properties of Clay Deposits of the Osaka Basin. Characterisation and Engineering Properties of Natural Soils, 1, 455-474. Wroth, C.P. and Houlsby, G.T. (1985). Soil Mechanics - Property Characterization and Analysis Procedures. Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, 1, 1-55. Wu, T.H., Thayer, W.B. and Lin, S.S. (1975). Stability of Embankment on Clay. Journal of the Geotechnical Engineering Division, ASCE, 101(9), 913-932. Wu, T.H., Chang, N.Y. and Ali, E.M. (1978). Consolidation and Strength Properties of a Clay. Journal of the Geotechnical Engineering Division, ASCE, 104(7), 889-905. Wu, T.H. (1958). Geotechnical Properties of Glacial Lake Clays. Journal of the Soil Mechanics and Foundations Division, ASCE, 3049, 994-1021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31541 | - |
| dc.description.abstract | 前人研究結果顯示出不同試驗測得之不排水剪力強度s_u有很大的差異,應該選用何種試驗求得最接近現場之不排水剪力強度。不同結構物及載重下造成土壤受力不同,土壤破壞面力學行為類似於試驗為TC、DSS及TE。為了符合現地狀況因此適宜選用CAUC(CK_0UC)、DSS及CAUE此三種試驗求得的不排水剪力強度。
目前工程基於成本及方便性上考量,大都採用VST、UU或UC試驗求取不排水剪力強度,其不排水剪力強度與現地實際s_u值仍有很大差異。影響不排水剪力強度重要因素有不同試驗、OCR及應變速率,因此本研究收集各國家資料,探討不同試驗之s_u、OCR及應變速率之間關係,找出試驗間之關連性及不確定性並求得不排水剪力強度設計參數。 | zh_TW |
| dc.description.abstract | The undrained shear strength s_u of different tests was found that have great differences in accordance with previous research. What is the type of undrained shear strength tests matches the in-situ condition best. Difference structures and load cause soil forced is difference. Failure surface of soil mechanics behavior that is similar to TC、DSS and TE test. For matching in-situ condition chose undrained shear strength of CAUC、DSS and CAUE tests .
At present, engineering in view of cost and convenience mostly chose undrained shear strength of VST、UU or UC test that have great differences between in-situ condition. The OCR and strain rate are influencing the undrained shear strength ratio factors except difference tests. For undrained shear strength design parameters, probing into undrained shear strength of different tests、OCR and strain rate relationship with undrained shear strength in Various countries. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:14:30Z (GMT). No. of bitstreams: 1 ntu-100-R98521107-1.pdf: 4430283 bytes, checksum: 85c2d5b6ff8996aaa3312384960bef99 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘 要 III ABSTRACT IV 符號說明 V 目錄 VII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 本文內容 2 第二章 文獻回顧 4 2.1不排水剪力強度(Su)介紹 4 2.2影響不排水剪力強度因子 5 2.2.1試驗種類之影響因子 5 2.2.2 OCR之影響因子(SHANSEP觀念) 9 2.2.3應變速率之影響因子 13 2.2.4總整理影響不排水剪力強度因子 14 2.3現地真實應力狀態及Su(mob)相關研究 15 2.3.1 符合實際現地的不排水剪力強度參數Su(mob) 17 2.3.2 Bjerrum所提出的強度設計參數Su(mob) 17 第三章 資料庫建立 20 3.1資料點選取 20 3.2蒐集資料點方法及資料庫介紹 23 第四章 研究方法 25 4.1轉換參數(arate、aOCR、atest) 25 4.1.1 aratea_rate 25 4.1.2 aOCR 26 4.1.3 atest 31 4.1.4 轉換參數與前人公式比較 33 4.2 強度參數(Su)之機率分布 42 4.2.1 Quantile-quantile plot(Q-Q plot)介紹 42 4.2.2 判斷各試驗Su/σ’vo之機率分布 42 4.3 相關係數建立 45 4.3.1 增加各試驗間的(Su/σ’vo)test,1%,NC數據方法 45 4.3.2最大可能性函數估算法求取相關係數 48 4.3.3舉例說明求取相關係數值 51 4.3.4 各試驗間Su/σ’vo之相關係數結果 52 第五章 推估方法 54 5.1貝氏分析 54 5.2已知(Su/σ’vo)testA、OCR,推估(Su/σ’vo)testB及(Su/σ’vo)mob分布 54 5.2.1推估(Su/σ’vo)testB及(Su/σ’vo)mob分布方法 55 5.2.2舉例說明已知(Su/σ’vo)test、OCR,推估(Su/σ’vo)mob分布 57 5.3未知OCR時,推估OCR及進階推估(Su/σ’vo)mob分布方法 59 5.3.1推估OCR分布方法 59 5.3.2進階推估(Su/σ’vo)mob分布方法 60 5.3.3舉例說明,若OCR未知,只知(Su/σ’vo)VST,推估(Su/σ’vo)mob分布 62 5.4修正未知OCR時,推估OCR及進階推估(Su/σ’vo)mob分布方法 65 5.4.1修正推估OCR及進階推估(Su/σ’vo)mob分布方法 65 5.4.2舉例說明,只知(Su/σ’vo)VST資訊,修正推估OCR與推估(Su/σ’vo)mob分布 69 第六章 結果與驗證 72 6.1驗證(Su/σ’vo)testA推估各試驗之(Su/σ’vo)testB的分布 72 6.2驗證推估OCR與(Su/σ’vo)mob分布結果 79 6.2.1比較未修正與修正後推估OCR方法 80 6.2.2驗證只知(Su/σ’vo)test,推估OCR分布結果 80 6.2.3驗證推估(Su/σ’vo)mob分布結果 81 6.3驗證比較推估(Su/σ’vo)mob的分布 88 6.3.1驗證Mesri及Huvaj提出Su(mob)≈Su(UC) 88 6.3.2驗證比較本研究修正方法所推估(Su/σ’vo)mob與Bjerrum提出(Su/σ’vo)design 88 6.3.3驗證比較本研究修正方法所推估(Su/σ’vo)mob與符合實際現地(Su/σ’vo)DSS 89 第七章 結論與建議 98 參考文獻 99 附錄 A 推估OCR、(Su/σ’vo)mob分布結果 107 A.1已知(Su/σ’vo)test 、OCR,推估(Su/σ’vo)mob分布結果 107 A.2未修正推估OCR及(Su/σ’vo)mob分布方法結果 109 A.2.1未修正推估OCR分布方法結果 109 A.2.2未修正方法推估OCR分布,進階推估(Su/σ’vo)mob分布結果 110 A.3修正推估OCR及(Su/σ’vo)mob分布方法結果並驗證 112 A.3.1修正推估OCR分布方法結果並驗證 112 A.3.2修正方法推估OCR分布,進階推估(Su/σ’vo)mob分布結果並驗證 112 附錄 B 分析資料庫 128 附錄 C 驗證資料庫 139 | |
| dc.language.iso | zh-TW | |
| dc.subject | 不確定性 | zh_TW |
| dc.subject | OCR | zh_TW |
| dc.subject | 不排水剪力強度 | zh_TW |
| dc.subject | 應變速率 | zh_TW |
| dc.subject | 相關係數 | zh_TW |
| dc.subject | OCR | en |
| dc.subject | undrained shear strength | en |
| dc.subject | uncertainty | en |
| dc.subject | correlation | en |
| dc.subject | strain rate | en |
| dc.title | 不同試驗種類間不排水剪力強度之關聯性 | zh_TW |
| dc.title | Correlation between Undrained Shear Strength of various Tests | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 歐章煜,劉家男 | |
| dc.subject.keyword | 不排水剪力強度,OCR,應變速率,相關係數,不確定性, | zh_TW |
| dc.subject.keyword | undrained shear strength,OCR,strain rate,correlation,uncertainty, | en |
| dc.relation.page | 146 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
