請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31509
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝宏昀(Hung-Yun Hsieh) | |
dc.contributor.author | Tsai-Sheng Chou | en |
dc.contributor.author | 周才生 | zh_TW |
dc.date.accessioned | 2021-06-13T03:14:00Z | - |
dc.date.available | 2006-08-17 | |
dc.date.copyright | 2006-08-17 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-08-05 | |
dc.identifier.citation | [1] Compaq ipaq. Online available at: http://welcome.hp.com/country/us/en/prodserv/handheld.html
[2] lp solve: Linear programming code. Online available at: http://groups.yahoo.com/group/lp solve/ [3] Mk-2 sensor node platform. Online available at: http://welcome.hp.com/country/us/en/prodserv/handheld.html [4] ns: Change history. Online available at: http://www.isi.edu/nsnam/ns/CHANGES.html [5] Zigbee alliance. Online available at: http://www.zigbee.org/en/index.asp [6] “Cluster tree network,” IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), April 2001. [7] J. Agre and L. Clare, “An integrated architecture for cooperative sensing networks,” Computer, vol. 33, no. 5, pp. 106–108, 2000. [8] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and E. E. Cayirci, “A survey on sensor networks,” IEEE Communication Magazine, vol. 40, no. 8, pp. 102–114, August 2002. [9] F. Bennett, D. Clarke, J. B. Evans, A. Hopper, A. Jones, and D. Leask, “Piconet: Embedded mobile networking,” IEEE Personal Communications, vol. 4, no. 5, pp. 8–15, October 1997. [10] M. Bhardwaj and A. Chandrakasan, “Bounding the lifetime of sensor networks via optimal role assignment,” in Proceedings of the IEEE Computer and Communications Societies, vol. 3, New York, June 2002, pp. 1587–1596. [11] B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene, “Energy efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks: Modeling and improvement perspectives,” in DATE ’05: Proceedings of the conference on Design, Automation and Test in Europe. Washington, DC, USA: IEEE Computer Society, 2005, pp. 196–201. [12] J. Broch, D. B. Johnson, and D. A. Maltz, “The dynamic source routing protocol for mobile ad hoc networks,” IETF, Internet-Draft Version 03, October 1999. [13] A. Cerpa and D. Estrin, “ASCENT: Adaptive self-configuring sensor networks topologies,” in Proceedings of the Twenty First International Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002). New York, NY, USA: IEEE Computer and Communications Societies, June 23–27 2002. [14] J.-H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 12, no. 4, pp. 609–619, 2004. [15] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks,” in Proceedings of the Seventh Annual ACM/IEEE International Conference on Mobile Computing and Networking (ACM MobiCom), Rome, Italy, July 2001, pp. 85–96. [16] 2.4 GHz IEEE 802.15.4/Zigbee-ready RF transceiver, Chipcon, 2005. Online available at: http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf [17] C.-Y. Chong and S. Kumar, “Sensor networks: Evolution, opportunities, and challenges,” Proceedings of IEEE, vol. 91, no. 8, pp. 1247–1256, Auguest 2003. [18] Motes, smart dust sensors, wireless sensor networks. Crossbow Technology, Inc. Online available at: http://www.xbow.com/Products/Wireless_Sensor_Networks.htm [19] D. E. Culler, D. Estrin, and M. B. Srivastava, “Guest editors’ introduction: Overview of sensor networks.” IEEE Computer, vol. 37, no. 8, pp. 41–49, 2004. [20] K. Dasgupta, K. Kalpakis, and P. Namjoshi, “Improving the lifetime of sensor networks via intelligent selection of data aggregation trees,” in Proceedings of Communication Networks and Distributed Systems Modeling and Simulation Conference CNDS’03, Orlando, Florida, January 2003. [21] E. J. Duarte-Melo and M. Liu, “Analysis of energy consumption and lifetime of heterogeneous wireless sensor networks,” in Proceedings IEEE Globecom ’02, Taipei, Taiwan, November 2002. [22] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the physical world with pervasive networks,” IEEE Pervasive Computing, vol. 1, no. 1, pp. 59–69, 2002. [23] A. J. Goldsmith and S. B. Wicker, “Design challenges for energy-constrained ad hoc wireless networks,” IEEE Wireless Communicationa, vol. 9, no. 4, pp. 8–27, August 2002. [24] P. Gupta and P. Kumar, “Critical power for asymptotic connectivity in wireless networks,” W.M. McEneany, G.Yin, Q. Zhang(Eds.), Stochastic Analysis, Control, Optimization and Applications, pp. 547–566, 1998. [25] J. C. Haartsen, “The bluetooth radio system,” IEEE Personal Communications, vol. 7, pp. 28–36, February 2000. [26] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660–670, October 2002. [27] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the 33rd Hawaii International Conference on System Sciences, vol. 8, January 2000. [28] IEEE Standard for Information technology – Telecommunication and information exchange between systems – Local and metropolitan area networks – Specific requirements. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Computer Society Std., Oct. 2003. [29] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed diffusion for wireless sensor networking,” IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 2–16, February 2003. [30] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges: Mobile networking for “smart dust”,” pp. 271–278, Auguest 1999. [31] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks,” Comput. Networks, vol. 42, no. 6, pp. 697–716, 2003. [32] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data aggregation in wireless sensor networks,” in ICDCSW ’02: Proceedings of the 22nd International Conference on Distributed Computing Systems. Washington, DC, USA: IEEE Computer Society, 2002, pp. 575–578. [33] L. Krishnamurthy, “Sensor network: Promise and reality,” invited presentation, Sensors Exposition and Conference, June 2004. [34] R. Kumar, V. Tsiatsis, and M. B. Srivastava, “Computation hierarchy for innetwork processing,” in WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications. New York, NY, USA: ACM Press, 2003, pp. 68–77. [35] S. Kumar, T.-H. Lai, and J. Balogh, “On k-coverage in a mostly sleeping sensor network.” in Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, Philadelphia, PA, USA, September 2004, pp. 144–158. [36] F. L. Lewis, Smart Environments: Technologies, Protocols, and Applications, ser. Wireless Sensor Networks, D. J. Cook, S. K. Das, and J. Wiley, Eds., New York, 2004. [37] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless sensor networks for habitat monitoring,” in WSNA ’02: Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications. New York, NY, USA: ACM Press, 2002, pp. 88–97. [38] S. McCanne and S. Floyd. The network simulator – ns-2. Online available at: http://www.isi.edu/nsnam/ns/ [39] V. Mhatre, C. Rosenbert, D.Kofman, R. Mazumdar, and N. Shroff, “A minimum cost heterogeneous sensor network with a lifetime constraint,” IEEE Transactions on Mobile Computing, vol. 4, no. 1, pp. 4–15, January 2005. [40] V. Mhatre and C. Rosenberg, “Design guidelines for wireless sensor networks: communication, clustering and aggregation.” Ad Hoc Networks, vol. 2, no. 1, pp. 45–63, 2004. [41] D. Mirza, M. Owrang, and C. Schurgers, “Energy-efficient wakeup scheduling for maximizing lifetime of ieee 802.15.4 networks,” in WICON ’05: Proceedings of the First International Conference on Wireless Internet (WICON’05). Washington, DC, USA: IEEE Computer Society, 2005, pp. 130–137. [42] N. Noury, T. Herve, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, and T. Porcheron, “Monitoring behavior in home using a smart fall sensor and position sensors,” in Proceedings of the IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Lyon, France, October 2000, pp. 607–610. [43] M. Perillo, Z. Cheng, and W. Heinzelman, “On the problem of unbalanced load distribution in wireless sensor networks,” in Proceedings of the IEEE GLOBECOM Wireless Ad Hoc and Sensor Networks, November 2004, pp. 74–79. [44] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in WMCSA ’99: Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications. Washington, DC, USA: IEEE Computer Society, 1999, p. 90. [45] K. Pister. (2001) Smart dust. Online available at: http://robotics.eecs.berkeley.edu/~pister/SmartDust/ [46] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Communications of the ACM, vol. 43, no. 5, pp. 51–58, MAY 2000. [47] Z. Qun and M. Gurusamy, “Topology knowledge range control for lifetime maximization in sensor networks with data aggregation,” in PE-WASUN ’05: Proceedings of the 2nd ACM international workshop on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks. New York, NY, USA: ACM Press, 2005, pp. 84–91. [48] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless networks,” IEEE J. Selected Areas in Communications, vol. 17, no. 8, pp. 1333–1344, Aug 1999. [49] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. B. Srivastava, “Optimizing sensor networks in the energy-latency-density design space.” IEEE Transactions on Mobile Computing, vol. 1, no. 1, pp. 70–80, 2002. [50] S. Shakkottai, R. Srikant, and N. Shroff, “Unreliable sensor grids: Coverage, connectivity and diameter,” in Proceedings of IEEE INFOCOM, vol. 2, San Francisco, 2003, pp. 1073–1083. [51] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and beyond: New aggregation techniques for sensor networks,” in SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems. New York, NY, USA: ACM Press, 2004, pp. 239–249. [52] A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha, “Tracking moving devices with the cricket location system,” in MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems, applications, and services. New York, NY, USA: ACM Press, 2004, pp. 190–202. [53] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy, “PSFQ: A reliable transport protocol for wireless sensor networks,” in WSNA ’02: Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications. New York, NY, USA: ACM Press, 2002, pp. 1–11. [54] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell, “CODA: Congestion detection and avoidance in sensor networks,” in SenSys ’03: Proceedings of the 1st international conference on Embedded networked sensor systems. New York, NY, USA: ACM Press, 2003, pp. 266–279. [55] H. Wang, D. Estrin, and L. Girod, “Preprocessing in a tiered sensor network for habitat monitoring,” EURASIP JASP Special Issue on Sensor Networks, pp. 392–401, May 2003. [56] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated coverage and connectivity configuration in wireless sensor networks,” in SenSys ’03: Proceedings of the 1st international conference on Embedded networked sensor systems, Los Angeles, November 2003, pp. 28–39. [57] Z. M. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, “Exploiting sink mobility for maximizing sensor networks lifetime,” in HICSS ’05: Proceedings of the Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS’05) - Track 9. Washington, DC, USA: IEEE Computer Society, 2005, p. 287.1. [58] C. Westphal, “On maximizing the lifetime of distributed information in ad-hoc networks with individual constraints,” in MobiHoc ’05: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing. New York, NY, USA: ACM Press, 2005, pp. 26–33. [59] Y. Xu, J. S. Heidemann, and D. Estrin, “Geography-informed energy conservation for ad hoc routing,” in Proceedings of the Seventh Annual ACM/IEEE International Conference on Mobile Computing and Networking (ACM MobiCom), Rome, Italy, July 2001, pp. 70–84. [60] M. Yarvis, N. Kushalnagar, A. R. H. Singh, Y. Liu, and S. Singh, “Exploiting heterogeneity in sensor networks,” in Proceedings of the IEEE International Conference on Computer Communiation INFOCOM 2005, Miami, FL, March 2005. [61] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissemination model for large-scale wireless sensor networks,” in MobiCom ’02: Proceedings of the 8th annual international conference on Mobile computing and networking. New York, NY, USA: ACM Press, 2002, pp. 148–159. [62] W. Ye, J. S. Heidemann, and D. Estrin, “Medium access control with coordinated adaptive sleeping for wireless sensor networks.” IEEE/ACM Transactions on Networking, vol. 12, no. 3, pp. 493–506, April 2004. [63] H. Zhang, A. Arora, Y. ri Choi, and M. G. Gouda, “Reliable bursty convergecast in wireless sensor networks,” in MobiHoc ’05: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing. New York, NY, USA: ACM Press, 2005, pp. 266–276. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31509 | - |
dc.description.abstract | Technological advances in integrated circuitry, micro-electromechanical systems, wireless communication, and storage battery in combination have driven the development of low-cost, low-power sensor nodes. Sensors can be scattered all over the region to build a wireless sensor network (WSN) for many applications such as environmental observations, habitat monitoring, intruder detection, military surveillance, and so on. Since the major role of these applications is to gather information over a long period of time, the network lifetime of WSNs has become a major concern for network designers.
The increasing heterogeneity of sensor nodes, namely nodes with enhanced computation capacity, energy budget, or communication capability, is one direction along which network designers can leverage to increase the network lifetime. In this work, we explore different types of heterogeneity in terms of link heterogeneity, energy heterogeneity, and computation heterogeneity in WSNs and then consider the communication strategy to leverage those resources for maximizing the network lifetime. We formulate our problem as a linear programming (LP) problem for finding the communication strategy and investigate the performance benefits of link heterogeneity, energy heterogeneity, and computation heterogeneity. Based on the insights obtained from the theoretical formulation, we then propose a distributed algorithm to achieve the maximum network lifetime by leveraging heterogeneous nodes in a distributed manner. Simulation results shows that leveraging heterogeneity can improve the network lifetime in the wireless sensor networks. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:14:00Z (GMT). No. of bitstreams: 1 ntu-95-R93942108-1.pdf: 4206872 bytes, checksum: 35d254d3950e9277d0d3ece678a136bb (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Wireless Sensor Devices . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Characteristics and Challenges . . . . . . . . . . . . . . . . . 8 2.2.2 System Evaluation Metrics . . . . . . . . . . . . . . . . . . . 10 2.2.3 Research Overview . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Heterogeneous Wireless Sensor Networks . . . . . . . . . . . . . . . 17 2.3.1 Source of Heterogeneity . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 Leveraging Heterogeneity for Maximizing Network Lifetime . 20 CHAPTER 3 PROBLEM FORMULATION . . . . . . . . . . . . . . 21 3.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.3 Lifetime Model . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.4 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 LP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CHAPTER 4 SIMULATION RESULTS AND OBSERVATIONS . 36 4.1 Evaluation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.1 Solving LPs – lp solve . . . . . . . . . . . . . . . . . . . . . . 36 4.1.2 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.3 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . 37 4.1.4 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Link Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Energy Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4 Computation Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.5 Practical Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.5.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 59 CHAPTER 5 DISTRIBUTED ALGORITHM . . . . . . . . . . . . . 61 5.1 Leveraging Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1.1 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2.1 The IEEE 802.15.4 Standard . . . . . . . . . . . . . . . . . . 64 5.2.2 The ZigBee Routing Protocol . . . . . . . . . . . . . . . . . . 66 5.2.3 Power Consumption on Mica Mote . . . . . . . . . . . . . . . 67 5.2.4 Network Simulator – ns-2 . . . . . . . . . . . . . . . . . . . . 69 5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 70 CHAPTER 6 CONCLUSION AND FUTURE WORK . . . . . . . 72 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 | |
dc.language.iso | en | |
dc.title | 以無線感測網路異質性延長網路存活時間之研究 | zh_TW |
dc.title | Leveraging Heterogeneity for Maximizing Network Lifetime in Wireless Sensor Networks | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 逄愛君(Ai-Chun Pang),廖婉君(Wanjiun Liao),林永松(Yeong-Sung Lin) | |
dc.subject.keyword | 無線感測網路,異質性,網路存活時間, | zh_TW |
dc.subject.keyword | wireless sensor network,heterogeneity,network lifetime, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-08-07 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 4.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。