請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31488完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭振華 | |
| dc.contributor.author | Po-Hung Chen | en |
| dc.contributor.author | 陳柏宏 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:13:41Z | - |
| dc.date.available | 2011-08-17 | |
| dc.date.copyright | 2006-08-17 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-08-12 | |
| dc.identifier.citation | [1] M. Sfakiotakis, D. M. Lane and J. B. C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE Journal of Oceanic Engineering Vo1.24. No 2, pp. 237-252, April 1999.
[2] K. Hirata, T. Takimoto and K. Tamura, “Study on turning performance of a fish robot,” Proc. the 1st International Symp. on Aqua Bio-Mechanisms, Honolulu, Hawaii, pp.287-292, August 2002. [3] F. C. Chiu, C. P. Wu and J. Guo, “Simulation on the undulatory locomotion of a flexible slender body,” Proc. The 1st International Symp. on Aqua Bio-Mechanisms pp.185-190, Hawaii, U.S.A., 2000. [4] F. C. Chiu, J. Guo and J. G. Chen, Y. H. Lin, “Dynamic characteristic of a biomimetic underwater vehicle,” UT’02, Tokyo, Japan, April 2002. [5] F. C. Chiu, J. Guo and C. K. Chen, “A Practical Method for Simulating Pectoral Fin Locomotion of A Biomimetic Autonomous Underwater Vehicle,” in IEEE int'l. Symp. on Underwater Technology. Taipei, 2004, pp. 323-329. [6] J. Guo, F. C. Chiu, S. W. Cheng and Y. J. Joeng, “ Motion control and way-point tracking of a biomimetic underwater vehicle,” Proc. IEEE Int’l Symp. on Underwater Technology, Tokyo, Japan, pp. 73-78,2002. [7] J. Guo, F. C. Chiu, C. C. Chen and Y. S. Ho, “Determining the bodily motion of a biomimetic underwater vehicle under oscillating propulsion,” Proc. IEEE Int’l Conf on Robotic and Automation, Taipei, Taiwan, September 2003. [8] J. Guo, F. C. Chiu, S. W. Cheng and Y. S. Ho, “Control systems for waypoint-tracking of a biomimetic autonomous underwater vehicle,” in OCEANS. San Diego, 2003, pp. 333-339. [9] Kanayama Y, Kimura Y, Miyazaki F and Noguchi T. “A stable tracking control method for an autonomous mobile robot,” Proceedings of the IEEE International Conference on Robotics and Automation 1990; 384-389. [10] Walsh G, Tilbury D, Sastry S, Murray R and Laumond JP. “Stabilization of trajectories for systems with nonholonomic constraints,” IEEE Transactions on Automatic Control 1994; 39(1):216-222. [11] Jiang Z and Nijmeijer H. “Tracking control of mobile robots: a case study in backstepping,” Automatica 1997; 33(7):1393-1399. [12] Jiang Z and Nijmeijer H. “A recursive technique for tracking control of nonholonomic systems in chained form,” IEEE Transactions on Automatic Control 1999; 44(2):265-279. [13] Escobar G, Ortega R and Reyhanoglu M. “Regulation and tracking of the nonholonomic double integrator: a field-oriented control approach,” Automatica 1998; 34(1):125-131. [14] Samson C. “Control of chained systems application to path following and time-varying point-stabilization of mobile robots,” IEEE Transactions on Automatic Control 1997; 40(1):64-77. [15] Dong W and Huo W. “Adaptive stabilization of dynamic nonholonomic chained systems with uncertainty,” Proceedings of the 36th IEEE Conference on Decision and Control, December 1997; 2362-2367. [16] C. Canudas deWit and O. Sordalen, “Exponential stabilization of mobile robots with nonholonomic constraints,” IEEE Trans. Automat. Contr., vol. 37, pp. 1791–1797, Nov. 1992. [17] W. E. Dixon, D. M. Dawson, E. Zergeroglu, and F. Zhang, “Robust tracking and regulation control for mobile robots,” Int. J. Robust Nonlinear Control: Special Issue Control Underact. Nonlinear Syst., vol. 10, pp. 199–216, 2000. [18] W. E. Dixon, D. M. Dawson, F. Zhang, and E. Zergeroglu, “Global exponential setpoint control of mobile robots,” in Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, Atlanta, GA, Sept. 1999, pp. 683–688. [19] R. McCloskey and R. Murray, “Exponential stabilization of driftless nonlinear control systems using homogeneous feedback,” IEEE Trans. Automat. Contr., vol. 42, pp. 614–628, May 1997. [20] A. Bloch and S. Drakunov, “Stabilization and tracking in the nonholonomic integrator via sliding modes,” Syst. Control Lett., vol. 29, no. 2, pp. 91–100, Oct. 1996. [21] F. Y. Zheng, Ed., Recent Trends in Mobile Robots, Singapore: World Scientific, 1993. [22] M. Reyhanoglu, A. Schaft, N. H. McClamroch, and I. Kolmanovsky, “Dynamics and control of a class of underactuated mechanical systems,” IEEE Trans. Automat. Contr., vol. 44, pp. 1663–1670, Sept. 1999. [23] R. Brockett, “Asymptotic stability and feedback stabilization,” in Differential Geometric Control Theory, R. Brockett, R. Millman, and H. Sussmann, Eds. Boston, MA: Birkhauser, 1983. [24] R. Pettersen and O. Egeland, “Exponential stabilization of an underactuated surface vessel,” Modeling, Ident. Control, vol. 18, no. 3, p. 239, July 1997. [25] K. Y. Pettersen and O. Egeland, “Robust control of an underactuated surface vessel with thruster dynamics,” in Proc. Amer. Control Conf., Albuquerque, NM, June 1997, pp. 3411–3416. [26] J. M. Godhavn, “Nonlinear tracking of underactuated surface vessels,” in Proc. 35th Conf. Decision Control, Kobe, Japan, Dec. 1996. [27] K. Y. Pettersen and H. Nijmeijer, “Global practical stabilization and tracking for an underactuated ship—A combined averaging and backstepping approach,” in Proc. IFAC Conf. System Structure Control, Nantes, France, July 1998, pp. 59–64. [28] K. Y. Pettersen and H. Nijmeijer, “Tracking control of an underactuated surface vessel,” in Proc. 37th IEEE Conf. Decision Control, Tampa, FL, Dec. 1998, pp. 4561–4566. [29] R. J. Schilling, Fundamentals of Robotics: Analysis and Control. Prentice Hall, 1998, pp. 204-206. [30] J. Guo and Y. J. Joeng, “Guidance and control of a biomimetic autonomous underwater vehicle using body- fin propulsion,” Engineering for the Maritime Environment - Part M, vol. 218, pp. 93-111, 2004. [31] W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, Nonlinear Control of Wheeled Mobile Robots, Vol. 262, Lecture Notes in Control and Information Sciences. New York: Springer-Verlag, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31488 | - |
| dc.description.abstract | 本論文提出一個強健控制器架構,用以控制仿生型自主式水下載具的路徑,使其可以達到路徑追蹤之全域穩定的目標。此控制器可以使仿生型自主式水下載具的位置和方向追蹤誤差達成全域漸進收歛。此追蹤控制器也可以應用在仿生型自主式水下載具的徘徊控制問題上。本文並證明對於參數不確定的動態模型,此運動控制器可以適應控制的方式修正模式誤差。最後,本論文使用數值模擬驗證所提出之追蹤控制器的效能。 | zh_TW |
| dc.description.abstract | In this thesis, a differentiable, robust tracking controller was developed for a Biomimetic Autonomous Underwater Vehicle (BAUV) to achieve globally uniformly ultimately bounded tracking. It is proved that the position and orientation tracking errors for a BAUV can be made globally asymptotically converged to a neighborhood about zero. In addition, it was illustrated that the proposed tracking controller can also be utilized for the regulation problem to mimic the motion control using pectoral fins. Finally, the kinematic controller was used to develop an adaptive controller for the BAUV with parametric uncertainty in the dynamic model. Simulation results are provided to show the performance of the proposed tracking controller. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:13:41Z (GMT). No. of bitstreams: 1 ntu-95-R91525036-1.pdf: 743645 bytes, checksum: 5f58d3c90691a5b807a7915bd6391b66 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 摘 要 I
Abstract II Table of Contents III List of Figures VI List of Symbols XII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 1 1.3 Thesis Organization 5 Chapter 2 Kinematic Tracking Control Development 7 2.1 Kinematic Problem Formulation 7 2.1.1 BAUV Kinematic Model 7 2.1.2 Kinematic Model Transformation 11 2.1.3 Open-Loop Tracking Error Development 14 2.2 Smooth Variable Structure-Like Control Development 17 2.2.1 Control Formulation 17 2.2.2 Closed-Loop Error System Development 21 2.3 Stability Analysis 24 2.4 Setpoint Regulation 30 Chapter 3 Dynamic Tracking Control Development 32 3.1 Formulation 32 3.1.1 Kinematic Model 32 3.1.2 Model Transformation 34 3.1.3 Tracking Error Development 37 3.2 BAUV Dynamics 39 3.3 Control Development 45 3.3.1 Dynamic Control Formulation 46 3.3.2 Error System Development 51 3.4 Dynamic Stability Analysis 55 Chapter 4 Simulations 63 4.1 Kinematic Simulations 63 4.1.1 Near-Straight-Line Trajectory Tracking Simulations 63 4.1.2 Circular Trajectory Tracking Simulations 70 4.1.3 Regulation Simulations 75 4.2 Dynamic Simulations 80 4.2.1 Dynamic Near-Straight-Line Trajectory Simulations 80 4.2.2 Dynamic Circular Trajectory Simulations 86 4.2.3 Dynamic Regulation Simulations 97 4.3 Multi-segment Trajectory Tracking 101 Chapter 5 Conclusions 113 References 115 | |
| dc.language.iso | en | |
| dc.subject | 仿生型自主式水下載具 | zh_TW |
| dc.subject | BAUV | en |
| dc.title | 仿生型自主式水下載具路徑追蹤控制器之研究 | zh_TW |
| dc.title | A Trajectory Tracking Control Method for a Biomimetic Autonomous Underwater Vehicle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱逢琛,江茂雄 | |
| dc.subject.keyword | 仿生型自主式水下載具, | zh_TW |
| dc.subject.keyword | BAUV, | en |
| dc.relation.page | 121 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 726.22 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
