Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31463
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor賴進貴(Jinn-Guey Lay)
dc.contributor.authorPo-Hui Yuen
dc.contributor.author游柏輝zh_TW
dc.date.accessioned2021-06-13T03:13:20Z-
dc.date.available2016-08-04
dc.date.copyright2011-08-04
dc.date.issued2011
dc.date.submitted2011-07-29
dc.identifier.citationREFERENCE
Anselin, L. (1988). Spatial econometrics: methods and models: Kluwer Academic Publishers.
Anselin, L. (1990). SPATIAL DEPENDENCE AND SPATIAL STRUCTURAL INSTABILITY IN APPLIED REGRESSION ANALYSIS*. Journal of Regional Science, 30(2), 185-207.
Anselin, L., Bera, A. K., Florax, R., & Yoon, M. J. (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26(1), 77-104.
Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis, 38(1), 5-22.
Binger, B. R., & Hoffman, E. (1998). Microeconomics with calculus: Addison-Wesley.
Bonneau, G. P., Ertl, T., & Nielson, G. M. (2006). Scientific visualization: the visual extraction of knowledge from data: Springer.
Bowers, K. J., & Johnson, S. D. (2003). Measuring the Geographical Displacement and Diffusion of Benefit Effects of Crime Prevention Activity. Jfnal of Quantitative Criminology, 19(3), 275-301.
Brantingham, P. J., & Brantingham, P. L. (1990). Environmental criminology: Waveland Press.
Brunsdon, C., Corcoran, J., & Higgs, G. (2007). Visualising space and time in crime patterns: A comparison of methods. [doi: DOI: 10.1016/j.compenvurbsys.2005.07.009]. Computers, Environment and Urban Systems, 31(1), 52-75.
Brunsdon, C., Fotheringham, A. S., & Charlton, M. (1999). Some Notes on Parametric Significance Tests for Geographically Weighted Regression. Journal of Regional Science, 39(3), 497-524.
Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geographical Analysis, 28(4), 281-298.
Brunsdon, C., Fotheringham, S., & Charlton, M. (1998). Geographically Weighted Regression-Modelling Spatial Non-Stationarity. Journal of the Royal Statistical Society. Series D (The Statistician), 47(3), 431-443.
Cahill, M., & Mulligan, G. (2007). Using Geographically Weighted Regression to Explore Local Crime Patterns. Soc. Sci. Comput. Rev., 25(2), 174-193.
Calvo, E., & Escolar, M. (2003). The Local Voter: A Geographically Weighted Approach to Ecological Inference. American Journal of Political Science, 47(1), 189-204.
Carlstein, T., Parks, D., & Thrift, N. J. (1978). Timing space and spacing time. In T. Carlstein, D. Parks & N. J. Thrift (Eds.), Timing space and spacing time (Vol. 2, pp. 208). London: Edward Arnold.
Casetti, E. (1973). TESTING FOR SPATIAL-TEMPORAL TRENDS: An Application to Urban Population Density Trends using the Expansion Method. Canadian Geographer / Le Geographe canadien, 17(2), 127-137.
Clarke, R. V. G., & Felson, M. (1993). Routine activity and rational choice: Transaction Publishers.
Clarke, R. V. G., & Felson, M. (2004). Routine activity and rational choice: Transaction Publishers.
Cleveland, W. S., Devlin, S. J., & Grosse, E. (1988). Regression by local fitting : Methods, properties, and computational algorithms. Journal of Econometrics, 37(1), 87-114.
Cliff, A. D., & Ord, K. (1970). Spatial Autocorrelation: A Review of Existing and New Measures with Applications. Economic Geography, 46(ArticleType: research-article / Issue Title: Supplement: Proceedings. International Geographical Union. Commission on Quantitative Methods / Full publication date: Jun., 1970 / Copyright c 1970 Clark University), 269-292.
Cohen, J., Gorr, W. L., & Olligschlaeger, A. M. (2007). Leading indicators and spatial interactions: A crime-forecasting model for proactive police deployment. [Article]. Geographical Analysis, 39(1), 105-127.
Cohen, L., & Felson, M. (1979). Social Change and Crime Rate Trends: A Routine Activity Approach. American Sociological Review, 44(4), 588-608.
Demšar, U., & Virrantaus, K. (2010). Space–time density of trajectories: exploring spatio-temporal patterns in movement data. International Journal of Geographical Information Science, 24(10), 1527 - 1542.
Ding, Q.-J., Wang, Y.-L., & Zhang, Y.-S. (2005, 9-12 May 2005). An adaptive weighted spatial smoothing algorithm utilizing virtual beamforming. Paper presented at the Radar Conference, 2005 IEEE International.
Downs, J., & Horner, M. (2007, 9-11 July 2007). Network-based Home Range Analysis Using Delaunay Triangulation. Paper presented at the Voronoi Diagrams in Science and Engineering, 2007. ISVD '07. 4th International Symposium on.
Drebin, R. A., Carpenter, L., & Hanrahan, P. (1988). Volume rendering. SIGGRAPH Comput. Graph., 22(4), 65-74.
Dutilleul, P., & Legendre, P. (1993). Spatial Heterogeneity against Heteroscedasticity: An Ecological Paradigm versus a Statistical Concept. Oikos, 66(1), 152-171.
Earnshaw, R. A., & Watson, D. (1993). Animation and scientific visualization: tools and applications: Academic Press.
Ellegard, K., Hagerstrand, T., & Lenntorp, B. (1977). Activity organization and generation of daily travels - 2 future alternatives. Economic Geography, 53(2), 126-152.
Epanechnikov, V. A. (1969). Non-Parametric Estimation of a Multivariate Probability Density. Theory of Probability and its Applications, 14(1), 153-158.
Evans, D. J., Herbert, D. T., & Fyfe, N. R. (1992). Crime, policing, and place: essays in environmental criminology: Routledge.
Felson, M., & Clarke, R. V. G. (1998). Opportunity makes the thief: practical theory for crime prevention: Home Office, Policing and Reducing Crime Unit, Research, Development and Statistics Directorate.
Felson, M., & Cohen, L. E. (1977). Social change and crime rate trends: routine activity approach: Dept. of Sociology, University of Illinois at Urbana-Champaign.
Foster, S. A., & Gorr, W. L. (1986). An Adaptive Filter for Estimating Spatially-Varying Parameters: Application to Modeling Police Hours Spent in Response to Calls for Service. Management Science, 32(7), 878-889.
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: the analysis of spatially varying relationships: Wiley.
Fotheringham, A. S., Charlton, M. E., & Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11), 1905-1927.
Fotheringham, A. S., Charlton, M. E., & Brunsdon, C. (2001). Spatial Variations in School Performance: a Local Analysis Using Geographically Weighted Regression. Geographical and Environmental Modelling, 5, 43-66.
Fotheringham, A. S., & Pitts, T. C. (1995). Directional variation in distance decay. Environment and Planning A, 27(5), 715-729.
Ge, Y., Cheng, Q.-m., & Zhang, S.-y. (2005). Reduction of edge effects in spatial information extraction from regional geochemical data: a case study based on multifractal filtering technique. Comput. Geosci., 31(5), 545-554.
Golledge, R. G., & Stimson, R. J. (1997). Spatial behavior : a geographic perspective. New York: Guilford Press.
Gorr, W. L., & Olligschlaeger, A. M. (1994). Weighted Spatial Adaptive Filtering: Monte Carlo Studies and Application to Illicit Drug Market Modeling. Geographical Analysis, 26(1), 67-87.
Gottfredson, M. R., & Hirschi, T. (1990). A general theory of crime: Stanford University Press.
Graif, C., & Sampson, R. J. (2009). Spatial Heterogeneity in the Effects of Immigration and Diversity on Neighborhood Homicide Rates. Homicide Studies, 13(3), 242-260.
Grubesic, T., & Mack, E. (2008). Spatio-Temporal Interaction of Urban Crime. Journal of Quantitative Criminology, 24(3), 285-306.
Gujarati, D. N. (2003). Basic Econometrics (4 ed.): McGraw Hill.
Hagerstrand, T. (1970). What about people in Regional Science? Papers in Regional Science, 24(1), 6-21.
Hagerstrand, T. (1978). Survival and Arena: on the life-history of individuals in relation to their geography environment. In T. Carlstein, N. J. Thrift & A. Pred (Eds.), Timing Space and Spacing Time (Vol. 2, pp. 122-145). London: Edward Arnold.
Harvey, G. (1987). Multilevel Models in Educational and Social Research: Charles Griffin & Company LTD.
Hsu, L. (2011). PostGIS in Action: Manning Publications.
Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3), 383 - 401.
Huang, Y., & Leung, Y. (2002). Analysing regional industrialisation in Jiangsu province using geographically weighted regression. Journal of Geographical Systems, 4(2), 233-249.
Iman, M., & Hamid, A. (2006). Price-Contour-Based Spatial Dummy Variables for Segmenting Market in the Geographic Information System Assisted Hedonic Modelling of Residential Property Prices. Malaysian Journal of Real Estate, 1(1), 39-57.
Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. [doi: DOI: 10.1016/j.jenvp.2007.09.002]. Journal of Environmental Psychology, 28(1), 74-82.
Johnson, S., Bernasco, W., Bowers, K., Elffers, H., Ratcliffe, J., Rengert, G., et al. (2007). Space–Time Patterns of Risk: A Cross National Assessment of Residential Burglary Victimization. Journal of Quantitative Criminology, 23(3), 201-219.
Jones, K. (1991). Specifying and Estimating Multi-Level Models for Geographical Research. Transactions of the Institute of British Geographers, 16(2), 148-159.
Jung, I., Kulldorff, M., & Richard, O. J. (2010). A spatial scan statistic for multinomial data. [Article]. Statistics in Medicine, 29(18), 1910-1918.
Kleinman, K. P., Abrams, A. M., Kulldorff, M., & Platt, R. (2005). A model-adjusted space-time scan statistic with an application to syndromic surveillance. [Article]. Epidemiology and Infection, 133(3), 409-419.
Kraak, M. J. (1988). The space-time cube revisited from a geovisualization perspective. Proceedings of the 21st International Cartographic Conference, 1995.
Kraak, M. J., & Koussoulakou, A. (2005). A Visualization Environment for the Space-Time-Cube (pp. 189-200).
Kramer, G. H. (1983). The Ecological Fallacy Revisited: Aggregate- versus Individual-level Findings on Economics and Elections, and Sociotropic Voting. The American Political Science Review, 77(1), 92-111.
Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics - Theory and Methods, 26(6), 1481 - 1496.
Kulldorff, M., Heffernan, R., Hartman, J., Assuncao, R., & Mostashari, F. (2005). A Space–Time Permutation Scan Statistic for Disease Outbreak Detection. PLoS Med, 2(3), e59.
Kwan, M. P., & Lee, J. (2003). Geovisualization of Human Activity Patterns using 3D GIS: A Time-Geographic Approach. In M. F. G. a. D. G. Janelle (Ed.), Spatially Integrated Social Science (pp. 48-66).
Lenntorp, B. (2004). Path, Prism, Project, Pocket and Population: An Introduction. Geografiska Annaler. Series B, Human Geography, 86(4), 223-226.
Leung, Y., Mei, C. L., & Zhang, W. X. (2000a). Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environment and Planning A, 32(1), 9-32.
Leung, Y., Mei, C. L., & Zhang, W. X. (2000b). Testing for spatial autocorrelation among the residuals of the geographically weighted regression. Environment and Planning A, 32(5), 871-890.
Li, Q., & Racine, J. S. (2007). Nonparametric econometrics: theory and practice: Princeton University Press.
Martensson, S. (1977). Childhood interaction and temporal organization. Economic Geography, 53(2), 99-125.
Martensson, S. (1978). Time allocation and daily living conditions: comparing regions. In T. Carlstein, D. Parks & N. J. Thrift (Eds.), Timing space and spacing time (Vol. 2, pp. 181-192). London: Edward Arnold.
May, Y. (1999). Use of a Three-Domain Repesentation to Enhance GIS Support for Complex Spatiotemporal Queries. Transactions in GIS, 3(2), 137-159.
Mei, He, & Fang. (2004). A Note on the Mixed Geographically Weighted Regression Model. Journal of Regional Science, 44(1), 143-157.
Merton, R. K. (1967). Social theory and social structure, Revised and enlarged edition.
Miller, H. J. (1991). Modelling accessibility using space-time prism concepts within geographical information systems. International Journal of Geographical Information Systems, 5(3), 287 - 301.
Miller, H. J. (2003). What about people in geographic information science? Computers, Environment and Urban Systems, 27(5), 447-453.
Miller, H. J., & Bridwell, S. A. (2009). A Field-Based Theory for Time Geography. [Article]. Annals of the Association of American Geographers, 99(1), 49-75.
Miller, H. J., & Shaw, S.-L. (2001). Geographic information systems for transportation : principles and applications. New York: Oxford University Press.
Mittal, V., Kamakura, W. A., & Govind, R. (2004). Geographic patterns in customer service and satisfaction: An empirical investigation. [Article]. Journal of Marketing, 68(3), 48-62.
Nakaya, T., & Yano, K. (2010). Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics. Transactions in GIS, 14(3), 223-239.
Okabe, A., Okunuki, K.-I., & Shiode, S. (2006). The SANET Toolbox: New Methods for Network Spatial Analysis. Transactions in GIS, 10(4), 535-550.
Okabe, A., Satoh, T., & Sugihara, K. (2009). A kernel density estimation method for networks, its computational method and a GIS-based tool. [Article]. International Journal of Geographical Information Science, 23(1), 7-32.
Palesch, Y. Y., Valter, I., Carpentier, R. H., & Maricq, H. R. (1999). Association between cigarette and alcohol consumption and Raynaud's Phenomenon. [Article]. Journal of Clinical Epidemiology, 52(4), 321-328.
Park, R. E., & Burgess, E. W. (1925). The City: Suggestions for the Investigation of Human Behavior in the City Environment, The American Journal of Sociology (Vol. 20, pp. 577-612): The University of Chicago Press.
Partridge, M. D., Rickman, D. S., Ali, K., & Olfert, M. R. (2008). The Geographic Diversity of U.S. Nonmetropolitan Growth Dynamics: A Geographically Weighted Regression Approach. Land Economics, 84(2), 241-266.
Pavlyuk, D. (2009). Statistical Analysis of the Relationship between Public Transport Accessibility and Flat Prices in Riga: University Library of Munich, Germany.
Porta, S., Strano, E., Iacoviello, V., Messora, R., Latora, V., Cardillo, A., et al. (2009). Street centrality and densities of retail and services in Bologna, Italy. [Article]. Environment and Planning B-Planning & Design, 36(3), 450-465.
Pred, A. (1977). Choreography of existence - comments on Hagerstrands time geography and it's usefulness. [Article]. Economic Geography, 53(2), 207-221.
Pred, A. (1978). Impact of technological and institutional innovations on life content - some time-geographic observations. [Article]. Geographical Analysis, 10(4), 345-372.
Pred, A. (1984). Place as Historically Contingent Process: Structuration and the Time-Geography of Becoming Places. Annals of the Association of American Geographers, 74(2), 279 - 297.
Pred, A., & Palm, R. (1978). The status of American women: A time-geographic view. In P. R. Palm (Ed.), An invitation to Geography (pp. 99-109). New York: McGraw-Hill.
Rainham, D., McDowell, I., Krewski, D., & Sawada, M. (2010). Conceptualizing the healthscape: Contributions of time geography, location technologies and spatial ecology to place and health research. [Article]. Social Science & Medicine, 70(5), 668-676.
Ren, F., & Kwan, M.-P. (2009). The impact of the Internet on human activity-travel patterns: analysis of gender differences using multi-group structural equation models. [doi: DOI: 10.1016/j.jtrangeo.2008.11.003]. Journal of Transport Geography, 17(6), 440-450.
Ren, F., & Mei-Po, K. (2007). Geovisualization of Human Hybrid Activity-Travel Patterns. Transactions in GIS, 11(5), 721-744.
Rossi, R. E., Mulla, D. J., Journel, A. G., & Franz, E. H. (1992). Geostatistical Tools for Modeling and Interpreting Ecological Spatial Dependence. Ecological Monographs, 62(2), 277-314.
Rossmo, D. K. (2000). Geographic profiling: CRC Press.
Sampson, R. J., & Wilson, W. J. (2005). Toward a Theory of Race, Crime, and Urban Inequality. In S. L. Gabbidon & H. T. Greene (Eds.), Race, crime, and justice: a reader (pp. 177-190): Routledge.
Schwanen, T., Dijst, M., & Kwan, M. P. (2008). ICTs and the Decoupling of everyday activities, space and time: introduction. Tijdschrift voor economische en sociale geografie, 99(5), 519-527.
Schwartz, S. (1994). The fallacy of the ecological fallacy: the potential misuse of a concept and the consequences. Am J Public Health, 84(5), 819-824.
Scott, D. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization: Wiley.
Sergio, P., Vito, L., Fahui, W., Emanuele, S., Alessio, C., Salvatore, S., et al. (2009). Street centrality and densities of retail and services in Bologna, Italy. Environment and Planning B: Planning and Design, 36(3), 450-465.
Shaw, C. R., & McKay, H. D. (1942). Juvenile delinquency and urban areas: a study of rates of delinquents in relation to differential characteristics of local communities in American cities: The University of Chicago Press.
Shaw, C. R., & McKay, H. D. (1972). Juvenile delinquency and urban areas: a study of rates of delinquency in relation to differential characteristics of local communities in American cities: University of Chicago Press.
Shaw, S.-L., & Yu, H. (2009). A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical-virtual space. Journal of Transport Geography, 17(2), 141-149.
Shaw, S. L. (2006). What about 'Time' in Transportation Geography? [Editorial Material]. Journal of Transport Geography, 14(3), 237-240.
Short, M. B., D’Orsogna, M. R., Brantingham, P. J., & Tita, G. E. (2009). Measuring and Modeling Repeat and Near-Repeat Burglary Effects. Journal of Quantitative Criminology, 25(3).
Silverman, B. W. (1986). Density estimation for statistics and data analysis: Chapman and Hall.
Sutherland, E. H., Cressey, D. R., & Luckenbill, D. F. (1992). Principles of Criminology: General Hall.
Thomas, W. I., & Znaniecki, F. (1918). The Polish peasant in Europe and America: monograph of an immigrant group: Badger.
Thrift, N. J., & Pred, A. R. (1981). Time-geography : a new beginning. Berkeley: Institute of Urban and Regional Development, University of California, Berkeley.
Tim Schwanen, M.-P. K., Fang Ren. (2008). How fixed is fixed? Gendered rigidity of space-time constraints and geographies of everyday activities. Geoforum, 39(6), 2109-2121.
Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46(ArticleType: research-article / Issue Title: Supplement: Proceedings. International Geographical Union. Commission on Quantitative Methods / Full publication date: Jun., 1970 / Copyright c 1970 Clark University), 234-240.
Waller, L., Zhu, L., Gotway, C., Gorman, D., & Gruenewald, P. (2007). Quantifying geographic variations in associations between alcohol distribution and violence: a comparison of geographically weighted regression and spatially varying coefficient models. Stochastic Environmental Research and Risk Assessment, 21(5), 573-588.
Wang, F. H. (2005). Geographic information systems and crime analysis: Idea Group Pub.
Wang, F. H. (2006). Quantitative methods and applications in GIS: CRC/Taylor & Francis.
Warren, J., Reboussin, R., Hazelwood, R. R., Cummings, A., Gibbs, N., & Trumbetta, S. (1998). Crime scene and distance correlates of serial rape. [Article]. Journal of Quantitative Criminology, 14(1), 35-59.
Wong, D., & Shaw, S.-L. (2010). Measuring segregation: an activity space approach. Journal of Geographical Systems, 1-19.
Wu, W., Gu, J. Q., Yin, Z. H., Wang, P., & Zhou, B. S. (2009). GIS-based spatial, temporal, and space-time analysis of haemorrhagic fever with renal syndrome. Epidemiology and Infection, 137(12), 1766-1775.
Xia, Z. X., & Yan, J. (2008). Kernel Density Estimation of traffic accidents in a network space. [Article]. Computers Environment and Urban Systems, 32(5), 396-406.
Yu. (2006). Spatially varying development mechanisms in the Greater Beijing Area: a geographically weighted regression investigation. The Annals of Regional Science, 40(1), 173-190.
Yu. (2007). Modeling Owner-Occupied Single-Family House Values in the City of Milwaukee: A Geographically Weighted Regression Approach. [10.2747/1548-1603.44.3.267]. GIScience & Remote Sensing, 44(3), 267-282.
Yu, Wei, & Wu. (2007). Modeling spatial dimensions of housing prices in Milwaukee, WI. Environment and Planning B: Planning and Design, 34(6), 1085-1102.
Yu, H. (2005). Temporal GIS design of an extended time-geographic framework for physical and virtual activities. The University of Tennessee, Knoxville.
Yu, H. (2006). Spatio-temporal GIS Design for Exploring Interactions of Human Activities. Cartography and Geographic Information Science, 33(1).
吳永祺. (2009). 國小四年級學生時空路徑之社會學分析. Unpublished Master thesis, 南華大學.
徐君臨. (1988). 台灣東部漁民漁場空間認知與漁撈活動研究. Unpublished Master thesis, 國立台灣大學.
柴彥威. (1998). 時間地理學的起源、主要概念及其應用. 地理科學, 18(1).
馬志堅, 張長義, & 劉英毓. (2006). 南山部落高冷蔬菜栽培之時空配置. 中國地理學會會刊, 37, 45-67.
張佩芬. (2005). 大陸女性配偶的家意義建構與日常生活能動實踐. Unpublished Master thesis, 國立台灣大學.
曾思瑜, & 王伶芳. (2006). 機構入居者生活行為模式與活動場所研究之一以南部某護理之家為例. 設計學報, 11(2), 115-137.
曾尉華. (2009). 屏東鹽埔農民生活空間研究. Unpublished Master thesis, 高雄師範大學.
劉擇昌, & 游柏輝. (2010). 住宅窃盗案犯罪热区之时空分析—以台湾台北大安区为研究场域. Paper presented at the 空间综合人文学与社会科学论坛.
张春丽, & 刘继生. (2005). 长春市城市游憩系统研究. 人文地理, 20(3), 94-98.
赵莹, 柴彦威, 陈洁, & 马修军. (2009). 时空行为数据的GIS分析方法. 地理與地理信息科學, 25(5), 1-5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31463-
dc.description.abstract為了更有效地理解地域建成環境中犯罪影響因子與犯罪熱點的時空動態,本研究嘗試以多維度核密度估計與時空加權迴歸模型為工具,試圖在時間地理學的脈絡下討論利用此方法偵測犯罪熱點與機制移轉的可能性與實務上意義。
由於空間資料本身具有空間自相關與誤差異質性,直至今日地理加權迴歸模型已被驗證為處理空間資料變數不穩定性的有效取徑。然而地理加權僅能從時間剖面分析的本質,亦限制其探索多維度社會現象的可能性。從而本研究試圖發展其時間延伸模型,以探索時空資料之變數不穩定性。
基於過往研究證實住宅竊盜與環境因子具有深度的互動關係。本研究利用臺北市大安區1999至2008年之住宅竊盜空間對位資料,驗證該延伸模型之分析結果不僅足以在三維時空中探索犯罪群聚的轉移,更可以深入地檢視其誘發機制的動態過程,並為後續犯罪機制時空動態移轉之研究提供基礎。
zh_TW
dc.description.abstractFor a more effective understanding of spatial-temporal dynamic of criminal factors and hotspots in local-scale built environment, this study employs multi-dimensional kernel density estimation (KDE) and extended weighted regression (STWR) to uncover future possibility of detecting the displacement of hotspots and factors in a context of time geography.
Due to the spatial autocorrelation and heterogeneity of spatial data, geographically weighted regression (GWR) has been proven as a significant approach to address the spatial heterogeneity. However, the cross-sectional nature of GWR constrains it to explore the multi-dimensional phenomena simultaneously. Thus, this study develops a temporal variant of GWR to detect the spatial-temporal heterogeneity of structural measures in space-time cube. Using a geocoded database of residential burglary in Da-an district of Taipei City from 1999 to 2008, this study examine that proposed framework allowing interactively 3-D geovisualization of hotspots by volume rendering. This thesis also represents the spatial heterogeneity of estimations of social structural measures by spatial-temporal weighted regression.
Emphasizing the supplementary aspect of this embedded framework, the author concludes that interactive spatial-temporal data analysis and weighted regression could extract and interpret the spatial-temporal heterogeneity of residential burglary as well as uncover the possibility of detecting criminal displacement in future study.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:13:20Z (GMT). No. of bitstreams: 1
ntu-100-R99228017-1.pdf: 2836316 bytes, checksum: 58e39285006b013d9bb93dfc72b260c5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsCONTENTS
ACKNOWLEDGEMENT i
摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 3
1.3 Organization of the Thesis 5
Chapter 2 LITERATURE REVIEW 7
2.1 Environmental Criminology and Theories 7
2.1.1 Social Disorganization Theory 7
2.1.2 Routine Activity Theory 10
2.1.3 New Opportunity Theory 11
2.2 Methods for Addressing the Spatial-Temporal Issues 14
2.2.1 Time Geography 14
2.2.2 Geographically Weighted Regression 19
2.3 Geovisualization of Multi-dimensional Phenomena 23
Chapter 3 RESEARCH DESIGN 27
3.1 Methods 27
3.1.1 Spatial-Temporal Kernel Density Estimation (STKDE) 27
3.1.2 Spatial-Temporal Weighted Regression (STWR) 32
3.2 Data 36
3.2.1 Criminal Data: Dependent Variable 36
3.2.2 Environmental Factors: Independent Variables 40
3.3 Study Area 44
3.4 Matlab Programming 47
Chapter 4 EMPIRICAL STUDY 50
4.1 Diagnosis of Spatial-Temporal Heterogeneity 50
4.2 Selection of Structural Measures 52
4.3 Hypotheses Testing 54
4.3.1 F-Test: exam the adequacy of variables selection 54
4.3.2 T-Test: exam the efficiency and influence of variables 55
4.4 Models Comparison 55
4.5 Results and Discussion 56
4.5.1 3-D Geovisualization results 56
4.5.2 Discussion: STWR in Criminology and Political Practices 60
Chapter 5 CONCLUSIONS 63
REFERENCE 65
dc.language.isoen
dc.subject犯罪轉移zh_TW
dc.subject時空動態zh_TW
dc.subject加權迴歸模型zh_TW
dc.subject空間異質性zh_TW
dc.subject住宅竊盜zh_TW
dc.subjectCriminal displacementen
dc.subjectSpatial-Temporalen
dc.subjectWeighted regressionen
dc.subjectSpatial Heterogeneityen
dc.subjectResidential burglaryen
dc.title以時空加權迴歸模型探索地域犯罪機制的時空變異性zh_TW
dc.titleExploring Spatial Heterogeneity of Local Factors of Crime Events with Spatial-Temporal Weighted Regressionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭迺峰,溫在弘(Tzai-Hung Wen)
dc.subject.keyword時空動態,加權迴歸模型,空間異質性,住宅竊盜,犯罪轉移,zh_TW
dc.subject.keywordSpatial-Temporal,Weighted regression,Spatial Heterogeneity,Residential burglary,Criminal displacement,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2011-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
Appears in Collections:地理環境資源學系

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
2.77 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved