請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31455完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝志誠 | |
| dc.contributor.author | Kebin Gu | en |
| dc.contributor.author | 顧可斌 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:13:14Z | - |
| dc.date.available | 2009-08-30 | |
| dc.date.copyright | 2006-08-30 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-08-25 | |
| dc.identifier.citation | 1. Campbell C. K.. 1989. Surface wave devices and their signal processing applications, Boston: Academic Press.
2. Campbell C. K.. 1998. Surface acoustic wave devices for mobile and wireless communication, New York: Academic Press. 3. Galipeau D. W., P. R. Story, K. A. Vetelino and R. D. Mileham, 1997. Surface acoustic wave microsensors and applications. Smart Mater. Struct. 6, 658-667 4. Gross M. E., et al., 1997. Solid State Technology. August p.47 5. Hickernell F. S.. 1973. DC triode sputtered zinc oxide surface elastic wave transducers. J. Appl. Phys. 44, 1061-1071. 6. Ikeda T., 1989. Fundamentals of piezoelectricity, New York: Oxford University Press. 7. Iwata K., P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe and H. Takusu. 2000. ZnO growth on Si by radical source MBE. Journal of crystal Growth 214/215, 50-54. 8. Kamalasanan M. N. and S. Chandra, 1996. Sol-gel of ZnO thin films. Thin Solid Films 288, 112-115. 9. Kim J. S., H. A. Marzouk and P. J. Rrucroft. 1992. Characterization of high quality c-axis oriented ZnO thin films grown by metal organic chemical vapor deposition using zinc acetate as source material. Thin Solid Films 217,133-137. 10. Kittel Charles. 1975. Introduction to Solid State Physics. 4th edition, Mei Ya, Taiwan. 11. Kutepova V. P. and D. A. Hall. 1998. Effect of the sputtering on the growth and piezoelectric properties of zinc oxide thin films. IEEE Ultrasonics Symp.,213-216. 12. Lee D. –W., T. Ono, T. Abe, and M. Esashi. 2002. Microprobe Array with Electrical Interconnection for Thermal Imaging and Data Storage. Journal of Microelectromechanical systems, vol. 11, no. 3, pp. 215-221. 13. Li X.H., T. Abe, and M. Esashi. 2001. Deep reactive ion etching of Pyrex glass using SF6 plasma. Sensors and Actuators A87 pp. 139-145. 14. Li X.H., T. Abe, Y.X. Liu, and M. Esashi. 2002. Fabrication of high-density electrical feed-throughs by deep-reactive-ion etching of Pyrex glass. Journal of Microelectromechanical systems, vol. 11, no. 6, pp. 625-630. 15. Liu Y. X., X.H. Li, T. Abe, Y. Haga, and M. Esashi. 2001. A Thermomechanical Relay with Microspring Contact Array. Proc. of the 14 th IEEE MEMS 2001 Technical Digest, Interlacken, Switzerland, 1/21-25/01, pp. 220-223. 16. Loncar Marko, Theodor Doll, Jelena Vuckovic and Axel Scherer. 2000. Design and fabrication of silicon photonic crystal optical waveguides. Journal of Lightwave Technology 18(10), 1402-1411. 17. Major S., A. Banerjee and K. L. Chopra, 1992, Highly transparent and conductance indium-doped zinc oxide films by spray pyrolysis. Thin Solid Films 220, 92-99 18. Mason W. P.. 1950. Piezoelectric crystals and their application to ultrasonics. New York: D. Van Nostrand. 19. Morgan D. P.. 1985. Surface acoustic wave devices for signal processing, Amsterdam: Elsevier. 20. Ogawa M. F., Y. Natsume and T. Hirayama. 1990. Preparation and electrical properties of undoped zinc oxide films by CVD. Journal of Material Science Letters 9, 1351-1353. 21. Park S. H., B. C. Seo, and G. Yoon. 2000. Two-step deposition process of piezoelectric ZnO film and its application for film bulk acoustic resonators. American Vacuum Society, 2432-2436. 22. Pohl A., 2000. A review of wireless SAW sensors. IEEE Trans. Ultras. Ferr. Freq. Contr. 47, 317-332 23. Polla D. L., H. Yoon and T. Tamagawa. 1989. Integration of surface-mocromachined zinc oxide sensors in n-well CMOS technology. IEEE IEDM, 495-498. 24. Polla D. L.. 1992. Ferroelectric microsensors and microactutors. IEEE Proc. ISAF’92 127-133. 25. Royer D. and E. Dieulesaint. 2000. Elastic waves in Solids II. New York: Springer-Verlag Berlin Heieberg, 57-72. 26. Reid J., et al., 2000. Solid State Technology. July p.86 27. Ried R. P., E. S. Kim, D. M. Hong and Muller R. S.. 1993. Piezoelectric microphone with on-chip CMOS circuits. J. MEMS 2, 111-120. 28. Singer P., 1998. Semiconductor International. June, p90 29. Sundaram k. B. and A. Khan. 1997. Characterization and optimization of zinc oxide films by r.f. magnetron sputtering. Thin Solid Films 295, 87-91. 30. Sun Z. W. and G. Dixit, 2001. Solid State Technology. November, p97. 31. White R. M. and F. W. Voltmer. 1965. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 7, 314-316 32. Xu T., Wu G., G. Zhang and Y. Hao. 2003. The compatibility of ZnO piezoelectric film with micromachining process. Sensors and Actuators 104, 61-67. 33. Yablonovitch E. 1987. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059-2062. 34. Yablonovitch E. and T. J. Gmitter. 1989. Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett. 63(18), 1950-1953. 35. Yoon K. H., J. W. Choi and D. H. Lee. 1997. Characteristics of ZnO thin films deposition onto Al/Si substrates by RF magnetron sputtering. Thin Solid Films 302,116-121. 36. Zhang Y., G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou and S. Yang. 2002. Crystal growth of undoped ZnO films on Si substrate under different sputtering conditions. J. of Crystal Growth 243, 439-443. 37. 林思親。2001。二維聲子晶體波傳與頻溝現象之研究。碩士論文。台北: 台灣大學應用力學研究所 38. 劉士揚。2003。高頻表面聲波在微米級二維聲子晶體中傳播之實驗探討。碩士論文。台北: 台灣大學應用力學研究所 39. 李其源。2004。濕蝕刻晶片厚度即時監控之新穎方法。博士論文。台北: 台灣大學機械工程研究所 40. 蕭富元。2001。表面聲波元件壓電薄膜之研究及其應用。碩士論文。台北:台大應用力學研究所。 41. 季君炎。2000。表面聲波元件和積體電路整合之研究。碩士論文。台北:台灣大學應用力學研究所。 42. 吳朗。1994。電子陶瓷-壓電。台北。全欣科技。 43. 彭成鑑。1995。壓電材料。科儀新知 16。 44. 莊達仁。2003。VLSI製造技術。台北。高立。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31455 | - |
| dc.description.abstract | 本文旨在使用新穎方法,設計並將微米級的週期性介電質結構(聲子晶體)與一組叉指狀電極表面聲波元件整合製程,電磁波通過聲子晶體時由於反射波對入射波造成干涉,發生所謂的頻溝現象,阻擋在某些頻率振盪之電磁波通過。將聲子晶體與光子晶體所產生頻溝現象予以類比,聲子晶體的頻溝現象可應用於表面聲波濾波器,阻止特定角度與頻率入射的聲子傳遞,藉以達成濾波之效果。本研究所使用微機電製程包含面型微加工與體型微加工方式,整合於聲子晶體和表面聲波元件發射端與接收端之製程。製程流程為:先將矽基板上濺鍍厚度1.5微米的氧化鋅壓電薄膜,其次以蒸鍍方式叉並使用掀舉技巧製作叉指狀換能器電極。隨後將黃光製程定義聲子晶體後的矽基版以深蝕刻技術加以蝕刻產生二維聲子晶體之週期性柱狀結構。微米級高深寬比的聲子晶體柱狀結構以改良式的電鍍方式加以填充進入電鍍銅金屬,以求達成所設計的表面聲波頻寬,與實驗相符合。 | zh_TW |
| dc.description.abstract | This work presents an innovative design and fabrication of phononic crystals integrated with two sets of interdigital (IDT) electrodes for frequency band selection of surface acoustic waves (SAW). Analogous to the band-gap generated by photonic crystals, the phononic crystals can prohibit the propagation of elastic waves with either specific incident angles or certain bandwidth. Both IDT electrodes are deposited and patterned on a thin piezoelectric layer. Both surface and bulk micromachining are employed and integrated to fabricate the crystals as well as SAW resonator and receiver altogether. Firstly, a 1.5-micron zinc oxide, which provides well-defined central frequency, is sputtered and patterned onto silicon substrate. Second, the IDT electrodes are evaporated and patterned by lift-off technique. Then the exposed silicon substrate is etched using DRIE to generate two dimensional phononic crystals. To tune the prohibited SAW bandwidth, the crystal pores are filled with copper by electro plating. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:13:14Z (GMT). No. of bitstreams: 1 ntu-95-R92631021-1.pdf: 2854798 bytes, checksum: b638cb36e9128ccfb02c54c4bc45fbbb (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 致謝 iv
中文摘要 vi Abstract vii 目錄 viii 圖目錄 x 表目錄 xii 第一章 研究目的 1 1-1 前言 1 1-2 文獻回顧 2 1-3 論文架構 3 第二章 實驗架構與設計原理 6 2-1 表面聲波元件簡介 6 2-2 實驗元件設計考量 7 2-2-1 叉指狀換能器之設計 7 2-2-2 壓電效應 10 2-2-3 氧化鋅壓電薄膜之濺鍍參數 11 第三章 二維聲子晶體與表面聲波元件之設計與製程 15 3-1 光罩設計原理 15 3-2 層狀表面聲波元件製程 16 3-2-1 氧化鋅壓電薄膜之沈積 16 3-2-2 叉指狀換能器之製作流程 17 3-3 以化學蝕刻方式定義氧化鋅區域 17 3-4 二維聲子晶體週期性陣列結構之製程流程 18 3-4-1 二維聲子晶體週期性陣列結構之深蝕刻 18 3-4-2 電感耦合深蝕刻製程 19 3-5 微米級孔洞內填充金屬之製程 20 3-5-1 孔洞內部以電鍍方式填充銅金屬之製程流程 20 3-5-2 微米級高深寬比孔洞之電鍍 22 3-6以化學蝕刻方式去除晶圓表面銅膜 23 第四章 結果與討論 37 4-1 高深寬比小孔電鍍銅之基本概念 37 4-2 微米級高深寬比孔洞電鍍之探討 39 第五章 結論與未來展望 46 5-1 結論 46 5-2 未來展望 46 參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 體型微加工 | zh_TW |
| dc.subject | 聲子晶體 | zh_TW |
| dc.subject | 表面聲波元件 | zh_TW |
| dc.subject | 面型微加工 | zh_TW |
| dc.subject | Phononic crystals | en |
| dc.subject | surface-micromachining | en |
| dc.subject | surface acoustic wave | en |
| dc.subject | bulk-micromachine | en |
| dc.title | 二維聲子晶體與表面聲波元件之整合製程 | zh_TW |
| dc.title | Integration and fabrication of 2-d phononic crystals
and surface acoustic wave devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳學禮,施文彬 | |
| dc.subject.keyword | 聲子晶體,表面聲波元件,面型微加工,體型微加工, | zh_TW |
| dc.subject.keyword | Phononic crystals,surface acoustic wave,surface-micromachining,bulk-micromachine, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-08-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
