請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31453
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馬一中(Yee-Chung Ma) | |
dc.contributor.author | Mong-Yun Chen | en |
dc.contributor.author | 陳孟筠 | zh_TW |
dc.date.accessioned | 2021-06-13T03:13:13Z | - |
dc.date.available | 2006-09-18 | |
dc.date.copyright | 2006-09-18 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-08-25 | |
dc.identifier.citation | 1. Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN. Variation in volatile organic compounds in the breath of normal humans. Journal of Chromatography B 1999;729(1-2):75-88.
2. Cheng WH, Lee WJ. Technology development in breath microanalysis for clinical diagnosis. Journal of Laboratory and Clinical Medicine 1999;133(3):218-228. 3. Niv Y, Abuksis G, Koren R. 13C urea breath test (13C UBT) for Helicobacter pylori (Hp) diagnosis in geriatrics. Gastroenterology 2003;124(4):A625-a625. 4. Burnett RT, Smith-Doiron M, Stieb D, Raizenne ME, Brook JR, Dales RE, Leech JA, Cakmak S, Krewski D. Association between ozone and hospitalization for acute respiratory diseases in children less than 2 years of age. American Journal of Epidemiology 2001;153(5):444-452. 5. Yang QY, Chen Y, Shi YL, Burnett RT, McGrail KM, Krewski D. Association between ozone and respiratory admissions among children and the elderly in Vancouver, Canada. Inhalation Toxicology 2003;15(13):1297-1308. 6. Burnett RT, Brook JR, Yung WT, Dales RE, Krewski D. Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environmental Research 1997;72(1):24-31. 7. Pryor WA. Mechanisms of Radical Formation from Reactions of Ozone with Target Molecules in the Lung. Free Radical Biology and Medicine 1994;17(5):451-465. 8. Pryor WA. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environmental Health Perspectives 1997;105:875-882. 9. Vendemiale G, Grattagliano I, Altomare E. An update on the role of free radicals and antioxidant defense in human disease. International Journal of Clinical & Laboratory Research 1999;29(2):49-55. 10. Kerr ME, Bender CM, Monti EJ. An introduction to oxygen free radicals. Heart & Lung 1996;25(3):200-209. 11. Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man. Journal of Molecular Medicine-Jmm 1996;74(6):297-312. 12. Jacoby M. Breath analysis for medical diagnosis. Chemical & Engineering News 2004;82(13):29-31. 13. Wang WM, Chen CY, Jan CM, Chen LT, Perng DS, Lin SR, Liu CS. Long-Term Follow-up and Serological Study after Triple Therapy of Helicobacter-Pylori-Associated Duodenal-Ulcer. American Journal of Gastroenterology 1994;89(10):1793-1796. 14. Peng NJ, Hsu PI, Lee SC, Tseng HH, Huang WK, Tsay DG, Ger LP, Lo GH, Lin CK, Tsai CC, Lai KH. A 15-minute [C-13]-urea breath test for the diagnosis of Helicobacter pylori infection in patients with non-ulcer dyspepsia. Journal of Gastroenterology and Hepatology 2000;15(3):284-289. 15. Klein PD, Malaty HM, Martin RF, Graham KS, Genta RM, Graham DY. Noninvasive detection of Helicobacter pylori infection in clinical practice: The C-13 urea breath test. American Journal of Gastroenterology 1996;91(4):690-694. 16. Wyse CA, Preston T, Yam PS, Sutton DGM, Christley RM, Hotchkiss JW, Mills CA, Glidle A, Cumming DRS, Cooper JM, Love S. Current and future uses of breath analysis as a diagnostic tool. Veterinary Record 2004;154(12):353-+. 17. Scholpp J, Schubert JK, Miekisch W, Geiger K. Breath markers and soluble lipid peroxidation markers in critically ill patients. Clinical Chemistry and Laboratory Medicine 2002;40(6):587-594. 18. Pleil JD, Lindstrom AB. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds. Clinical Chemistry 1997;43(5):723-730. 19. Mukhopadhyay R. Dont waste your breath. Analytical Chemistry 2004;76(15):273A-276A. 20. Miekisch W, Schubert JK, Noeldge-Schomburg GFE. Diagnostic potential of breath analysis - focus on volatile organic compounds. Clinica Chimica Acta 2004;347(1-2):25-39. 21. Cao WQ, Duan YX. Breath analysis: Potential for clinical diagnosis and exposure assessment. Clinical Chemistry 2006;52(5):800-811. 22. Aghdassi E, Allard JP. Breath alkanes as a marker of oxidative stress in different clinical conditions. Free Radical Biology and Medicine 2000;28(6):880-886. 23. Holt DW, Johnston A, Ramsey JD. Breath Pentane and Heart Rejection. Journal of Heart and Lung Transplantation 1994;13(6):1147-1148. 24. Phillips M, Erickson GA, Sabas M, Smith JP, Greenberg J. Volatile Organic-Compounds in the Breath of Patients with Schizophrenia. Journal of Clinical Pathology 1995;48(5):466-469. 25. Humad S, Zarling E, Clapper M, Skosey JL. Breath Pentane Excretion as a Marker of Disease-Activity in Rheumatoid-Arthritis. Free Radical Research Communications 1988;5(2):101-106. 26. Stone BG, Besse TJ, Duane WC, Evans CD, Demaster EG. Effect of Regulating Cholesterol-Biosynthesis on Breath Isoprene Excretion in Men. Lipids 1993;28(8):705-708. 27. Nelson N, Lagesson V, Nosratabadi AR, Ludvigsson J, Tagesson C. Exhaled isoprene and acetone in newborn infants and in children with diabetes mellitus. Pediatric Research 1998;44(3):363-367. 28. Cope K, Risby T, Diehl AM. Increased gastrointestinal ethanol production in obese mice: Implications for fatty liver disease pathogenesis. Gastroenterology 2000;119(5):1340-1347. 29. Scislowski PWD, Pickard K. The Regulation of Transaminative Flux of Methionine in Rat-Liver Mitochondria. Archives of Biochemistry and Biophysics 1994;314(2):412-416. 30. Schubert JK, Spittler KH, Braun G, Geiger K, Guttmann J. CO2-controlled sampling of alveolar gas in mechanically ventilated patients. Journal of Applied Physiology 2001;90(2):486-492. 31. Grote C, Pawliszyn J. Solid-phase microextraction for the analysis of human breath. Analytical Chemistry 1997;69(4):587-596. 32. Phillips M. Method for the collection and assay of volatile organic compounds in breath. Analytical Biochemistry 1997;247(2):272-278. 33. Risby TH, Sehnert SS. Clinical application of breath biomarkers of oxidative stress status. Free Radical Biology and Medicine 1999;27(11-12):1182-1192. 34. Schubert JK, Miekisch W, Geiger K, Noldge-Schomburg GFE. Breath analysis in critically ill patients: potential and limitations. Expert Review of Molecular Diagnostics 2004;4(5):619-629. 35. Olopade CO, Zakkar M, Swedler WI, Rubinstein I. Exhaled pentane levels in acute asthma. Chest 1997;111(4):862-865. 36. Olopade CO, Christon JA, Zakkar M, Hua CW, Swedler WI, Scheff PA, Rubinstein I. Exhaled pentane and nitric oxide levels in patients with obstructive sleep apnea. Chest 1997;111(6):1500-1504. 37. Christon JA, Zakkar M, Stepanski EJ, Swedler WI, Basner RC, Olopade CO, Rubinstein I. Exhaled Pentane Levels in Patients with Obstructive Sleep-Apnea. Faseb Journal 1995;9(3):A375-a375. 38. Hamid Q, Springall DR, Riverosmoreno V, Chanez P, Howarth P, Redington A, Bousquet J, Godard P, Holgate S, Polak JM. Induction of Nitric-Oxide Synthase in Asthma. Lancet 1993;342(8886-7):1510-1513. 39. Wechsler ME, Grasemann H, Deykin A, Silverman EK, Yandava CN, Israel E, Wang M, Drazen JM. Exhaled nitric oxide in patients with asthma - Association with NOS1 genotype. American Journal of Respiratory and Critical Care Medicine 2000;162(6):2043-2047. 40. Dupont LJ, Demedts MG, Verleden GM. Prospective evaluation of the validity 46 of exhaled nitric oxide for the diagnosis of asthma. Chest 2003;123(3):751-756. 41. Ekroos H, Tuominen J, Sovijarvi ARA. Exhaled nitric oxide and its long-term variation in healthy non-smoking subjects. Clinical Physiology 2000;20(6):434-439. 42. Maziak W, Loukides S, Culpitt S, Sullivan P, Kharitonov SA, Barnes PJ. Exhaled nitric oxide in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 1998;157 (3):998-1002. 43. Kharitonov SA, Barnes PJ. Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 2002;7(1):1-32. 44. Studer SM, Orens JB, Rosas I, Krishnan JA, Cope KA, Yang S, Conte JV, Becker PB, Risby TH. Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection. Journal of Heart and Lung Transplantation 2001;20(11):1158-1166. 45. Zayasu K, Sekizawa K, Okinaga S, Yamaya M, Ohrui T, Sasaki H. Increased carbon monoxide in exhaled air of asthmatic patients. American Journal of Respiratory and Critical Care Medicine 1997;156(4):1140-1143. 46. Paredi P, Montuschi P, Shaha PL, Sullivan P, Hodson ME, Kharitonov SA, Barnes PJ. Increased carbon monoxide in exhaled air of cystic fibrosis patients. American Journal of Respiratory and Critical Care Medicine 1999;159(3):A218-a218. 47. Montuschi P. Exhaled breath condensate analysis in patients with COPD. Clinica Chimica Acta 2005;356(1-2):22-34. 48. Rosias PPR, Dompeling E, Dentener MA, Pennings HJ, Hendriks HJE, Van Iersel MPA, Jobsis Q. Childhood asthma: Exhaled markers of airway inflammation, asthma control score, and lung function tests. Pediatric Pulmonology 2004;38(2):107-114. 49. Kharitonov SA, Barnes PJ. Exhaled markers of pulmonary disease. American Journal of Respiratory and Critical Care Medicine 2001;163(7):1693-1722. 50. Samet JM, Hatch GE, Horstman D, Steck-Scott S, Arab L, Bromberg PA, Levine M, McDonnell W F, Devlin RB. Effect of antioxidant supplementation on ozone-induced lung injury in human subjects. American Journal of Respiratory and Critical Care Medicine 2001;164(5):819-825. 51. Fievez L, Kirschvink N, Dogne S, Jaspar F, Merville MP, Bours V, Lekeux P, Bureau F. Impaired accumulation of granulocytes in the lung during ozone adaptation. Free Radical Biology and Medicine 2001;31(5):633-641. 52. Pryor WA, Church DF. Aldehydes, Hydrogen-Peroxide, and Organic Radicals as Mediators of Ozone Toxicity. Free Radical Biology and Medicine 47 1991;11(1):41-46. 53. Long NC, Suh J, Morrow JD, Schiestl RH, Murthy GGK, Brain JD, Frei B. Ozone causes lipid peroxidation but little antioxidant depletion in exercising and nonexercising hamsters. Journal of Applied Physiology 2001;91(4):1694-1700. 54. Mcbride DE, Koenig JQ, Luchtel DL, Williams PV, Henderson WR. Inflammatory Effects of Ozone in the Upper Airways of Subjects with Asthma. American Journal of Respiratory and Critical Care Medicine 1994;149(5):1192-1197. 55. Nightingale JA, Rogers DF, Barnes PJ. Effect of inhaled ozone on exhaled nitric oxide, pulmonary function, and induced sputum in normal and asthmatic subjects. Thorax 1999;54(12):1061-1069. 56. Stenfors N, Pourazar J, Blomberg A, Krishna MT, Mudway I, Helleday R, Kelly FJ, Frew AJ, Sandstrom T. Effect of ozone on bronchial mucosal inflammation in asthmatic and healthy subjects. Respiratory Medicine 2002;96(5):352-358. 57. Chan CC, Wu TH. Effects of ambient ozone exposure on mail carriers' peak expiratory flow rates. Environmental Health Perspectives 2005;113(6):735-738. 58. Hoppe P, Praml G, Rabe G, Lindner J, Fruhmann G, Kessel R. Environmental ozone field study on pulmonary and subjective responses of assumed risk groups. Environmental Research 1995;71(2):109-121. 59. Brunekreef B, Hoek G, Breugelmans O, Leentvaar M. Respiratory Effects of Low-Level Photochemical Air-Pollution in Amateur Cyclists. American Journal of Respiratory and Critical Care Medicine 1994;150(4):962-966. 60. Kinney PL, Thurston GD, Raizenne M. A Metaanalysis of Repeated Fev1 Data from 6 Summer Camp Studies - Mean Effect of Ozone and Response Heterogeneity. American Review of Respiratory Disease 1993;147(4):A636-a636. 61. Corradi M, Alinovi R, Goldoni M, Vettori MV, Folesani G, Mozzoni P, Cavazzini S, Bergamaschi E, Rossi L, Mutti A. Biomarkers of oxidative stress after controlled human exposure to ozone. Toxicology Letters 2002;134(1-3):219-225. 62. Bhalla DK. Interactive effects of cigarette smoke and ozone in the induction of lung injury. Toxicological Sciences 2002;65(1):1-3. 63. Bhalla DK, Crocker TT. Tracheal Permeability in Rats Exposed to Ozone - an Electron-Microscopic and Autoradiographic Analysis of the Transport Pathway. American Review of Respiratory Disease 1986;134(3):572-579. 64. Yu M, Pinkerton KE, Witschi H. Short-term exposure to aged and diluted sidestream cigarette smoke enhances ozone-induced lung injury in B6C3F1 mice. Toxicological Sciences 2002;65(1):99-106. 65. Adams WC. Comparison of chamber and face-mask 6.6-hour exposures to ozone on pulmonary function and symptoms responses. Inhalation Toxicology 2002;14(7):745-764. 66. Adams WC. Comparison of chamber and face mask 6.6-hour exposure to 0.08ppm ozone via square-wave and triangular profiles on pulmonary responses. Inhalation Toxicology 2003;15(3):265-281. 67. Adams WC. Feasibility study of prolonged ozone inhalation exposure via face mask. Inhalation Toxicology 2000;12(4):299-313. 68. Holz O, Jorres RA, Timm P, Mucke M, Richter K, Koschyk S, Magnussen H. Ozone-induced airway inflammatory changes differ between individuals and are reproducible. American Journal of Respiratory and Critical Care Medicine 1999;159(3):776-784. 69. Horstman DH, Folinsbee LJ, Ives PJ, Abdulsalaam S, Mcdonnell WF. Ozone Concentration and Pulmonary Response Relationships for 6.6-Hour Exposures with 5 Hours of Moderate Exercise to 0.08, 0.10, and 0.12 Ppm. American Review of Respiratory Disease 1990;142(5):1158-1163. 70. Mcdonnell WF, Kehrl HR, Abdulsalaam S, Ives PJ, Folinsbee LJ, Devlin RB, Oneil JJ, Horstman DH. Respiratory Response of Humans Exposed to Low-Levels of Ozone for 6.6 Hours. Archives of Environmental Health 1991;46(3):145-150. 71. Neurohr C, Lenz AG, Ding I, Leuchte H, Kolbe T, Behr J. Glutamate-cysteine ligase modulatory subunit in BAL alveolar macrophages of healthy smokers. European Respiratory Journal 2003;22(1):82-87. 72. Madden MC, Hanley N, Harder S, Velez G, Raymer JH. Increased amounts of hydrogen peroxide in the exhaled breath of ozone-exposed human subjects. Inhalation Toxicology 1997;9(4):317-330. 73. 林冠宇.偵測呼出迄體中所含揮發性有機物作為指標在環境衛生上的應用--可行性探討. 國立台灣大學環境衛生研究所碩士論文 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31453 | - |
dc.description.abstract | 本研究之目的為比較抽菸與非抽菸之健康受試者暴露臭氧前後呼出氣體中揮發性有機物的差異,觀察抽菸與非抽菸者對暴露臭氧反應之不同,並利用呼氣中pentane作為氧化壓力指標探討暴露臭氧前後體內之氧化壓力變化情形。
本實驗為縱向研究法,共收集20位受試者,分別為抽菸者8位、非抽菸者12位,年齡介於20~30歲間。利用口罩暴露系統於每日早上九點至十二點間暴露100 ppb 臭氧兩個小時,利用採樣袋收集受試者暴露前、暴露後5分鐘、30分鐘、4.5時及22小時之呼出氣體,再以定流量將呼氣中揮發性有機物採集至採樣管中,總採樣體積為1公升,之後用熱脫附法搭配氣相層析質譜儀進行分析,所得結果扣除干擾物質後與現有圖譜資料庫直接比對共定性出117種化合物,並採用半定量方式來定量。 實驗結果顯示抽菸者暴露臭氧後隔天呼氣中戊烷含量較暴露前高,達邊緣性顯著,非抽菸者則無。非抽菸者呼氣中含硫化物如二甲基硫化物和二甲基二硫化物皆在暴露臭氧後短時間內顯著增加,暴露後隔天則恢復至和暴露前相近;抽菸者則是在暴露後短時間內無顯著差異但暴露後隔天呼氣中含量顯著高於暴露前。推測抽菸者為臭氧暴露之易感族群且恢復能力較非抽菸者差。比較抽菸者與非抽菸者暴露前之呼出氣體發現有17種物質在兩組間達顯著差異且其在抽菸者呼氣中濃度於暴露臭氧後短時間內皆顯著下降,停止暴露後逐漸回復原本濃度。 | zh_TW |
dc.description.abstract | The purposes of this study were to investigate the effect of controlled ozone exposure for smokers and nonsmokers on the exhaled volatile organic compounds (VOCs), to compare the responses of ozone exposure between the two groups, and to evaluate whether exposure to ozone induced changes
in exhaled pentane, which serve as a biomarker of oxidative stress. This study was a longitudinal study. Twenty volunteers (eight smokers and twelve nonsmokers),ages ranging from 20 to 30 years old, were exposed to 100 ppb of ozone for 2 hours. Subjects were exposed to ozone via a face-mask inhalation system between 9:00 am and 12:00 am. Tedlar sampling bags were used to collect exhaled air before and after exposure at 5 minutes, 30 minutes, 4.5 hours and 22 hours. One liter of exhaled air in the sampling bags then was withdrawn by a sampling pump, and the VOCs in the exhaled air was collected using multi-bed sorbent traps and analyzed by Gas Chromatography/Mass Spectrometry. One hundred and seventeen VOCs were identified by a mass spectra library and were semiquantitatively analyzed. Exhaled pentane level in smokers but not in nonsmokers, were increased 22 hours after ozone exposure. The level of exhaled sulphur-containing compounds thiobismethane and dimethyldisulfide in nonsmokers were immediately increased following ozone exposure whilst in smokers the levels were increased only after 22 hours of ozone exposur. We suggested that smokers were more sensitive to ozone exposure than nonsmokers. Comparing the exhaled air VOCs from smokers and nonsmokers before ozone exposure, 17 compounds were significantly different between the two groups. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:13:13Z (GMT). No. of bitstreams: 1 ntu-95-R93844014-1.pdf: 668825 bytes, checksum: ba8f81bb1e536e89aff6ee378279af66 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 目錄 I
表目錄 IV 圖目錄 V 附錄目錄 VI 摘要 VII 第一章 緒論 1 1.1 前言 1 1.1.1 呼出氣體分析 1 1.1.2 臭氧O3 2 1.2 研究目的 3 1.3 研究架構 3 第二章 文獻探討 4 2.1 呼出氣體之研究 4 2.1.1研究方法 4 2.1.2呼氣檢測之特性 5 2.1.3呼氣中VOCs之來源 5 2.1.4呼氣採樣方法 8 2.2呼出氣體分析作為肺部疾病之生物指標 9 2.3臭氧造成之健康危害文獻探討 11 2.4 暴露臭氧和抽煙交互作用之探討 13 2.5人體暴露臭氧之實驗文獻探討 14 第三章 材料與方法 17 3.1 研究對象 17 3.2 採樣方法 17 3.3 臭氧產生系統 18 3.3.1暴露系統架構 18 3.3.2臭氧濃度紀錄 18 3.3.3暴露方式 19 3.4 實驗器材與設備 19 3-4-1藥品、試劑及氣體 19 3-4-2實驗儀器 21 3-5前處理 22 3-5-1採樣管之填充 22 3-5-2保存箱 22 3-5-3採樣管調態(Conditioning) 22 3-5-4採樣之流量校正 22 3-5-5採樣袋淨化 23 3-5-6採樣裝置 23 3-6採樣步驟 23 3-7分析步驟 24 3-7-1熱脫附儀上機前調態 24 3-7-2氣相層析質譜儀 24 3-7-3儀器空白的確定 24 3-7-4上機分析 25 3-8儀器條件 26 3-8-1熱脫附裝置 26 3-8-2低溫捕集器(Cryo-Focus Module, CFM) 26 3-8-3氣相層析儀 27 3-8-4質譜儀 27 3-9空白樣品分析 27 3-9-1試劑空白 27 3-9-2保存空白 28 3-9-3現場空白 28 3-9-4方法空白 28 3-10重複樣品分析 28 3-11品質管制 29 3-12破出試驗 29 3-13數據收集、處理及統計分析 29 3.14 肺泡氣體含量濃度梯度(Alveolar Gradients, AG) 30 第四章 結果與討論 31 4.1 QA/QC 31 4.1.1空白試驗 31 4.1.2 重複樣本試驗 31 4.1.3 破出試驗 32 4.1.4 品質管制圖 32 4.2 定性分析 32 4.3 肺泡氣體含量梯度 34 4.4 個案收集與基本人口學資料 34 4.5 暴露臭氧濃度測定 34 4.6 暴露前與暴露後各時間點比較 34 4.7 呼出氣體中pentane在暴露前與暴露後各時間點之比較 35 4.8 呼出氣體中其他物質在暴露前與暴露後各時間點之比較 36 4.9 抽菸者與非抽菸者呼出氣體之比較 39 第五章 結論 40 第六章 參考文獻 43 表目錄 表一 呼出氣體中偵測到的各化合物之滯留時間與特性離子 49 表二 各化合物分類、分析再現性與是否破出 53 表三 非抽菸者的呼出氣體中各化合物在暴露前後之AG 57 表四 抽菸者的呼出氣體中各化合物在暴露前後之AG 61 表五 基本人口學資料(共20人) 65 表六 暴露臭氧濃度 65 表七 抽菸與非抽菸者暴露後各時間點AG和暴露前是否有顯著差異 66 圖目錄 圖 1、抽菸(S)與非抽菸者(NS)暴露前呼氣中pentane AG之比較 69 圖 2、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 69 圖 3、抽菸(S)與非抽菸者(NS)暴露前呼氣中2,4-dimethylheptane AG之比較 70 圖 4、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 70 圖 5、抽菸(S)與非抽菸者(NS)暴露前呼氣中2,3-dimethylheptane AG之比較 71 圖 6、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 71 圖 7、抽菸(S)與非抽菸者(NS)暴露前呼氣中4-methyloctane AG之比較 72 圖 8、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 72 圖 9、抽菸(S)與非抽菸者(NS)暴露前呼氣中thiobismethane AG之比較 73 圖 10、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 73 圖 11、抽菸(S)與非抽菸者(NS)暴露前呼氣中dimethyl-disulfide AG之比較 74 圖 12、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 74 圖 13、抽菸(S)與非抽菸者(NS)暴露前呼氣中.alpha.-pinene AG之比較 75 圖 14、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 75 圖 15、抽菸(S)與非抽菸者(NS)暴露前呼氣中.beta.-myrcene AG之比較 76 圖 16、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 76 圖 17、抽菸(S)與非抽菸者(NS)暴露前呼氣中2-.beta.-pinene AG之比較 77 圖 18、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 77 圖 19、抽菸(S)與非抽菸者(NS)暴露前呼氣中.delta.3-carene AG之比較 78 圖 20、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 78 圖 21、抽菸(S)與非抽菸者(NS)暴露前呼氣中limonene AG之比較 79 圖 22、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 79 圖 23、抽菸(S)與非抽菸者(NS)暴露前呼氣中2-methylfuran AG之比較 80 圖 24、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 80 圖 25、抽菸(S)與非抽菸者(NS)暴露前呼氣中2-ethylfuran AG之比較 81 圖 26、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 81 圖 27、抽菸(S)與非抽菸者(NS)暴露前呼氣中2-ethyl-5-methylfuran AG之比 82 圖 28、抽菸(S)與非抽菸者(NS)暴露前後各時間點呼氣中 82 附錄目錄 附錄 1、儀器空白TIC圖 83 附錄 2、方法空白TIC圖 84 附錄 3、主要碳氫化合物(m/z 57) 85 附錄 4、抽菸者(上)與非抽菸者(下)呼出氣體TIC圖 86 附錄 5、室內空氣TIC圖 87 | |
dc.language.iso | zh-TW | |
dc.title | 短期臭氧暴露對呼出氣體中揮發性有機物影響之探討 | zh_TW |
dc.title | The Effects of Short-Term Ozone Exposure on Echaled Volatile Organic Compounds | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳保中,陳家揚,蔡詩偉 | |
dc.subject.keyword | 呼出氣體分析,揮發性有機物,臭氧暴露氣相層析質譜儀, | zh_TW |
dc.subject.keyword | breath analysis,VOCs,ozone exposure,GC/MS, | en |
dc.relation.page | 87 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-08-28 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
顯示於系所單位: | 環境衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 653.15 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。