Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫
dc.contributor.authorYen-Ling Chenen
dc.contributor.author陳彥伶zh_TW
dc.date.accessioned2021-06-13T03:13:09Z-
dc.date.available2006-09-18
dc.date.copyright2006-09-18
dc.date.issued2006
dc.date.submitted2006-08-28
dc.identifier.citationA. Y. Zasetsky, A. F. K., M.E. Earle, J.J. Sloan (2005). 'Frequency Dependent Complex Refrative Indices of Supercooled Liquid Water and Ice Determined from Aerosol Extinction Spectra.' The Journal of Physical Chemistry. A 109: 2760-2764.

Arnott, W. P., C. Schmitt, Y. G. Liu and J. Hallett. (1997). ' Droplet Size Spectra and Water-Vapor Concentration of Laboratory Water Clouds: Inversion of Fourier Transform Infrared (500-5000 Cm-1) Optical-Depth Measurement.' Applied Optics 36(21): 5205-5216.

Arnuf, A., J.Bricard, E.Cure and C.Veret (1957). 'Transmission by haze and fog in the spectral region 0.35 to 10 micron.' Journal of the Optical Society of America 47: 491-498.

Ball, D. W. (2001). The Basics of Spectroscopy, Bellingham, WA : SPIE Optical Engineering Press.

Bangalore, A. S., G. W. Small, R. J. Combs, R. B. Knapp and R. T. Kroutil (1994). 'Automated Detection of Methanol Vapor by Open-Path Fourier-Transform Infrared Spectrometry.' Analytica Chimica Acta 297(3): 387-403.

Brian Barkey, K. N. L., Yoshihide Takano, Werner Gellerman (2000). 'Experimental and theoretical spectral reflection properties of ice clouds generated in a laboratory chamber.' Applied Optics 39(21): 3561-3564.

Chen PC, L. Y., Wang JD, Yang CY, Hwang JS, Kuo HW, Huang SL, Chan CC. (1998). 'Adverse effect of air pollution on respiratory health of primary school children in Taiwan.' Environmental Health Perspectives : EHP 106: 331-335.

Chun-Yuh Yang, J.-D. W., Chang-Chuan Chan, Jing-Shiang Hwang, Pau-Chung Chen (1998). 'Respiratory symptoms of primary school children living in a petrochemical polluted area in Taiwan.' Pediatric Pulmonology 25(5): 299-303.

Craig F. Bohren, D. R. H. (1983). Absorption and Scattering of Light by small particles.

Dockery DW, P. A., III, Xu X, et al (1993). 'An Association Between Air Pollution and Mortality in Six U.S. cities.' N Engl J 329: 1753-1759.

Downing, H. D. a. D. W. (1975). 'Optical-Constants of Water in Infrared.' Journal of Geophysical Research 80(12): 1656-1661.

Drescher, A. C., A. J. Gadgil, P. N. Price and W. W. Nazaroff (1996). 'Novel Approach for Tomographic Reconstruction of Gas Concentration Distributions in Air: Use of Smooth Basis Functions and Simulated Annealing.' Atmospheric Environment 30(6): 929-940.

G. Parent, P. B., S. Gauthier, J. Blaise, A. Collin (2006). 'Experimental investigation of radiation transmission through a water spray.' Journal of Quantitative Spectroscopy & Radiative Transfer 97: 126-141.

G.R. McMeeking, S. M. K., C. M. Carrico, J. L. Collett (2005). 'Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol Scattering and Absorbing Properties.' Journal of Geophysical Research 110: D18209, doi:10.1029/2004JD005624.

Garrett. A. Keating, T. E. M., James W. Gillett (1997). 'Measured and Estimated Air Concentration of Chloroform in Showers: Effects of Water Temperature and Aerosols.' Atmospheric Environment 31(2): 123-130.

Gosz JR, D. C., Risser PG (1988). 'Long-Path FTIR Measurement of Atmospheric Trace gas Concentrations ' Ecology 69(5): 1326-1330.

Hashmonay, R. A., M. G. Yost and C. F. Wu (1999). 'Computed Tomography of Air Pollutants Using Radial Scanning Path-Integrated Optical Remote Sensing.' Atmospheric Environment 33(2): 267-247.

Hashmonay, R. A. a. M. G. Y. (1999). 'On the Application of Open-Path Fourier Transform Infra-Red Spectroscopy to Measure Aerosols: Observations of Water Droplets.' Environmental Science & Technology 33(7): 1141-1144.

Hinds, W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, New York, Wiley.

James R. Ouimette, R. C. F. (1982). 'The Extinction Coefficient of Multicomponent Aerosols.' Atmospheric Enivironment 16(10): 2405-2419.

Jarzembski, M., M. Norman, K. Fuller, V. Srivastava and D. Cutten ( 2003). 'Complex Refractive Index of Ammonium Nitrate in the 2-20 μm Spectral Range.' Applied Optics 42(6): 922-930.

Jaya Ramaprasad, R. C., Wu C.F., Michael G. Yost Aerosol Measurement from Open-Path Fourier Transform Infrared Spectroscopy, Department of Environmental and Occupational Health Sciences University of Washington.

Kagann, R. H., W.L. Woturski, W.T. Walter, D. Robert, M. Robert, AIL Systems, Inc., Deer Park, NY. (1999). Measurement of Ambient Air Quality in Urban Settings Using Open-Path FTIR. Air and Waste 92nd Annual Meeting and Exhibition.

Klett, J. (1984). 'Anomalous Diffraction Model for Inversion of Mutispectral Extinction Data Including Absorption Effects.' Applied Optics 23(24): 4499-4508.

Kristan P. Gurton, D. L., Rachid Dahmani (2004). 'Measured Infrared Optical Cross Sections for a Variety of Chemical and Biological Aerosol Simulants.' Applied Optics 43(23): 4564-4570.

Kwong WTJ, H. S., Coates AL (2000). ' Comparison of nebulized particle size distribution with Malvern laser diffraction analyzer versus Andersen Cascade Impactor and low-flow marple personal cascade impactor ' Journal of Aerosol Medicine-Deposition Clearnce and Effects in the Lung 13(4): 303-314.

Malvern Instruments, L., Malvern, Worcestershire WR14 1AQ, England, Ed.

Mason, B. J. (1971). The physics of Clouds. O. Clarendon: 93-94.

Piccot S. D., M. S. S., Ringler E. S., Srinivasan S, Kirchagessner D. A., Herget W. F. (1994). 'Validation of a Method for Estimation Pollution Emission Rates from Area Sources Using Open-Path FTIR Spectroscopy and Dispersion Modeling Techniques.' Journal of the Air & Waste Management Association 44: 271-279.

Robert Wagner, S. B., Ottmar Mohler, Harald Saathoff, Martin Schnaiter, Ulrich Schurath (2005). 'Mid-infrared Extinction Spectra and Optical Constants of Supercooled Water Droplets.' The Journal of Physical Chemistry. A 109: 7099-7112.

Russwurm G. M., K. R. H., Simpson O.A., McClenny W.A., Herget W. F (1991). 'Long-path FTIR Measurement of Volatile Organic Compounds in an Industrial Setting.' Journal of the Air & Waste Management Association 41: 1062-1066.

Todd, L. a. D. L. (1990). 'Remote-Sensing and Computed-Tomography in Industrial-Hygiene.' American Industrial Hygiene Association Journal 51(4): 224-233.

Toon, O., J. Pollack and B. Khare (1976). 'Optical-Constants of Several Atmospheric Aerosol Species - Ammonium-Sulfate, Aluminum-Oxide, and Sodium-Chloride.' Journal of Geophysical Research-Oceans and Atmospheres 81(33): 5733-5748.

Tsai, S. S., M. H. Cheng, et al. (2006). 'Air pollution and hospital admissions for asthma in a tropical city: Kaohsiung, Taiwan.' Inhalation Toxicology 18(8): 549-554.

US EPA, C. M. T.-. (1999). Long-Path Open-Path Fourier Transform Infrared Monitoring of Atmospheric Gases,, EPA Contract 68-D5-0049, NERL, USEPA, Research Triangle Park, NC. .

Volten H, M. O., Rol E, de Haan JF, Vassen W, Hovenier JW, Muinonen K, Nousiainen T (2001). 'Scattering Matrices of Mineral Aerosol Particles at 441.6 nm and 632.8 nm ' Journal of Geophysical Reserch--Atmospheres 106(D15): 17375-17401

W. Patrick Arnott, Y. Y. D., John Hallett (1995). 'Extinction Efficiency in the Infrared (2-18 um) of Laboratory Ice Clouds: Observations of Scattering Minima in the Christiansen Bands of Ice ' Applied Optics 34(3): 541-551.

Wickramasinghe, N. C. (1973). Light Scattering Functions for Small Particles with Applications in Astronomy, Adam Hilger: London.

Wu, C. F., M. G. Yost, R. A. Hashmonay and D. Y. Park (1999). 'Experimental Evaluation of a Radial Beam Geometry for Mapping Air Pollutants Using Optical Remote Sensing and Computed Tomography.' Atmospheric Environment 33(28): 4769-4716.

Yost, M. G., A. J. Gadgil, A. C. Drescher, Y. Zhou, M. A. Simonds, et al. (1994). ' Imaging Indoor Tracer-Gas Concentrations with Computed Tomography: Experimental Results with a Remote Sensing FTIR System.' American Industrial Hygiene Association Journal 55(5): 395-402.

工業技術研究院 (2000). 開放光徑式霍式紅外光儀應用技術手冊.

行政院環保署 (1998-2000). 運用紅外光遙測技術執行石化工業區污染監測計畫研究報告

行政院環境保護署環境檢驗所 (2005). 空氣中揮發性化合物篩檢方法-開徑式傅立葉轉換紅外光光譜分析法(NIEA A002.10C)

邱相文 (1997). 影像處理技術應用於噴霧沉積之分析研究. 農業機械工程研究所, 中興大學.

洪珮珮 (1996). '紅外光遙測技術之應用與發展.' 勞工安全衛生簡訊 17
1-7.

胡明輝 (1999). '紅外線汽車排氣遙測簡介.' 光訊.

許思亮 (1998). 開徑式監測儀在都會區及工業區的應用. 環境工程研究所, 中央大學.

陳茂雄 (1993). 靜電噴藥系統在農業設施內之應用研究. 農業機械工程研究所, 中興大學.

黃奕孝 (1998). 傅立業轉換紅外光譜儀在石化工業區及半導體工業空氣污染量測之發展與應用. 化學系, 清華大學.

楊人芝, 宋., 張寶額 (2003). '紅外光遙測技術在工業區及石化製程揮發性有機氣體逸散之監測.' 化工資訊 17(4): 8-45.

謝瑞豪 (2000). 以開放式霍式紅外線光譜儀重建工業區空氣毒性物質之時空分布. 職業醫學與工業衛生研究所, 台灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31448-
dc.description.abstract目的: 研究利用開徑式傅立葉轉換紅外光光譜儀(OP-FTIR)的測量結果回推氣膠粒徑分佈之可行性。
方法:首先由文獻中獲得有關水、硝酸銨和硫酸銨的複折射率(complex refractive index)資料,並依據Mie理論針對這些物質不同的粒徑分佈(幾何平均數=2-10微米,幾何標準差=1.1-2.5)模擬出消光光譜。然後發展最佳化演算法用以在已知複折射率的情況下回推幾何平均數和幾何標準差。也在產生模擬光譜時增加1%、4%、7%和10%的雜訊作一敏感度分析。更進一步收集在一控制環境下,經由開徑式傅立葉轉換紅外光光譜儀(OP-FTIR)量測所得的水微粒消光光譜,用其來驗證電腦模擬研究的結果。
結果: 對所有物質來說,在幾何標準差相同的情況下,較大的微粒具有較好的回推結果。而敏感度分析的結果顯示當雜訊程度小於4%且幾何平均數大(>3.5微米)的時候,模擬與回推光譜的符合情況良好,並且其光譜間R2可高於0.9。同時對於輸入和回推的幾何平均數與幾何標準差而言,彼此間的差異小於10%。在雜訊程度等於10%時,集中粒徑分佈的回推結果會優於離散粒徑分佈。在實驗過程中,收集了兩組水微粒的消光光譜。其光譜間的R2值介於0.8至0.9,回推的幾何平均數(幾何標準差)介於1(1.7)至4(2) 微米。實驗數據所得的回推結果與電腦模擬的結果相同,較大的微粒具有較好的回推結果。
結論: 對於大於3.5微米的微粒,最佳化演算法可良好執行。在雜訊程度小於10%的情況下,最佳化演算法對雜訊是不太具有敏感性的。我們的研究結果證明了可利用開徑式傅立葉轉換紅外光光譜儀(OP-FTIR)的測量結果回推氣膠粒徑分佈。
關鍵字: 懸浮微粒、開徑式傅立葉轉換紅外光光譜儀、消光光譜
zh_TW
dc.description.abstractObjective: To investigate the feasibility of retrieving aerosol size distribution information from OP-FTIR measurements.
Method: We first obtained the complex refractive index of water, ammonium nitrate and ammonium sulfate from published literatures. The extinction spectra were then simulated with various size distribution (geometric mean ranged from 2 to 10μm; geometric standard deviation ranged from 1.1 to 2.5) based on the Mie theory. An optimization algorithm was developed to retrieve the geometric mean and standard deviation of the aerosols size distribution from the spectra, assuming the complex refractive index is known. We also added 1%, 4%, 7% and 10% noise levels to the simulated spectra for sensitivity analysis. We further collected the extinction spectra with a FTIR system for water aerosols in a controlled environment to verify the simulation study.
Results: For all three compounds, when the geometric standard deviation was the same, the reconstruction results for larger particles were better than for the smaller particles. The sensitivity analysis results showed that when the noise level was less than 4% and geometric mean was large (>3.5μm), the fit was good with the R2 value between the input and reconstructed spectra ( ) greater than 0.9. The differences between the input and retrieved geometric mean and geometric standard deviation were less than 10% under the same condition. When the noise level was equal to 10%, the reconstruction results for a narrow aerosol size distribution were better than for a wide distribution. In the FTIR-aerosol experiments, two unique extinction spectra of water aerosols were collected. The ranged from 0.8 to 0.9 and the geometric mean (geometric standard deviation) ranged from 1 (1.7) to 4 (2) μm. Similar to the findings in the simulation study, the reconstructed spectra fit better to the input spectra for larger particles than for the small particles.
Conclusion: The reconstruction algorithm performs reasonable well for particles larger than 3.5μm. It is also less sensitive to the spectral noise for the noise levels up to 10%. Our study results demonstrate that it is feasible to retrieve the aerosol size distribution from the OP-FTIR measurements.
Key words: particulate matter, OP-FTIR, extinction spectrum
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:13:09Z (GMT). No. of bitstreams: 1
ntu-95-R93841015-1.pdf: 2733883 bytes, checksum: b81276e04d3f3b81040ba40b4faa96e7 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents i
List of Table iii
List of Figure iv
摘要 i
Abstract i
Chapter 1 Introduction and Background 1
Open Path-FTIR 1
OP-FTIR for gases monitoring 2
OP-FTIR for aerosols monitoring 4
(1) The Mie theory 5
(2) The inversion of aerosol size distribution 6
Thesis organization 8
Chapter 2 Simulation Study 9
INTRODUCTION 9
THEORY DEVELOPMENT 9
Calculate extinction efficiencies (Qe) 10
Calculate extinction coefficient (σe) 11
Calculate the extinction spectrum 11
Retrieve size distribution for aerosols 12
METHOD 12
Calculate the simulated spectra 12
Development of the optimization algorithm 15
Data analysis 16
RESULT AND DISCUSSION 16
CONCLUSION 24
Chapter 3 Experiment Validation 38
INTRODUCTION 38
METHOD 39
FTIR system 39
Experimental setup 39
Setup A: Open system with an atomizing nozzle 39
Setup B: Closed system with an atomizing nozzle 39
Setup C: Open system with other aerosol generators 40
Data analysis 41
RESULT AND DISCUSSION 42
FTIR spectra - Setup A 42
FTIR spectra - Setup B 43
FTIR spectra - Setup C 43
Retrieval procedure of size distribution 44
CONCLUSION 47
Chapter 4 Conclusion 56
RECOMMENDATIONS 56
Reference 58
Appendix 63
dc.language.isoen
dc.subject消光光譜zh_TW
dc.subject懸浮微粒zh_TW
dc.subject開徑式傅立葉轉換紅外光光譜儀zh_TW
dc.subjectparticulate matteren
dc.subjectextinction spectrumen
dc.subjectOP-FTIRen
dc.title運用開徑式傅立葉轉換紅外光光譜儀測量懸浮微粒zh_TW
dc.titleOn the Application of Open-Path Fourier Transform Infrared Spectroscopy to Measure Particlesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李崇德,陳志傑,林文印
dc.subject.keyword懸浮微粒,開徑式傅立葉轉換紅外光光譜儀,消光光譜,zh_TW
dc.subject.keywordparticulate matter,OP-FTIR,extinction spectrum,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2006-08-29
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved