Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 職能治療學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31406
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林克忠(Keh-chung Lin)
dc.contributor.authorYu-Chan Linen
dc.contributor.author林育嬋zh_TW
dc.date.accessioned2021-06-13T03:12:39Z-
dc.date.available2011-10-07
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-09-08
dc.identifier.citationAisen, M. L., Krebs, H. I., Hogan, N., McDowell, F., & Volpe, B. T. (1997). The effect of robot-assisted therapy and rehabilitative training on motor recovery following
stroke. Archives of neurology, 54(4), 443-446.
Balasubramanian, S., Klein, J., & Burdet, E. (2010). Robot-assisted rehabilitation of
hand function. Current opinion in neurology, 23(6), 661-670.
Beebe, J. A., & Lang, C. E. (2009). Relationships and responsiveness of six upper extremity function tests during the first 6 months of recovery after stroke.Journal of neurologic physical therapy: JNPT, 33(2), 96-103.
Birkenmeier, R. L., Prager, E. M., & Lang, C. E. (2010). Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a
proof-of-concept study. Neurorehabilitation and Neural Repair, 24(7), 620-635.
Boudreau, S., Romaniello, A., Wang, K., Svensson, P., Sessle, B. J., & Arendt-Nielsen,
L. (2007). The effects of intra-oral pain on motor cortex neuroplasticity
associated with short-term novel tongue-protrusion training in humans. Pain,
132(1-2), 169-178.
Bovolenta, F., Goldoni, M., Clerici, P., Agosti, M., & Franceschini, M. (2009). Robot
therapy for functional recovery of the upper limbs: a pilot study on patients after
stroke. J Rehabil Med, 41(12), 971-975.
34
Bovolenta, F., Sale, P., Dall'Armi, V., Clerici, P., & Franceschini, M. (2011).
Robot-aided therapy for upper limbs in patients with stroke-related lesions. Brief
report of a clinical experience. Journal of NeuroEngineering and Rehabilitation,
8, 18.
Brewer, B. R., McDowell, S. K., & Worthen-Chaudhari, L. C. (2007). Poststroke upper
extremity rehabilitation: a review of robotic systems and clinical results. Topics
in Stroke Rehabilitation, 14(6), 22-44.
Burridge, J. H., & Hughes, A. M. (2010). Potential for new technologies in clinical
practice. Current opinion in neurology, 23(6), 671-677.
Casadio, M., Giannoni, P., Masia, L., Morasso, P., Sandini, G., Sanguineti, V., Vergaro,
E. (2009). Robot therapy of the upper limb in stroke patients: preliminary
experiences for the principle-based use of this technology. Functional neurology,
24(4), 195-202.
Cauraugh, J. H., Lodha, N., Naik, S. K., & Summers, J. J. (2010). Bilateral movement
training and stroke motor recovery progress: A structured review and
meta-analysis. Human movement science, 29(5), 853-870.
Cooke, E. V., Mares, K., Clark, A., Tallis, R. C., & Pomeroy, V. M. (2010). The effects
of increased dose of exercise-based therapies to enhance motor recovery after
stroke: a systematic review and meta-analysis. BMC Medicine, 8(1), 60.
35
Cooper, R. A., Dicianno, B. E., Brewer, B., LoPresti, E., Ding, D., Simpson, R., Wang,
H. (2008). A perspective on intelligent devices and environments in medical
rehabilitation. Medical engineering & physics, 30(10), 1387-1398.
Corbetta, D., Sirtori, V., Moja, L., & Gatti, R. (2010). Constraint-induced movement
therapy in stroke patients: systematic review and meta-analysis. Eur J Phys
Rehabil Med, 46(4), 537-544.
Coupar, F., Pollock, A., van Wijck, F., Morris, J., & Langhorne, P. (2007).
Simultaneous bilateral training for improving arm function after stroke.
Cochrane Database Syst Rev, 14(4), CD006432.
Daly, J. J., Hogan, N., Perepezko, E. M., Krebs, H. I., Rogers, J. M., Goyal, K. S., Ruff,
R. (2005). Response to upper-limb robotics and functional neuromuscular
stimulation following stroke. Journal of rehabilitation research and
development, 42(6), 723-736.
Davies, P. M. (2000). Steps to follow: the comprehensive treatment of patients with
hemiplegia: Springer Verlag.
De Groot, M. H., Phillips, S. J., & Eskes, G. A. (2003). Fatigue associated with stroke
and other neurologic conditions: implications for stroke rehabilitation. Arch
Phys Med Rehabil, 84(11), 1714-1720.
Dimyan, M. A., & Cohen, L. G. (2011). Neuroplasticity in the context of motor
36
rehabilitation after stroke. Nature Reviews Neurology, 7(2), 76-85.
Dipietro, L., Krebs, H. I., Fasoli, S. E., Volpe, B. T., & Hogan, N. (2009).
Submovement changes characterize generalization of motor recovery after
stroke. Cortex, 45(3), 318-324.
Dobkin, B. H. (2005). Clinical practice. Rehabilitation after stroke. N Engl J Med,
352(16), 1677-1684.
Dobkin, B. H. (2007). Confounders in rehabilitation trials of task-oriented training:
lessons from the designs of the EXCITE and SCILT multicenter trials.
Neurorehabil Neural Repair, 21(1), 3-13.
Dobkin, B. H. (2007). Confounders in rehabilitation trials of task-oriented training:
lessons from the designs of the EXCITE and SCILT multicenter trials.
Neurorehabilitation and Neural Repair, 21(1), 3-13.
Dodds, T. A., Martin, D., Stolov, W., & Deyo, R. (1993). A validation of the functional
independence measurement and its performance among rehabilitation inpatients.
Archives of physical medicine and rehabilitation, 74(5), 531-536.
Fasoli, S. E., Krebs, H. I., & Hogan, N. (2004). Robotic technology and stroke
rehabilitation: translating research into practice. Top Stroke Rehabil, 11(4),
11-19.
Feys, H., De Weerdt, W., Verbeke, G., Steck, G. C., Capiau, C., Kiekens, C., Cras, P.
37
(2004). Early and repetitive stimulation of the arm can substantially improve the
long-term outcome after stroke: a 5-year follow-up study of a randomized trial.
Stroke, 35(4), 924-929.
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-Mental State: a practical
method for grading the cognitive state of patients for the clinician. Journal of
psychiatric research, 12(3),189-98.
French, B., Thomas, L., Leathley, M., Sutton, C., McAdam, J., Forster, A., Watkins, C.
(2010). Does repetitive task training improve functional activity after stroke? A
Cochrane systematic review and meta-analysis. Journal of Rehabilitation
Medicine, 42(1), 9-15.
Fugl-Meyer, A., Jaasko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The
post-stroke hemiplegic patient. 1. a method for evaluation of physical
performance. Scandinavian journal of rehabilitation medicine, 7(1), 13-31.
Fugl-Meyer, A., Jaasko, L., & Norlin, V. (1975). The post-stroke hemiplegic patient. II.
Incidence, mortality, and vocational return in Goteborg, Sweden with a review
of the literature. Scandinavian journal of rehabilitation medicine, 7(2), 73-83.
Gauthier, L. V., Taub, E., Perkins, C., Ortmann, M., Mark, V. W., & Uswatte, G. (2008).
Remodeling the Brain: Plastic Structural Brain Changes Produced by Different
Motor Therapies After Stroke* Supplemental Material. Stroke, 39(5),
38
1520-1525.
Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The Fugl-Meyer assessment of
motor recovery after stroke: a critical review of its measurement properties.
Neurorehabilitation and Neural Repair, 16(3), 232-240.
Hamilton, B. B., Laughlin, J. A., Fiedler, R. C., & Granger, C. V. (1994). Interrater
reliability of the 7-level functional independence measure (FIM). Scandinavian
journal of rehabilitation medicine, 26(3), 115-119.
Hamm, R. J., Temple, M. D., O'dell, D. M., Pike, B. R., & Lyeth, B. G. (1996).
Exposure to environmental complexity promotes recovery of cognitive function
after traumatic brain injury. Journal of neurotrauma, 13(1), 41-47.
Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower
extremity robotic devices for rehabilitation and for studying motor control.
Current opinion in neurology, 16(6), 705-710.
Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., & Werner, C. (2003).
Robot-assisted arm trainer for the passive and active practice of bilateral forearm
and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil, 84(6),
915-920.
Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., & Lingnau, M. (2005).
Computerized arm training improves the motor control of the severely affected
39
arm after stroke: a single-blinded randomized trial in two centers. Stroke, 36(9),
1960-1966.
Hogan, N., Krebs, H. I., Rohrer, B., Palazzolo, J. J., Dipietro, L., Fasoli, S. E., Lynch, D.
(2006). Motions or muscles? Some behavioral factors underlying robotic
assistance of motor recovery. Journal of rehabilitation research and
development, 43(5), 605-618.
Hsieh, Y., Wu, C., Liao, W., Lin, K., Wu, K., & Lee, C. (2011). Effects of Treatment
Intensity in Upper Limb Robot-Assisted Therapy for Chronic Stroke: A Pilot
Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 25(6),
503-11.
Hsieh, Y., Wu, C., Lin, K., Chang, Y., Chen, C., & Liu, J. (2009). Responsiveness and
validity of three outcome measures of motor function after stroke rehabilitation.
Stroke, 40(4), 1386-1391.
Hsueh, I. (2002). Responsiveness of two upper extremity function instruments for
stroke inpatients receiving rehabilitation. Clinical rehabilitation, 16(6), 617-621.
Huang, V. S., & Krakauer, J. W. (2009). Robotic neurorehabilitation: a computational
motor learning perspective. Journal of NeuroEngineering and Rehabilitation,
6(1), 5.
Kahn, L. E., Lum, P. S., Rymer, W. Z., & Reinkensmeyer, D. J. (2006). Robot-assisted
40
movement training for the stroke-impaired arm: Does it matter what the robot
does? Journal of rehabilitation research and development, 43(5), 619-630.
Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by
nucleus basalis activity. Science, 279(5357), 1714-1718.
Koganemaru, S., Mima, T., Thabit, M. N., Ikkaku, T., Shimada, K., Kanematsu, M.,
Fukuyama, H. (2010). Recovery of upper-limb function due to enhanced
use-dependent plasticity in chronic stroke patients. Brain, 133(11), 3373-3384.
Krebs, H. I., Volpe, B., & Hogan, N. (2009). A working model of stroke recovery from
rehabilitation robotics practitioners. Journal of NeuroEngineering and
Rehabilitation, 6(1), 6.
Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., &
Hogan, N. (2007). Robot-aided neurorehabilitation: a robot for wrist
rehabilitation. Neural Systems and Rehabilitation Engineering, IEEE
Transactions on, 15(3), 327-335.
Kutner, N. G., Zhang, R., Butler, A. J., Wolf, S. L., & Alberts, J. L. (2010).
Quality-of-life change associated with robotic-assisted therapy to improve hand
motor function in patients with subacute stroke: a randomized clinical trial.
Physical therapy, 90(4), 493-504.
Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on
41
upper limb recovery after stroke: a systematic review. Neurorehabilitation and
Neural Repair, 22(2), 111-121.
Kwakkel, G., Kollen, B. J., van der Grond, J., & Prevo, A. J. (2003). Probability of
regaining dexterity in the flaccid upper limb: impact of severity of paresis and
time since onset in acute stroke. Stroke, 34(9), 2181-2186.
Kwakkel, G., Wagenaar, R. C., Koelman, T. W., Lankhorst, G. J., & Koetsier, J. C.
(1997). Effects of intensity of rehabilitation after stroke. A research synthesis.
Stroke, 28(8), 1550-1556.
Lang, C. E., MacDonald, J. R., Reisman, D. S., Boyd, L., Jacobson Kimberley, T.,
Schindler-Ivens, S. M., Scheets, P. L. (2009). Observation of amounts of
movement practice provided during stroke rehabilitation. Archives of physical
medicine and rehabilitation, 90(10), 1692-1698.
Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: a
systematic review. The Lancet Neurology, 8(8), 741-754.
Langhorne, P., Wagenaar, R., & Partridge, C. (1996). Physiotherapy after stroke: More
is better? Physiotherapy research international: the journal for researchers and
clinicians in physical therapy, 1(2), 75-88.
Latimer, C. P., Keeling, J., Lin, B., Henderson, M., & Hale, L. A. (2010). The impact of
bilateral therapy on upper limb function after chronic stroke: a systematic review.
42
Disability & Rehabilitation(00), 1-11.
Levin, M. F. (1996). Interjoint coordination during pointing movements is disrupted in
spastic hemiparesis. Brain, 119(1), 281-293.
Lin, J. H., Hsu, M. J., Sheu, C. F., Wu, T. S., Lin, R. T., Chen, C. H., & Hsieh, C. L.
(2009). Psychometric comparisons of 4 measures for assessing upper-extremity
function in people with stroke. Physical therapy, 89(8), 840-850.
Lin, K. C., Chung, H. Y., Wu, C. Y., Liu, H. L., Hsieh, Y. W., & Chen, I. (2010).
Constraint-induced therapy versus control intervention in patients with stroke: a
functional magnetic resonance imaging study. American Journal of Physical
Medicine & Rehabilitation, 89(3), 177-185.
Lin, K. C., Wu, C. Y., Wei, T. H., Gung, C., Lee, C. Y., & Liu, J. S. (2007). Effects of
modified constraint-induced movement therapy on reach-to-grasp movements
and functional performance after chronic stroke: a randomized controlled study.
Clinical rehabilitation, 21(12), 1075-1086.
Lindenberg, R., Renga, V., Zhu, L., Nair, D., & Schlaug, G. (2010). Bihemispheric
brain stimulation facilitates motor recovery in chronic stroke patients. Neurology,
75(24), 2176-2184.
Lo, A. C., Guarino, P., Krebs, H. I., Volpe, B. T., Bever, C. T., Duncan, P. W., Bravata,
D. M. (2009). Multicenter randomized trial of robot-assisted rehabilitation for
43
chronic stroke: methods and entry characteristics for VA ROBOTICS.
Neurorehabilitation and Neural Repair, 23(8), 775-783.
Luke, L. M., Allred, R. P., & Jones, T. A. (2004). Unilateral ischemic sensorimotor
cortical damage induces contralesional synaptogenesis and enhances skilled
reaching with the ipsilateral forelimb in adult male rats. Synapse, 54(4),
187-199.
Lum, P. S., Burgar, C. G., Van Der Loos, M., Shor, P. C., Majmundar, M., & Yap, R.
(2006). MIME robotic device for upper-limb neurorehabilitation in subacute
stroke subjects: A follow-up study. Journal of rehabilitation research and
development, 43(5), 631-642.
Marchal-Crespo, L., & Reinkensmeyer, D. J. (2009). Review of control strategies for
robotic movement training after neurologic injury. Journal of NeuroEngineering
and Rehabilitation, 6(1), 20.
Milot, M. H., & Cramer, S. C. (2008). Biomarkers of recovery after stroke. Current
opinion in neurology, 21(6), 654-659.
Mulder, T., Zijlstra, W., & Geurts, A. (2002). Assessment of motor recovery and
decline. Gait & posture, 16(2), 198-210.
Oujamaa, L., Relave, I., Froger, J., Mottet, D., & Pelissier, J. Y. (2009). Rehabilitation
of arm function after stroke. Literature review. Annals of physical and
44
rehabilitation medicine, 52(3), 269-293.
Penta, M., Tesio, L., Arnould, C., Zancan, A., & Thonnard, J. L. (2001). The
ABILHAND questionnaire as a measure of manual ability in chronic stroke
patients: Rasch-based validation and relationship to upper limb impairment.
Stroke, 32(7), 1627-1634.
Peter, O., Fazekas, G., Zsiga, K., & Denes, Z. (2011). Robot-mediated upper limb
physiotherapy: review and recommendations for future clinical trials.
International Journal of Rehabilitation Research.
Platz, T., Pinkowski, C., van Wijck, F., Kim, I. H., di Bella, P., & Johnson, G. (2005).
Reliability and validity of arm function assessment with standardized guidelines
for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a
multicentre study. Clinical rehabilitation, 19(4), 404-411.
Platz, T., van Kaick, S., Mehrholz, J., Leidner, O., Eickhof, C., & Pohl, M. (2009). Best
conventional therapy versus modular impairment-oriented training for arm
paresis after stroke: a single-blind, multicenter randomized controlled trial.
Neurorehabilitation and Neural Repair, 23(7), 706-716.
Pomeroy, V., Aglioti, S. M., Mark, V. W., McFarland, D., Stinear, C., Wolf, S. L., . . .
Fitzpatrick, S. M. (2011). Neurological principles and rehabilitation of action
disorders: rehabilitation interventions. Neurorehabil Neural Repair, 25(5 Suppl),
45
33S-43S.
Pomeroy, V. M., Clark, C. A., Miller, J. S. G., Baron, J. C., Markus, H. S., & Tallis, R.
C. (2005). The potential for utilizing the 'mirror neurone system‥ to enhance
recovery of the severely affected upper limb early after stroke: a review and
hypothesis. Neurorehabilitation and Neural Repair, 19(1), 4-13.
Prange, G. B., Jannink, M. J. A., Groothuis-Oudshoorn, C. G. M., Hermens, H. J., &
IJzerman, M. J. (2006). Systematic review of the effect of robot-aided therapy
on recovery of the hemiparetic arm after stroke. Journal of rehabilitation
research and development, 43(2), 171-184.
Rabadi, M. H., & Rabadi, F. M. (2006). Comparison of the action research arm test and
the Fugl-Meyer assessment as measures of upper-extremity motor weakness
after stroke. Archives of physical medicine and rehabilitation, 87(7), 962-966.
Remple, M. S., Bruneau, R. M., VandenBerg, P. M., Goertzen, C., & Kleim, J. A.
(2001). Sensitivity of cortical movement representations to motor experience:
evidence that skill learning but not strength training induces cortical
reorganization. Behavioural brain research, 123(2), 133-141.
Rohrer, B., Fasoli, S., Krebs, H. I., Hughes, R., Volpe, B., Frontera, W. R., Hogan, N.
(2002). Movement smoothness changes during stroke recovery. The Journal of
neuroscience, 22(18), 8297-8304.
46
Rohrer, B., Fasoli, S., Krebs, H. I., Volpe, B., Frontera, W. R., Stein, J., & Hogan, N.
(2004). Submovements grow larger, fewer, and more blended during stroke
recovery. Motor Control, 8(4), 472-483.
Rohrer, B. R. (2002). Evolution of movement smoothness and submovement patterns in
persons with stroke. Massachusetts Institute of Technology.
Rose, D., Paris, T., Crews, E., Wu, S. S., Sun, A., Behrman, A. L., & Duncan, P. (2011).
Feasibility and Effectiveness of Circuit Training in Acute Stroke Rehabilitation.
Neurorehabilitation and Neural Repair, 25(2), 140-148.
Salter, K., Jutai, J., Teasell, R., Foley, N., Bitensky, J., & Bayley, M. (2005). Issues for
selection of outcome measures in stroke rehabilitation: ICF activity. Disability &
Rehabilitation, 27(6), 315-340.
Sanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., & Gowland, C. (1993).
Reliability of the Fugl-Meyer assessment for testing motor performance in
patients following stroke. Physical therapy, 73(7), 447-454.
Scott, J., & Huskisson, E. (1976). Graphic representation of pain. Pain, 2(2), 175-184.
Sirtori, V., Corbetta, D., Moja, L., & Gatti, R. (2010). Constraint-Induced Movement
Therapy for Upper Extremities in Patients With Stroke. Stroke, 41(1), e57-e58.
Sivan, M., O'Connor, R. J., Makower, S., Levesley, M., & Bhakta, B. (2011).
Systematic review of outcome measures used in the evaluation of robot-assisted
47
upper limb exercise in stroke. Journal of Rehabilitation Medicine, 43(3),
181-189.
Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala, R. R., & Cramer, S. C. (2008).
Robot-based hand motor therapy after stroke. Brain, 131(2), 425-437.
Taub, E., Crago, J. E., & Uswatte, G. (1998). Constraint-induced movement therapy: A
new approach to treatment in physical rehabilitation. Rehabilitation Psychology,
43(2), 152-170.
Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., 3rd, Fleming, W. C., Nepomuceno,
C. S., Crago, J. E. (1993). Technique to improve chronic motor deficit after
stroke. Arch Phys Med Rehabil, 74(4), 347-354.
Tesio, L., Granger, C. V., Perucca, L., Franchignoni, F. P., Battaglia, M. A., & Russell,
C. F. (2002). The FIM (TM) Instrument in the United States and Italy: A
Comparative Study. American Journal of Physical Medicine & Rehabilitation,
81(3), 168-176.
Timmermans, A. A. A., Spooren, A. I. F., Kingma, H., & Seelen, H. A. M. (2010).
Influence of Task-Oriented Training Content on Skilled Arm-Hand Performance
in Stroke: A Systematic Review. Neurorehabilitation and Neural Repair, 24(9),
858-870.
Tseng, B. Y., Gajewski, B. J., & Kluding, P. M. (2010). Reliability, Responsiveness,
48
and Validity of the Visual Analog Fatigue Scale to Measure Exertion Fatigue in
People with Chronic Stroke: A Preliminary Study. Stroke Research and
Treatment.
Turkstra, L. S., Holland, A. L., & Bays, G. A. (2003). The neuroscience of recovery and
rehabilitation: What have we learned from animal research? Archives of physical
medicine and rehabilitation, 84(4), 604-612.
van der Lee, J. H., Snels, I. A. K., Beckerman, H., Lankhorst, G. J., Wagenaar, R. C., &
Bouter, L. M. (2001). Exercise therapy for arm function in stroke patients: a
systematic review of randomized controlled trials. Clinical rehabilitation, 15(1),
20-31.
van der Lee, J. H., Wagenaar, R. C., Lankhorst, G. J., Vogelaar, T. W., Deville, W. L.,
& Bouter, L. M. (1999). Forced use of the upper extremity in chronic stroke
patients: results from a single-blind randomized clinical trial. Stroke, 30(11),
2369.
Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. (2002). Robot-assisted
movement training compared with conventional therapy techniques for the
rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil,
83(7), 952-959.
Van der Putten, J., Hobart, J., Freeman, J., & Thompson, A. (1999). Measuring change
49
in disability after inpatient rehabilitation: comparison of the responsiveness of
the Barthel Index and the Functional Independence Measure. Journal of
Neurology, Neurosurgery & Psychiatry, 66(4), 480-484.
Van Peppen, R. P. S., Kwakkel, G., Wood-Dauphinee, S., Hendriks, H. J. M., Van der
Wees, P. J., & Dekker, J. (2004). The impact of physical therapy on functional
outcomes after stroke: what's the evidence? Clinical rehabilitation, 18(8),
833-862.
Vandervelde, L., Van den Bergh, P. Y. K., Penta, M., & Thonnard, J. L. (2010).
Validation of the ABILHAND questionnaire to measure manual ability in
children and adults with neuromuscular disorders. Journal of Neurology,
Neurosurgery & Psychiatry, 81(5), 506-512.
Wallace, D., Duncan, P. W., & Lai, S. M. (2002). Comparison of the responsiveness of
the Barthel Index and the Motor Component of the Functional Independence
Measure in stroke: The impact of using different methods for measuring
responsiveness. Journal of clinical epidemiology, 55(9), 922-928.
Wang, T., Lin, K., Wu, C., Chung, C., Pei, Y., & Teng, Y. (2011). Validity,
Responsiveness, and Clinically Important Difference of the ABILHAND
Questionnaire in Patients With Stroke. Archives of physical medicine and
rehabilitation, 92(7), 1086-1091.
50
Wewers, M. E., & Lowe, N. K. (1990). A critical review of visual analogue scales in the
measurement of clinical phenomena. Research in nursing & health, 13(4),
227-236.
Whitall, J., Waller, S. M. C., Silver, K. H. C., & Macko, R. F. (2000). Repetitive
bilateral arm training with rhythmic auditory cueing improves motor function in
chronic hemiparetic stroke. Stroke, 31(10), 2390-2395.
Whitall, J., Waller, S. M. C., Sorkin, J. D., Forrester, L. W., Macko, R. F., Hanley, D. F.,
Luft, A. (2011). Bilateral and Unilateral Arm Training Improve Motor Function
Through Differing Neuroplastic Mechanisms. Neurorehabilitation and Neural
Repair, 25(2), 118-129.
Whyte, J., Gordon, W., & Gonzalez Rothi, L. J. (2009). A phased developmental
approach to neurorehabilitation research: the science of knowledge building.
Archives of physical medicine and rehabilitation, 90(11), S3-S10.
Wittenberg, G. F., & Schaechter, J. D. (2009). The neural basis of constraint-induced
movement therapy. Current opinion in neurology, 22(6), 582-588.
Woldag, H., & Hummelsheim, H. (2002). Evidence-based physiotherapeutic concepts
for improving arm and hand function in stroke patients. Journal of neurology,
249(5), 518-528.
Wolf, S. L., Thompson, P. A., Winstein, C. J., Miller, J. P., Blanton, S. R.,
51
Nichols-Larsen, D. S., Light, K. E. (2010). The EXCITE Stroke Trial:
Comparing Early and Delayed Constraint-Induced Movement Therapy. Stroke,
41(10), 2309-2315.
Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D.,
Nichols-Larsen, D. (2006). Effect of constraint-induced movement therapy on
upper extremity function 3 to 9 months after stroke. JAMA: the journal of the
American Medical Association, 296(17), 2095-2104.
Wu, C., Chen, C., Tang, S. F., Lin, K., & Huang, Y. (2007). Kinematic and clinical
analyses of upper-extremity movements after constraint-induced movement
therapy in patients with stroke: a randomized controlled trial. Archives of
physical medicine and rehabilitation, 88(8), 964-970.
Yelnik, A. P., Simon, O., Parratte, B., & Gracies, J. M. (2010). How to clinically assess
and treat muscle overactivity in spastic paresis. Journal of Rehabilitation
Medicine, 42(9), 801-807.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31406-
dc.description.abstract背景與目的: 機械輔助療法乃是一種藉由高科技治療儀器,融合高治療強度的動作練習與多元的感覺動作刺激等治療原理,來達到促進中風患者上肢動作功能復原的治療方法。多有研究指出機械輔助療法有助於提升慢性中風患者的上肢動作功能,卻少有研究顯示此療效能有效改善患者的日常生活功能表現。本研究旨在探討高強度機械輔助治療(Intensive Robot-assisted Therapy, IRT),是否比治療劑量配對的控制療法 (Control Intervention, CI) 更能促成上肢動作復健療效與功能性活動表現。我們並藉由了解患者主觀的疼痛、疲勞反應,以期探討慢性中風個案對此治療方式的耐受性。
研究方法:本研究設計為多中心單盲隨機分派試驗。自民國99 年7 月1 日至民國100 年6 月19 日止,共收納20 位慢性中風半側偏癱患者。受試者分別被隨機分派至高強度機械輔助治療組(IRT group)與治療劑量(時間)配對控制治療組(CIgroup),並接受每次105-120 分鐘、每週4-6 次、為期3-4 週,共18-20 天的治療。應世界衛生組織(WHO)於2001 修訂之「國際健康功能與身心障礙分類系統(International Classification of Functioning, Disability and Health)」,我們使用傅格-梅爾動作復原評估量表(Fugl-Meyer Assessment)評估患者上肢動作功能(Body function)、雙手操作能力問卷(ABILHAND)與生活功能獨立程度量表(Functional Independent Measure)評估患者活動與參與的表現(Activity and Participation),並以視覺化類比量尺(Visual Analogue Scale)探知患者主觀疼痛與疲勞反應,評量環境影響因素。
研究方法: 受試者皆全數完成試驗,兩組個案在臨床特徵與上肢動作功能表現
皆無顯著差異。患者在接受合併式高密度機械輔助治療 (cHRT) ,以及劑量配對控制治療組 (CI) 後,兩組別的自評疼痛程度 (F(1,19)= 8.062, P= .011, η2= .322)與疲勞程度 (F(1,19)=.090, P= .767, η2= .005) 並未呈現顯著差異。高強度機械輔助治療組(IRT group) 的動作功能改善較控制治療組 (CI) 佳,組間差異達統計顯著 (Fugl-Meyer Assessment , F(1,19)= 7.66, P= .013, η2= .31)。前者療效亦呈現較好的趨勢,該組在上肢動作近遠端的進步幅度皆優於控制治療組 (CI)。在活動與參與層面 (Activity and Participation) , 兩組不論在雙手操作能力問卷(ABILHAND, F(1,19)= .374, P= .549, η2= .022) 或生活功能獨立程度量表(Functional Independent Measure, F(1,19)= 3.025, P= .097, η2= .131) 都未達統計顯著。然而,高強度機械輔助治療組(IRT group)雙手操作能力改善程度具有較好的進步趨勢,控制治療組 (CI) 則在日常生活功能層面顯示較好的進步趨勢。
結論: 高強度機械輔助治療 (IRT)應可適用於改善輕度至中度偏癱慢性中風患者的上肢近、遠端動作功能。然而,此療法在促進功能性活動的面向,並未優於劑量配對的傳統治療。
zh_TW
dc.description.abstractBackground: Stroke survivors are limited in their daily functions due to restrictedmotor function. None Robot-assisted Therapies (RTs), providing intensive sensorimotor approaches, has been established as effective on both upper extremity(UE) motor function and performance of daily livings for patients with chronic stroke.
Objective: To determine whether the Intensive Robot-assisted Therapy (IRT) is safe, tolerable and effective on both UE motor recovery and functional performance of chronic stroke survivors.
Methods: Multi-centered randomized controlled trial involved 20 chronic stroke participants with mild to moderate hemiparesis between July 1, 2010, and June 19,2011. Patients were randomly assigned to IRT and dose-matched (i.e.,matched on therapy hours) control intervention (CI) to receive 18-20 sessions (105-120 mins/day,4-6 days/wk, 3-4 weeks). Based on the ICF model, we choose Fugl-Meyer Assessment (FMA) as primary outcome measure to assess the body function domain;
ABILHAND and Functional Independent Measure (FIM) as the secondary outcomes to measure the activities and participation domain; Visual Analogue Scale as the contextual domain to assess adverse effects.
Results: 20 participants completed our intervention protocols, no significant between-group differences were found in baseline characteristics. Significant between-group difference and large effect were shown on the FMA total score(F(1,19)= 7.66, P= .013, η2= .31) after treatment. The IRT group, as compared to CI, showed greater improvements in both proximal shoulder-elbow level and distal forearm-wrist-hand level on FMA scale; however, non-significant differences were reported on both ABILHAND scale (F(1,19)= .374, P= .549, η2= .022) and FIM(F(1,19)= 3.025, P= .097,
η2= .131) after treatment. IRT did not show excessive
adverse effects in comparison to CI.
Conclusions: It may be feasible to deliver the IRT for chronic stroke patients with mild to moderate hemiparesis. The current results suggest that IRT is beneficial to
improve UE motor function at both proximal and distal level without causing excessive adverse effects; however, this new intervention regimen may not adequate to drive significant differences on functional performance in comparison to CI.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:12:39Z (GMT). No. of bitstreams: 1
ntu-100-R98429008-1.pdf: 491362 bytes, checksum: 40da7fc10688a28da00c98e85a339422 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsIntroduction ……………………………………………………………..…….………… 1
Purposes and Hypotheses………………………………………………………….. 6
Methods…………………………...……………………………………………………… 7
Participants………………………………………………………………………….. 7
Sample Size Estimation…………………………………………….………………. 8
Study Design………………………………………………………………………... 8
Interventions………………………………………………………………………… 9
Biomechanical Device……………………………………………………………… 10
Outcome Measures………………………………………………..………………… 12
Primary outcome: Body Function Domain…………………...………………… 12
Secondary Outcomes: Activity and Participation domain……………………… 13
Tertiary Outcomes: Adverse Effects………………………………………...….. 14
Statistical Analysis………………………………………………..………………… 14

Results ……………………………………………………………………………………. 15
Baseline Characteristics of the Patients…........................................................... 15
Primary outcome: Body Function Domain…………………...……………… 16
Proximal UE Motor Function…………………………...……………… 16
Distal UE Motor Function…………………………..…...……………… 17
Secondary Outcomes: Activity and Participation domain…………………… 17
Self-perceived Bilateral Arm Movements…………..…...….…………… 17
Basic Activity of Daily Living………...…………..……...……………… 18
Tertiary Outcomes: Adverse Effects…………………..……...………………. 18
Pain and Fatigue…………………………………..……...……………… 18
Discussion…………………………………………………………………………………. 19
ICF: Overall UE Motor Function…………………..…………………………. 19
Training Specificity: forearm and wrist………………………..……...…. 20
Within-limb Generalization: shoulder, elbow and hand…………………. 21
ICF: Activity and Participation Levels (Transference to Daily function)…….. 23
Self-Perceived Bilateral Arm Movements………………………….……. 24
Basic Activities of Daily Livings (BADLs)……………………………… 25
The Adverse Effects………………………………….……………………….. 27
Pain……………………………………...………………………….……. 28
Fatigue…………………………………...………………………….……. 29
Limitations and Recommendations for Further Studies……………………… 29
Conclusions…………………………………………………………………..…….. 32
References……………………………….…………………………………...…….. 33
Tables……………………………………………………………………………..... 52
Table 1. Baseline Characteristics……………………………………………... 52
Table 2. Upper-extremity Motor Functions from Baseline to Post-treatment... 53
Table3. ADLs from Baseline to Post-treatment………………………………. 54
Table4. Adverse Effects from Baseline to Post-treatment…….…..…………… 55
Table5. Average Repetitions per Session….…..….…..….…..….…..….……...… 56
Figures……………………………………………………………………………… 57
Figure1. Flow chart………………………………………………..…..……… 57
Figure2. Intervention Protocol………………………………………...……… 58
Appendices………………………………………...……………...……………….. 59
Appendix 1.The Bi-Manu-Track……………………...………………………. 59
dc.language.isoen
dc.subject中風zh_TW
dc.subject復健zh_TW
dc.subject機械輔助療法zh_TW
dc.subject機械的zh_TW
dc.subject上肢zh_TW
dc.subjectRoboticen
dc.subjectRehabilitationen
dc.subjectStrokeen
dc.subjectupper-extremityen
dc.subjectRobot-assisted-therapyen
dc.title機器輔助療法於中風患者上肢動作功能、日常生活功能、疼痛與疲勞之影響zh_TW
dc.titleOutcomes of Robot-Assisted Stroke Rehabilitation in Motor, Daily Functions, Pain and Fatigueen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor吳菁宜(Ching-Yi Wu)
dc.contributor.oralexamcommittee陳喬男(Chiao-nan Chen)
dc.subject.keyword中風,復健,機械輔助療法,機械的,上肢,zh_TW
dc.subject.keywordStroke,Rehabilitation,Robot-assisted-therapy,Robotic,upper-extremity,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2011-09-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept職能治療研究所zh_TW
顯示於系所單位:職能治療學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
479.85 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved