請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31406完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林克忠(Keh-chung Lin) | |
| dc.contributor.author | Yu-Chan Lin | en |
| dc.contributor.author | 林育嬋 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:12:39Z | - |
| dc.date.available | 2011-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-09-08 | |
| dc.identifier.citation | Aisen, M. L., Krebs, H. I., Hogan, N., McDowell, F., & Volpe, B. T. (1997). The effect of robot-assisted therapy and rehabilitative training on motor recovery following
stroke. Archives of neurology, 54(4), 443-446. Balasubramanian, S., Klein, J., & Burdet, E. (2010). Robot-assisted rehabilitation of hand function. Current opinion in neurology, 23(6), 661-670. Beebe, J. A., & Lang, C. E. (2009). Relationships and responsiveness of six upper extremity function tests during the first 6 months of recovery after stroke.Journal of neurologic physical therapy: JNPT, 33(2), 96-103. Birkenmeier, R. L., Prager, E. M., & Lang, C. E. (2010). Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabilitation and Neural Repair, 24(7), 620-635. Boudreau, S., Romaniello, A., Wang, K., Svensson, P., Sessle, B. J., & Arendt-Nielsen, L. (2007). The effects of intra-oral pain on motor cortex neuroplasticity associated with short-term novel tongue-protrusion training in humans. Pain, 132(1-2), 169-178. Bovolenta, F., Goldoni, M., Clerici, P., Agosti, M., & Franceschini, M. (2009). Robot therapy for functional recovery of the upper limbs: a pilot study on patients after stroke. J Rehabil Med, 41(12), 971-975. 34 Bovolenta, F., Sale, P., Dall'Armi, V., Clerici, P., & Franceschini, M. (2011). Robot-aided therapy for upper limbs in patients with stroke-related lesions. Brief report of a clinical experience. Journal of NeuroEngineering and Rehabilitation, 8, 18. Brewer, B. R., McDowell, S. K., & Worthen-Chaudhari, L. C. (2007). Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Topics in Stroke Rehabilitation, 14(6), 22-44. Burridge, J. H., & Hughes, A. M. (2010). Potential for new technologies in clinical practice. Current opinion in neurology, 23(6), 671-677. Casadio, M., Giannoni, P., Masia, L., Morasso, P., Sandini, G., Sanguineti, V., Vergaro, E. (2009). Robot therapy of the upper limb in stroke patients: preliminary experiences for the principle-based use of this technology. Functional neurology, 24(4), 195-202. Cauraugh, J. H., Lodha, N., Naik, S. K., & Summers, J. J. (2010). Bilateral movement training and stroke motor recovery progress: A structured review and meta-analysis. Human movement science, 29(5), 853-870. Cooke, E. V., Mares, K., Clark, A., Tallis, R. C., & Pomeroy, V. M. (2010). The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Medicine, 8(1), 60. 35 Cooper, R. A., Dicianno, B. E., Brewer, B., LoPresti, E., Ding, D., Simpson, R., Wang, H. (2008). A perspective on intelligent devices and environments in medical rehabilitation. Medical engineering & physics, 30(10), 1387-1398. Corbetta, D., Sirtori, V., Moja, L., & Gatti, R. (2010). Constraint-induced movement therapy in stroke patients: systematic review and meta-analysis. Eur J Phys Rehabil Med, 46(4), 537-544. Coupar, F., Pollock, A., van Wijck, F., Morris, J., & Langhorne, P. (2007). Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Syst Rev, 14(4), CD006432. Daly, J. J., Hogan, N., Perepezko, E. M., Krebs, H. I., Rogers, J. M., Goyal, K. S., Ruff, R. (2005). Response to upper-limb robotics and functional neuromuscular stimulation following stroke. Journal of rehabilitation research and development, 42(6), 723-736. Davies, P. M. (2000). Steps to follow: the comprehensive treatment of patients with hemiplegia: Springer Verlag. De Groot, M. H., Phillips, S. J., & Eskes, G. A. (2003). Fatigue associated with stroke and other neurologic conditions: implications for stroke rehabilitation. Arch Phys Med Rehabil, 84(11), 1714-1720. Dimyan, M. A., & Cohen, L. G. (2011). Neuroplasticity in the context of motor 36 rehabilitation after stroke. Nature Reviews Neurology, 7(2), 76-85. Dipietro, L., Krebs, H. I., Fasoli, S. E., Volpe, B. T., & Hogan, N. (2009). Submovement changes characterize generalization of motor recovery after stroke. Cortex, 45(3), 318-324. Dobkin, B. H. (2005). Clinical practice. Rehabilitation after stroke. N Engl J Med, 352(16), 1677-1684. Dobkin, B. H. (2007). Confounders in rehabilitation trials of task-oriented training: lessons from the designs of the EXCITE and SCILT multicenter trials. Neurorehabil Neural Repair, 21(1), 3-13. Dobkin, B. H. (2007). Confounders in rehabilitation trials of task-oriented training: lessons from the designs of the EXCITE and SCILT multicenter trials. Neurorehabilitation and Neural Repair, 21(1), 3-13. Dodds, T. A., Martin, D., Stolov, W., & Deyo, R. (1993). A validation of the functional independence measurement and its performance among rehabilitation inpatients. Archives of physical medicine and rehabilitation, 74(5), 531-536. Fasoli, S. E., Krebs, H. I., & Hogan, N. (2004). Robotic technology and stroke rehabilitation: translating research into practice. Top Stroke Rehabil, 11(4), 11-19. Feys, H., De Weerdt, W., Verbeke, G., Steck, G. C., Capiau, C., Kiekens, C., Cras, P. 37 (2004). Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: a 5-year follow-up study of a randomized trial. Stroke, 35(4), 924-929. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research, 12(3),189-98. French, B., Thomas, L., Leathley, M., Sutton, C., McAdam, J., Forster, A., Watkins, C. (2010). Does repetitive task training improve functional activity after stroke? A Cochrane systematic review and meta-analysis. Journal of Rehabilitation Medicine, 42(1), 9-15. Fugl-Meyer, A., Jaasko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine, 7(1), 13-31. Fugl-Meyer, A., Jaasko, L., & Norlin, V. (1975). The post-stroke hemiplegic patient. II. Incidence, mortality, and vocational return in Goteborg, Sweden with a review of the literature. Scandinavian journal of rehabilitation medicine, 7(2), 73-83. Gauthier, L. V., Taub, E., Perkins, C., Ortmann, M., Mark, V. W., & Uswatte, G. (2008). Remodeling the Brain: Plastic Structural Brain Changes Produced by Different Motor Therapies After Stroke* Supplemental Material. Stroke, 39(5), 38 1520-1525. Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabilitation and Neural Repair, 16(3), 232-240. Hamilton, B. B., Laughlin, J. A., Fiedler, R. C., & Granger, C. V. (1994). Interrater reliability of the 7-level functional independence measure (FIM). Scandinavian journal of rehabilitation medicine, 26(3), 115-119. Hamm, R. J., Temple, M. D., O'dell, D. M., Pike, B. R., & Lyeth, B. G. (1996). Exposure to environmental complexity promotes recovery of cognitive function after traumatic brain injury. Journal of neurotrauma, 13(1), 41-47. Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current opinion in neurology, 16(6), 705-710. Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., & Werner, C. (2003). Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil, 84(6), 915-920. Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., & Lingnau, M. (2005). Computerized arm training improves the motor control of the severely affected 39 arm after stroke: a single-blinded randomized trial in two centers. Stroke, 36(9), 1960-1966. Hogan, N., Krebs, H. I., Rohrer, B., Palazzolo, J. J., Dipietro, L., Fasoli, S. E., Lynch, D. (2006). Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. Journal of rehabilitation research and development, 43(5), 605-618. Hsieh, Y., Wu, C., Liao, W., Lin, K., Wu, K., & Lee, C. (2011). Effects of Treatment Intensity in Upper Limb Robot-Assisted Therapy for Chronic Stroke: A Pilot Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 25(6), 503-11. Hsieh, Y., Wu, C., Lin, K., Chang, Y., Chen, C., & Liu, J. (2009). Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke, 40(4), 1386-1391. Hsueh, I. (2002). Responsiveness of two upper extremity function instruments for stroke inpatients receiving rehabilitation. Clinical rehabilitation, 16(6), 617-621. Huang, V. S., & Krakauer, J. W. (2009). Robotic neurorehabilitation: a computational motor learning perspective. Journal of NeuroEngineering and Rehabilitation, 6(1), 5. Kahn, L. E., Lum, P. S., Rymer, W. Z., & Reinkensmeyer, D. J. (2006). Robot-assisted 40 movement training for the stroke-impaired arm: Does it matter what the robot does? Journal of rehabilitation research and development, 43(5), 619-630. Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714-1718. Koganemaru, S., Mima, T., Thabit, M. N., Ikkaku, T., Shimada, K., Kanematsu, M., Fukuyama, H. (2010). Recovery of upper-limb function due to enhanced use-dependent plasticity in chronic stroke patients. Brain, 133(11), 3373-3384. Krebs, H. I., Volpe, B., & Hogan, N. (2009). A working model of stroke recovery from rehabilitation robotics practitioners. Journal of NeuroEngineering and Rehabilitation, 6(1), 6. Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., & Hogan, N. (2007). Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 15(3), 327-335. Kutner, N. G., Zhang, R., Butler, A. J., Wolf, S. L., & Alberts, J. L. (2010). Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Physical therapy, 90(4), 493-504. Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on 41 upper limb recovery after stroke: a systematic review. Neurorehabilitation and Neural Repair, 22(2), 111-121. Kwakkel, G., Kollen, B. J., van der Grond, J., & Prevo, A. J. (2003). Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke, 34(9), 2181-2186. Kwakkel, G., Wagenaar, R. C., Koelman, T. W., Lankhorst, G. J., & Koetsier, J. C. (1997). Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke, 28(8), 1550-1556. Lang, C. E., MacDonald, J. R., Reisman, D. S., Boyd, L., Jacobson Kimberley, T., Schindler-Ivens, S. M., Scheets, P. L. (2009). Observation of amounts of movement practice provided during stroke rehabilitation. Archives of physical medicine and rehabilitation, 90(10), 1692-1698. Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: a systematic review. The Lancet Neurology, 8(8), 741-754. Langhorne, P., Wagenaar, R., & Partridge, C. (1996). Physiotherapy after stroke: More is better? Physiotherapy research international: the journal for researchers and clinicians in physical therapy, 1(2), 75-88. Latimer, C. P., Keeling, J., Lin, B., Henderson, M., & Hale, L. A. (2010). The impact of bilateral therapy on upper limb function after chronic stroke: a systematic review. 42 Disability & Rehabilitation(00), 1-11. Levin, M. F. (1996). Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain, 119(1), 281-293. Lin, J. H., Hsu, M. J., Sheu, C. F., Wu, T. S., Lin, R. T., Chen, C. H., & Hsieh, C. L. (2009). Psychometric comparisons of 4 measures for assessing upper-extremity function in people with stroke. Physical therapy, 89(8), 840-850. Lin, K. C., Chung, H. Y., Wu, C. Y., Liu, H. L., Hsieh, Y. W., & Chen, I. (2010). Constraint-induced therapy versus control intervention in patients with stroke: a functional magnetic resonance imaging study. American Journal of Physical Medicine & Rehabilitation, 89(3), 177-185. Lin, K. C., Wu, C. Y., Wei, T. H., Gung, C., Lee, C. Y., & Liu, J. S. (2007). Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study. Clinical rehabilitation, 21(12), 1075-1086. Lindenberg, R., Renga, V., Zhu, L., Nair, D., & Schlaug, G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology, 75(24), 2176-2184. Lo, A. C., Guarino, P., Krebs, H. I., Volpe, B. T., Bever, C. T., Duncan, P. W., Bravata, D. M. (2009). Multicenter randomized trial of robot-assisted rehabilitation for 43 chronic stroke: methods and entry characteristics for VA ROBOTICS. Neurorehabilitation and Neural Repair, 23(8), 775-783. Luke, L. M., Allred, R. P., & Jones, T. A. (2004). Unilateral ischemic sensorimotor cortical damage induces contralesional synaptogenesis and enhances skilled reaching with the ipsilateral forelimb in adult male rats. Synapse, 54(4), 187-199. Lum, P. S., Burgar, C. G., Van Der Loos, M., Shor, P. C., Majmundar, M., & Yap, R. (2006). MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. Journal of rehabilitation research and development, 43(5), 631-642. Marchal-Crespo, L., & Reinkensmeyer, D. J. (2009). Review of control strategies for robotic movement training after neurologic injury. Journal of NeuroEngineering and Rehabilitation, 6(1), 20. Milot, M. H., & Cramer, S. C. (2008). Biomarkers of recovery after stroke. Current opinion in neurology, 21(6), 654-659. Mulder, T., Zijlstra, W., & Geurts, A. (2002). Assessment of motor recovery and decline. Gait & posture, 16(2), 198-210. Oujamaa, L., Relave, I., Froger, J., Mottet, D., & Pelissier, J. Y. (2009). Rehabilitation of arm function after stroke. Literature review. Annals of physical and 44 rehabilitation medicine, 52(3), 269-293. Penta, M., Tesio, L., Arnould, C., Zancan, A., & Thonnard, J. L. (2001). The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: Rasch-based validation and relationship to upper limb impairment. Stroke, 32(7), 1627-1634. Peter, O., Fazekas, G., Zsiga, K., & Denes, Z. (2011). Robot-mediated upper limb physiotherapy: review and recommendations for future clinical trials. International Journal of Rehabilitation Research. Platz, T., Pinkowski, C., van Wijck, F., Kim, I. H., di Bella, P., & Johnson, G. (2005). Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. Clinical rehabilitation, 19(4), 404-411. Platz, T., van Kaick, S., Mehrholz, J., Leidner, O., Eickhof, C., & Pohl, M. (2009). Best conventional therapy versus modular impairment-oriented training for arm paresis after stroke: a single-blind, multicenter randomized controlled trial. Neurorehabilitation and Neural Repair, 23(7), 706-716. Pomeroy, V., Aglioti, S. M., Mark, V. W., McFarland, D., Stinear, C., Wolf, S. L., . . . Fitzpatrick, S. M. (2011). Neurological principles and rehabilitation of action disorders: rehabilitation interventions. Neurorehabil Neural Repair, 25(5 Suppl), 45 33S-43S. Pomeroy, V. M., Clark, C. A., Miller, J. S. G., Baron, J. C., Markus, H. S., & Tallis, R. C. (2005). The potential for utilizing the 'mirror neurone system‥ to enhance recovery of the severely affected upper limb early after stroke: a review and hypothesis. Neurorehabilitation and Neural Repair, 19(1), 4-13. Prange, G. B., Jannink, M. J. A., Groothuis-Oudshoorn, C. G. M., Hermens, H. J., & IJzerman, M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of rehabilitation research and development, 43(2), 171-184. Rabadi, M. H., & Rabadi, F. M. (2006). Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke. Archives of physical medicine and rehabilitation, 87(7), 962-966. Remple, M. S., Bruneau, R. M., VandenBerg, P. M., Goertzen, C., & Kleim, J. A. (2001). Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behavioural brain research, 123(2), 133-141. Rohrer, B., Fasoli, S., Krebs, H. I., Hughes, R., Volpe, B., Frontera, W. R., Hogan, N. (2002). Movement smoothness changes during stroke recovery. The Journal of neuroscience, 22(18), 8297-8304. 46 Rohrer, B., Fasoli, S., Krebs, H. I., Volpe, B., Frontera, W. R., Stein, J., & Hogan, N. (2004). Submovements grow larger, fewer, and more blended during stroke recovery. Motor Control, 8(4), 472-483. Rohrer, B. R. (2002). Evolution of movement smoothness and submovement patterns in persons with stroke. Massachusetts Institute of Technology. Rose, D., Paris, T., Crews, E., Wu, S. S., Sun, A., Behrman, A. L., & Duncan, P. (2011). Feasibility and Effectiveness of Circuit Training in Acute Stroke Rehabilitation. Neurorehabilitation and Neural Repair, 25(2), 140-148. Salter, K., Jutai, J., Teasell, R., Foley, N., Bitensky, J., & Bayley, M. (2005). Issues for selection of outcome measures in stroke rehabilitation: ICF activity. Disability & Rehabilitation, 27(6), 315-340. Sanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., & Gowland, C. (1993). Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Physical therapy, 73(7), 447-454. Scott, J., & Huskisson, E. (1976). Graphic representation of pain. Pain, 2(2), 175-184. Sirtori, V., Corbetta, D., Moja, L., & Gatti, R. (2010). Constraint-Induced Movement Therapy for Upper Extremities in Patients With Stroke. Stroke, 41(1), e57-e58. Sivan, M., O'Connor, R. J., Makower, S., Levesley, M., & Bhakta, B. (2011). Systematic review of outcome measures used in the evaluation of robot-assisted 47 upper limb exercise in stroke. Journal of Rehabilitation Medicine, 43(3), 181-189. Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala, R. R., & Cramer, S. C. (2008). Robot-based hand motor therapy after stroke. Brain, 131(2), 425-437. Taub, E., Crago, J. E., & Uswatte, G. (1998). Constraint-induced movement therapy: A new approach to treatment in physical rehabilitation. Rehabilitation Psychology, 43(2), 152-170. Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., 3rd, Fleming, W. C., Nepomuceno, C. S., Crago, J. E. (1993). Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil, 74(4), 347-354. Tesio, L., Granger, C. V., Perucca, L., Franchignoni, F. P., Battaglia, M. A., & Russell, C. F. (2002). The FIM (TM) Instrument in the United States and Italy: A Comparative Study. American Journal of Physical Medicine & Rehabilitation, 81(3), 168-176. Timmermans, A. A. A., Spooren, A. I. F., Kingma, H., & Seelen, H. A. M. (2010). Influence of Task-Oriented Training Content on Skilled Arm-Hand Performance in Stroke: A Systematic Review. Neurorehabilitation and Neural Repair, 24(9), 858-870. Tseng, B. Y., Gajewski, B. J., & Kluding, P. M. (2010). Reliability, Responsiveness, 48 and Validity of the Visual Analog Fatigue Scale to Measure Exertion Fatigue in People with Chronic Stroke: A Preliminary Study. Stroke Research and Treatment. Turkstra, L. S., Holland, A. L., & Bays, G. A. (2003). The neuroscience of recovery and rehabilitation: What have we learned from animal research? Archives of physical medicine and rehabilitation, 84(4), 604-612. van der Lee, J. H., Snels, I. A. K., Beckerman, H., Lankhorst, G. J., Wagenaar, R. C., & Bouter, L. M. (2001). Exercise therapy for arm function in stroke patients: a systematic review of randomized controlled trials. Clinical rehabilitation, 15(1), 20-31. van der Lee, J. H., Wagenaar, R. C., Lankhorst, G. J., Vogelaar, T. W., Deville, W. L., & Bouter, L. M. (1999). Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke, 30(11), 2369. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil, 83(7), 952-959. Van der Putten, J., Hobart, J., Freeman, J., & Thompson, A. (1999). Measuring change 49 in disability after inpatient rehabilitation: comparison of the responsiveness of the Barthel Index and the Functional Independence Measure. Journal of Neurology, Neurosurgery & Psychiatry, 66(4), 480-484. Van Peppen, R. P. S., Kwakkel, G., Wood-Dauphinee, S., Hendriks, H. J. M., Van der Wees, P. J., & Dekker, J. (2004). The impact of physical therapy on functional outcomes after stroke: what's the evidence? Clinical rehabilitation, 18(8), 833-862. Vandervelde, L., Van den Bergh, P. Y. K., Penta, M., & Thonnard, J. L. (2010). Validation of the ABILHAND questionnaire to measure manual ability in children and adults with neuromuscular disorders. Journal of Neurology, Neurosurgery & Psychiatry, 81(5), 506-512. Wallace, D., Duncan, P. W., & Lai, S. M. (2002). Comparison of the responsiveness of the Barthel Index and the Motor Component of the Functional Independence Measure in stroke: The impact of using different methods for measuring responsiveness. Journal of clinical epidemiology, 55(9), 922-928. Wang, T., Lin, K., Wu, C., Chung, C., Pei, Y., & Teng, Y. (2011). Validity, Responsiveness, and Clinically Important Difference of the ABILHAND Questionnaire in Patients With Stroke. Archives of physical medicine and rehabilitation, 92(7), 1086-1091. 50 Wewers, M. E., & Lowe, N. K. (1990). A critical review of visual analogue scales in the measurement of clinical phenomena. Research in nursing & health, 13(4), 227-236. Whitall, J., Waller, S. M. C., Silver, K. H. C., & Macko, R. F. (2000). Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke, 31(10), 2390-2395. Whitall, J., Waller, S. M. C., Sorkin, J. D., Forrester, L. W., Macko, R. F., Hanley, D. F., Luft, A. (2011). Bilateral and Unilateral Arm Training Improve Motor Function Through Differing Neuroplastic Mechanisms. Neurorehabilitation and Neural Repair, 25(2), 118-129. Whyte, J., Gordon, W., & Gonzalez Rothi, L. J. (2009). A phased developmental approach to neurorehabilitation research: the science of knowledge building. Archives of physical medicine and rehabilitation, 90(11), S3-S10. Wittenberg, G. F., & Schaechter, J. D. (2009). The neural basis of constraint-induced movement therapy. Current opinion in neurology, 22(6), 582-588. Woldag, H., & Hummelsheim, H. (2002). Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients. Journal of neurology, 249(5), 518-528. Wolf, S. L., Thompson, P. A., Winstein, C. J., Miller, J. P., Blanton, S. R., 51 Nichols-Larsen, D. S., Light, K. E. (2010). The EXCITE Stroke Trial: Comparing Early and Delayed Constraint-Induced Movement Therapy. Stroke, 41(10), 2309-2315. Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., Nichols-Larsen, D. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke. JAMA: the journal of the American Medical Association, 296(17), 2095-2104. Wu, C., Chen, C., Tang, S. F., Lin, K., & Huang, Y. (2007). Kinematic and clinical analyses of upper-extremity movements after constraint-induced movement therapy in patients with stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 88(8), 964-970. Yelnik, A. P., Simon, O., Parratte, B., & Gracies, J. M. (2010). How to clinically assess and treat muscle overactivity in spastic paresis. Journal of Rehabilitation Medicine, 42(9), 801-807. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31406 | - |
| dc.description.abstract | 背景與目的: 機械輔助療法乃是一種藉由高科技治療儀器,融合高治療強度的動作練習與多元的感覺動作刺激等治療原理,來達到促進中風患者上肢動作功能復原的治療方法。多有研究指出機械輔助療法有助於提升慢性中風患者的上肢動作功能,卻少有研究顯示此療效能有效改善患者的日常生活功能表現。本研究旨在探討高強度機械輔助治療(Intensive Robot-assisted Therapy, IRT),是否比治療劑量配對的控制療法 (Control Intervention, CI) 更能促成上肢動作復健療效與功能性活動表現。我們並藉由了解患者主觀的疼痛、疲勞反應,以期探討慢性中風個案對此治療方式的耐受性。
研究方法:本研究設計為多中心單盲隨機分派試驗。自民國99 年7 月1 日至民國100 年6 月19 日止,共收納20 位慢性中風半側偏癱患者。受試者分別被隨機分派至高強度機械輔助治療組(IRT group)與治療劑量(時間)配對控制治療組(CIgroup),並接受每次105-120 分鐘、每週4-6 次、為期3-4 週,共18-20 天的治療。應世界衛生組織(WHO)於2001 修訂之「國際健康功能與身心障礙分類系統(International Classification of Functioning, Disability and Health)」,我們使用傅格-梅爾動作復原評估量表(Fugl-Meyer Assessment)評估患者上肢動作功能(Body function)、雙手操作能力問卷(ABILHAND)與生活功能獨立程度量表(Functional Independent Measure)評估患者活動與參與的表現(Activity and Participation),並以視覺化類比量尺(Visual Analogue Scale)探知患者主觀疼痛與疲勞反應,評量環境影響因素。 研究方法: 受試者皆全數完成試驗,兩組個案在臨床特徵與上肢動作功能表現 皆無顯著差異。患者在接受合併式高密度機械輔助治療 (cHRT) ,以及劑量配對控制治療組 (CI) 後,兩組別的自評疼痛程度 (F(1,19)= 8.062, P= .011, η2= .322)與疲勞程度 (F(1,19)=.090, P= .767, η2= .005) 並未呈現顯著差異。高強度機械輔助治療組(IRT group) 的動作功能改善較控制治療組 (CI) 佳,組間差異達統計顯著 (Fugl-Meyer Assessment , F(1,19)= 7.66, P= .013, η2= .31)。前者療效亦呈現較好的趨勢,該組在上肢動作近遠端的進步幅度皆優於控制治療組 (CI)。在活動與參與層面 (Activity and Participation) , 兩組不論在雙手操作能力問卷(ABILHAND, F(1,19)= .374, P= .549, η2= .022) 或生活功能獨立程度量表(Functional Independent Measure, F(1,19)= 3.025, P= .097, η2= .131) 都未達統計顯著。然而,高強度機械輔助治療組(IRT group)雙手操作能力改善程度具有較好的進步趨勢,控制治療組 (CI) 則在日常生活功能層面顯示較好的進步趨勢。 結論: 高強度機械輔助治療 (IRT)應可適用於改善輕度至中度偏癱慢性中風患者的上肢近、遠端動作功能。然而,此療法在促進功能性活動的面向,並未優於劑量配對的傳統治療。 | zh_TW |
| dc.description.abstract | Background: Stroke survivors are limited in their daily functions due to restrictedmotor function. None Robot-assisted Therapies (RTs), providing intensive sensorimotor approaches, has been established as effective on both upper extremity(UE) motor function and performance of daily livings for patients with chronic stroke.
Objective: To determine whether the Intensive Robot-assisted Therapy (IRT) is safe, tolerable and effective on both UE motor recovery and functional performance of chronic stroke survivors. Methods: Multi-centered randomized controlled trial involved 20 chronic stroke participants with mild to moderate hemiparesis between July 1, 2010, and June 19,2011. Patients were randomly assigned to IRT and dose-matched (i.e.,matched on therapy hours) control intervention (CI) to receive 18-20 sessions (105-120 mins/day,4-6 days/wk, 3-4 weeks). Based on the ICF model, we choose Fugl-Meyer Assessment (FMA) as primary outcome measure to assess the body function domain; ABILHAND and Functional Independent Measure (FIM) as the secondary outcomes to measure the activities and participation domain; Visual Analogue Scale as the contextual domain to assess adverse effects. Results: 20 participants completed our intervention protocols, no significant between-group differences were found in baseline characteristics. Significant between-group difference and large effect were shown on the FMA total score(F(1,19)= 7.66, P= .013, η2= .31) after treatment. The IRT group, as compared to CI, showed greater improvements in both proximal shoulder-elbow level and distal forearm-wrist-hand level on FMA scale; however, non-significant differences were reported on both ABILHAND scale (F(1,19)= .374, P= .549, η2= .022) and FIM(F(1,19)= 3.025, P= .097, η2= .131) after treatment. IRT did not show excessive adverse effects in comparison to CI. Conclusions: It may be feasible to deliver the IRT for chronic stroke patients with mild to moderate hemiparesis. The current results suggest that IRT is beneficial to improve UE motor function at both proximal and distal level without causing excessive adverse effects; however, this new intervention regimen may not adequate to drive significant differences on functional performance in comparison to CI. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:12:39Z (GMT). No. of bitstreams: 1 ntu-100-R98429008-1.pdf: 491362 bytes, checksum: 40da7fc10688a28da00c98e85a339422 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Introduction ……………………………………………………………..…….………… 1
Purposes and Hypotheses………………………………………………………….. 6 Methods…………………………...……………………………………………………… 7 Participants………………………………………………………………………….. 7 Sample Size Estimation…………………………………………….………………. 8 Study Design………………………………………………………………………... 8 Interventions………………………………………………………………………… 9 Biomechanical Device……………………………………………………………… 10 Outcome Measures………………………………………………..………………… 12 Primary outcome: Body Function Domain…………………...………………… 12 Secondary Outcomes: Activity and Participation domain……………………… 13 Tertiary Outcomes: Adverse Effects………………………………………...….. 14 Statistical Analysis………………………………………………..………………… 14 Results ……………………………………………………………………………………. 15 Baseline Characteristics of the Patients…........................................................... 15 Primary outcome: Body Function Domain…………………...……………… 16 Proximal UE Motor Function…………………………...……………… 16 Distal UE Motor Function…………………………..…...……………… 17 Secondary Outcomes: Activity and Participation domain…………………… 17 Self-perceived Bilateral Arm Movements…………..…...….…………… 17 Basic Activity of Daily Living………...…………..……...……………… 18 Tertiary Outcomes: Adverse Effects…………………..……...………………. 18 Pain and Fatigue…………………………………..……...……………… 18 Discussion…………………………………………………………………………………. 19 ICF: Overall UE Motor Function…………………..…………………………. 19 Training Specificity: forearm and wrist………………………..……...…. 20 Within-limb Generalization: shoulder, elbow and hand…………………. 21 ICF: Activity and Participation Levels (Transference to Daily function)…….. 23 Self-Perceived Bilateral Arm Movements………………………….……. 24 Basic Activities of Daily Livings (BADLs)……………………………… 25 The Adverse Effects………………………………….……………………….. 27 Pain……………………………………...………………………….……. 28 Fatigue…………………………………...………………………….……. 29 Limitations and Recommendations for Further Studies……………………… 29 Conclusions…………………………………………………………………..…….. 32 References……………………………….…………………………………...…….. 33 Tables……………………………………………………………………………..... 52 Table 1. Baseline Characteristics……………………………………………... 52 Table 2. Upper-extremity Motor Functions from Baseline to Post-treatment... 53 Table3. ADLs from Baseline to Post-treatment………………………………. 54 Table4. Adverse Effects from Baseline to Post-treatment…….…..…………… 55 Table5. Average Repetitions per Session….…..….…..….…..….…..….……...… 56 Figures……………………………………………………………………………… 57 Figure1. Flow chart………………………………………………..…..……… 57 Figure2. Intervention Protocol………………………………………...……… 58 Appendices………………………………………...……………...……………….. 59 Appendix 1.The Bi-Manu-Track……………………...………………………. 59 | |
| dc.language.iso | en | |
| dc.subject | 中風 | zh_TW |
| dc.subject | 復健 | zh_TW |
| dc.subject | 機械輔助療法 | zh_TW |
| dc.subject | 機械的 | zh_TW |
| dc.subject | 上肢 | zh_TW |
| dc.subject | Robotic | en |
| dc.subject | Rehabilitation | en |
| dc.subject | Stroke | en |
| dc.subject | upper-extremity | en |
| dc.subject | Robot-assisted-therapy | en |
| dc.title | 機器輔助療法於中風患者上肢動作功能、日常生活功能、疼痛與疲勞之影響 | zh_TW |
| dc.title | Outcomes of Robot-Assisted Stroke Rehabilitation in Motor, Daily Functions, Pain and Fatigue | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 吳菁宜(Ching-Yi Wu) | |
| dc.contributor.oralexamcommittee | 陳喬男(Chiao-nan Chen) | |
| dc.subject.keyword | 中風,復健,機械輔助療法,機械的,上肢, | zh_TW |
| dc.subject.keyword | Stroke,Rehabilitation,Robot-assisted-therapy,Robotic,upper-extremity, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-09-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 職能治療研究所 | zh_TW |
| 顯示於系所單位: | 職能治療學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 479.85 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
