Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31362
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳
dc.contributor.authorFu-Yu Shihen
dc.contributor.author施甫諭zh_TW
dc.date.accessioned2021-06-13T02:45:31Z-
dc.date.available2014-08-02
dc.date.copyright2011-08-02
dc.date.issued2011
dc.date.submitted2011-07-31
dc.identifier.citation[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666
[2] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature, 446 (2007) 60
[3] E.H. Hwang, S. Adam, S. Das Sarma, Carrier Transport in Two-Dimensional Graphene Layers, Physical Review Letters, 98 (2007) 186806
[4] S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, A self-consistent theory for graphene transport, Proceedings of the National Academy of Sciences of the United States of America, 104 (2007) 18392
[5] J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene, Nature Physics, 4 (2008) 377
[6] T. Ando, Screening effect and impurity scattering in monolayer graphene, Journal of the Physical Society of Japan, 75 (2006) 074716
[7] K. Nomura, A.H. MacDonald, Quantum Transport of Massless Dirac Fermions, Physical Review Letters, 98 (2007) 076602.
[8] M. Trushin, J. Schliemann, Minimum Electrical and Thermal Conductivity of Graphene: A Quasiclassical Approach, Physical Review Letters, 99 (2007) 216602
[9] Y.W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E.H. Hwang, S. Das Sarma, H.L. Stormer, P. Kim, Measurement of Scattering Rate and Minimum Conductivity in Graphene, Physical Review Letters, 99 (2007) 246803
[10] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197
[11] Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438 (2005) 201
[12] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Materials, 6 (2007) 652
[13] Michael P. Marder “Condensed Matter Physics”(2010)
[14] Jasprit Singh “Electronic and Optoelectronic Properties of Semiconductor Structures”(2003)
[15] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters, 100 (2008) 016602
[16] E.H. Hwang, S. Das Sarma, Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene, Physical Review B, 77 (2008) 115449
[17] J.H. Chen, C. Jang, S.D. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology, 3 (2008) 206
[18] K. Hess, P. Vogl, REMOTE POLAR PHONON-SCATTERING IN SILICON INVERSION LAYERS, Solid State Communications, 30 (1979) 807
[19] S. Fratini, F. Guinea, Substrate-limited electron dynamics in graphene, Physical Review B, 77 (2008) 195415
[20] M.V. Fischetti, D.A. Neumayer, E.A. Cartier, Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: The role of remote phonon scattering, Journal of Applied Physics, 90 (2001) 4587
[21] T. Lohmann, K. von Klitzing, J.H. Smet, Four-Terminal Magneto-Transport in Graphene p-n Junctions Created by Spatially Selective Doping, Nano Letters, 9 (2009) 1973
[22] D.B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.M. Lin, G.S. Tulevski, J.C. Tsang, P. Avouris, Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices, Nano Letters, 9 (2009) 388
[23] Z.M. Liao, B.H. Han, Y.B. Zhou, D.P. Yu, Hysteresis reversion in graphene field-effect transistors, Journal of Chemical Physics, 133 (2010) 044703
[24] H.M. Wang, Y.H. Wu, C.X. Cong, J.Z. Shang, T. Yu, Hysteresis of Electronic Transport in Graphene Transistors, Acs Nano, 4 (2010) 7221
[25] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. von Klitzing, J.H. Smet, Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions, Nano Letters, 10 (2010) 1149
[26] X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotechnology, 3 (2008) 491, Supplementary information
[27] H.C. Cheng, R.J. Shiue, C.C. Tsai, W.H. Wang, Y.T. Chen, High-Quality Graphene p-n Junctions via Resist-free Fabrication and Solution-Based Noncovalent Functionalization, Acs Nano, 5 (2011) 2051
[28] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146 (2008) 351
[29] K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, P. Kim, Temperature-Dependent Transport in Suspended Graphene, Physical Review Letters, 101 (2008) 096802
[30] X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotechnology, 3 (2008) 491
[31] J. Moser, A. Barreiro, A. Bachtold, Current-induced cleaning of graphene, Applied Physics Letters, 91 (2007) 163513
[32] K. Nomura, A.H. MacDonald, Quantum Hall Ferromagnetism in Graphene, Physical Review Letters, 96 (2006) 256602
[33] J. Tworzydlstroko, B. Trauzettel, M. Titov, A. Rycerz, C.W.J. Beenakker, Sub-Poissonian Shot Noise in Graphene, Physical Review Letters, 96 (2006) 246802
[34] N.M.R. Peres, A.H. Castro Neto, F. Guinea, Conductance quantization in mesoscopic graphene, Physical Review B, 73 (2006) 195411
[35] Richard C. Jaeger(1988). Introduction to microelectronic fabrication.
[36] Wolf, S.; R.N. Tauber (1986).Silicon Processing for the VLSI Era: Volume 1 - Process Technology.
[37]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666
[38]K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146 (2008) 351
[39] MicroChem, PMMA resist Data Sheet
[40] I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets, Nano Letters, 7 (2007) 3569
[41] Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy, Nano Letters, 7 (2007) 2758
[42]H.C. Cheng, R.J. Shiue, C.C. Tsai, W.H. Wang, Y.T. Chen, High-Quality Graphene p-n Junctions via Resist-free Fabrication and Solution-Based Noncovalent Functionalization, Acs Nano, 5 (2011) 2051
[43]Stanford Research Systems (Revision 2.4),SR830 DSP Lock-In Amplifier Operating Manual and Programming Reference
[44] Digital Instruments (Version 3.0), Scanning Probe Microscopy Training Notebook
[45] Digital Instruments (Version 4.31ce), MultiModeTM SPM Instruction Manual
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31362-
dc.description.abstractGraphene, a two-dimensional material consisting of single-layer carbon atoms, is found to exhibit remarkably high carrier mobility. However, conventional graphene devices deposited on SiO2/Si substrates suffer from charge impurity and electron-phonon scattering. Therefore, the extrinsic transport properties of graphene are degraded. In order to minimize the effects of carrier scattering due to SiO2/Si substrates, removing the substrate beneath graphene could improve its transport properties significantly. In 2008, Philip Kim’s group at the Columbia University reported the first suspended graphene devices. They observed more intrinsic transport properties in suspended graphene devices.
Different from conventional graphene devices, we carried out resist-free method to fabricate suspended graphene devices. Experiment data shows that conductance is sub-linearly dependent on density of states at low temperature. Also, temperature dependence of resistivity exhibits approximately linear relation instead of activated behavior at high temperature (>100 K). This indicates that the remote interfacial phonon scattering due to surface phonon on SiO2 substrate is excluded by removing the substrates. Furthermore, owing to the reduced charged impurities from SiO2 substrates, the fluctuation energy of suspended graphene samples, E_F^sat≈15 meV, is much smaller than the value of non-suspended graphene samples. Our resist-free fabrication technique provides a feasible route to access the intrinsic transport properties of graphene.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:45:31Z (GMT). No. of bitstreams: 1
ntu-100-R98222039-1.pdf: 2590316 bytes, checksum: 74635bad6d8319babb61747bf849f2e9 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
Chapter 1 Introduction 1
Chapter 2 Paper Review: Transport Properties in Graphene 7
2.1 Scattering in graphene 7
2.1.1 Charged impurity scattering 7
2.1.2 Phonon scattering & limits of graphene on SiO2 10
2.2 Hysteresis behavior in graphene transistor devices 16
2.3 Suspended graphene 17
Chapter 3 Experiment Apparatus and Methods 25
3.1 Semiconductor Device Fabrication Processes 25
3.1.1 Lithography process and material synthesis 25
3.1.2 Etching Process 27
3.2 Fabrication of Resist-free Suspended Graphene 29
3.2.1 Electron beam lithography 29
3.2.2 Fabrication of Resist-Free Device 33
3.3 Electrical Measurement and Structure Characterization 35
3.3.1 Electrical Measurement Systems 35
3.3.2 Atomic Force Microscopy System 38
Chapter 4 Result and Discussion 41
4.1 Electronic transport analysis of suspended graphene 41
4.1.1 Effective capacitance of the periodic trench structure 41
4.1.2 Thermal Annealing 42
4.1.3 Electric field effect of suspended graphene 43
4.1.4 Analysis of temperature dependent transport 44
4.2 Atomic force Microscopy of suspended graphene 46
4.2.1 Graphene which cross by the trench partially 47
4.2.2 Graphene which cross the trench completely 48
Chapter 5 Conclusion 51
dc.language.isoen
dc.subject石墨烯zh_TW
dc.subject元件zh_TW
dc.subjectsuspended grapheneen
dc.title懸浮石墨烯的製作與傳輸特性zh_TW
dc.titleFabrication and transport properties of suspended grapheneen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王偉華,林泰源
dc.subject.keyword石墨烯,元件,zh_TW
dc.subject.keywordsuspended graphene,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2011-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved