Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31328
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡正鼎(Cheng-Ting Chien)
dc.contributor.authorJune-Tai Wuen
dc.contributor.author吳君泰zh_TW
dc.date.accessioned2021-06-13T02:43:21Z-
dc.date.available2008-11-25
dc.date.copyright2007-01-09
dc.date.issued2006
dc.date.submitted2006-11-27
dc.identifier.citationAngers, S., Thorpe, C.J., Biechele, T.L., Goldenberg, S.J., Zheng, N., MacCoss, M.J., and Moon, R.T. (2006). The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8, 348-357.
Aravind, L., and Koonin, E.V. (2000). The U box is a modified RING finger - a common domain in ubiquitination. Curr Biol 10, R132-134.
Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274.
Besson, A., Gurian-West, M., Chen, X., Kelly-Spratt, K.S., Kemp, C.J., and Roberts, J.M. (2006). A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression. Genes Dev 20, 47-64.
Bondar, T., Kalinina, A., Khair, L., Kopanja, D., Nag, A., Bagchi, S., and Raychaudhuri, P. (2006). Cul4A and DDB1 associate with Skp2 to target p27Kip1 for proteolysis involving the COP9 signalosome. Mol Cell Biol 26, 2531-2539.
Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
Brower, C.S., Sato, S., Tomomori-Sato, C., Kamura, T., Pause, A., Stearman, R., Klausner, R.D., Malik, S., Lane, W.S., Sorokina, I., et al. (2002). Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc Natl Acad Sci U S A 99, 10353-10358.
Burger-Kentischer, A., Finkelmeier, D., Thiele, M., Schmucker, J., Geiger, G., Tovar, G.E., and Bernhagen, J. (2005). Binding of JAB1/CSN5 to MIF is mediated by the MPN domain but is independent of the JAMM motif. FEBS letters 579, 1693-1701.
Chen, C., Seth, A.K., and Aplin, A.E. (2006). Genetic and expression aberrations of E3 ubiquitin ligases in human breast cancer. Mol Cancer Res 4, 695-707.
Chen, L.C., Manjeshwar, S., Lu, Y., Moore, D., Ljung, B.M., Kuo, W.L., Dairkee, S.H., Wernick, M., Collins, C., and Smith, H.S. (1998). The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer research 58, 3677-3683.
Cheng, Y., Dai, X., and Zhao, Y. (2004). AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis. Plant Physiol 135, 1020-1026.
Chuang, H.W., Zhang, W., and Gray, W.M. (2004). Arabidopsis ETA2, an apparent ortholog of the human cullin-interacting protein CAND1, is required for auxin responses mediated by the SCF(TIR1) ubiquitin ligase. Plant Cell 16, 1883-1897.
Clark-Maguire, S., and Mains, P.E. (1994a). Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component. J Cell Biol 126, 199-209.
Clark-Maguire, S., and Mains, P.E. (1994b). mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. Genetics 136, 533-546.
Cope, G.A., and Deshaies, R.J. (2003). COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663-671.
Cope, G.A., and Deshaies, R.J. (2006). Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels. BMC Biochem 7, 1.
Cope, G.A., Suh, G.S., Aravind, L., Schwarz, S.E., Zipursky, S.L., Koonin, E.V., and Deshaies, R.J. (2002). Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608-611.
Coux, O., Tanaka, K., and Goldberg, A.L. (1996). Structure and functions of the 20S and 26S proteasomes. Annual review of biochemistry 65, 801-847.
Dai, M.S., Jin, Y., Gallegos, J.R., and Lu, H. (2006). Balance of Yin and Yang: ubiquitylation-mediated regulation of p53 and c-Myc. Neoplasia (New York, NY 8, 630-644.
del Pozo, J.C., Dharmasiri, S., Hellmann, H., Walker, L., Gray, W.M., and Estelle, M. (2002). AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 is required for auxin response. Plant Cell 14, 421-433.
Denti, S., Fernandez-Sanchez, M.E., Rogge, L., and Bianchi, E. (2006). The COP9 signalosome regulates Skp2 levels and proliferation of human cells. J Biol Chem 281, 32188-32196.
Dharmasiri, S., Dharmasiri, N., Hellmann, H., and Estelle, M. (2003). The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. Embo J 22, 1762-1770.
Dohmann, E.M., Kuhnle, C., and Schwechheimer, C. (2005). Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. Plant Cell 17, 1967-1978.
Doronkin, S., Djagaeva, I., and Beckendorf, S.K. (2002). CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint. Development 129, 5053-5064.
Doronkin, S., Djagaeva, I., and Beckendorf, S.K. (2003). The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev Cell 4, 699-710.
Feng, S., Shen, Y., Sullivan, J.A., Rubio, V., Xiong, Y., Sun, T.P., and Deng, X.W. (2004). Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein Degradation. Plant Cell 16, 1870-1882.
Galan, J.M., and Peter, M. (1999). Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc Natl Acad Sci U S A 96, 9124-9129.
Gao, F., Cheng, J., Shi, T., and Yeh, E.T. (2006). Neddylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NFkappaB-dependent transcription. Nat Cell Biol 8, 1171-1177.
Goldenberg, S.J., Cascio, T.C., Shumway, S.D., Garbutt, K.C., Liu, J., Xiong, Y., and Zheng, N. (2004). Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119, 517-528.
Gray, W.M., Hellmann, H., Dharmasiri, S., and Estelle, M. (2002). Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell 14, 2137-2144.
Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001). Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414, 271-276.
Groll, M., and Huber, R. (2003). Substrate access and processing by the 20S proteasome core particle. The international journal of biochemistry & cell biology 35, 606-616.
Groll, M., and Huber, R. (2005). Purification, crystallization, and X-ray analysis of the yeast 20S proteasome. Methods in enzymology 398, 329-336.
Guardavaccaro, D., Kudo, Y., Boulaire, J., Barchi, M., Busino, L., Donzelli, M., Margottin-Goguet, F., Jackson, P.K., Yamasaki, L., and Pagano, M. (2003). Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4, 799-812.
Gusmaroli, G., Feng, S., and Deng, X.W. (2004). The Arabidopsis CSN5A and CSN5B subunits are present in distinct COP9 signalosome complexes, and mutations in their JAMM domains exhibit differential dominant negative effects on development. Plant Cell 16, 2984-3001.
Hann, S.R. (2006). Role of post-translational modifications in regulating c-Myc proteolysis, transcriptional activity and biological function. Seminars in cancer biology 16, 288-302.
Hartmann-Petersen, R., and Gordon, C. (2004). Protein degradation: recognition of ubiquitinylated substrates. Curr Biol 14, R754-756.
Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N., and Nakayama, K.I. (2001). U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276, 33111-33120.
He, Q., Cheng, P., He, Q., and Liu, Y. (2005). The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev 19, 1518-1531.
He, Y., Zhang, W., Zhang, R., Zhang, H., and Min, W. (2006a). SOCS1 inhibits tumor necrosis factor-induced activation of ASK1-JNK inflammatory signaling by mediating ASK1 degradation. J Biol Chem 281, 5559-5566.
He, Y.J., McCall, C.M., Hu, J., Zeng, Y., and Xiong, Y. (2006b). DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20, 2949-2954.
Hellmann, H., Hobbie, L., Chapman, A., Dharmasiri, S., Dharmasiri, N., del Pozo, C., Reinhardt, D., and Estelle, M. (2003). Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. Embo J 22, 3314-3325.
Higa, L.A., Mihaylov, I.S., Banks, D.P., Zheng, J., and Zhang, H. (2003). Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol 5, 1008-1015.
Higa, L.A., Wu, M., Ye, T., Kobayashi, R., Sun, H., and Zhang, H. (2006). CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 8, 1277-1283.
Honda, R., Tanaka, H., and Yasuda, H. (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS letters 420, 25-27.
Jackson, P.K., Eldridge, A.G., Freed, E., Furstenthal, L., Hsu, J.Y., Kaiser, B.K., and Reimann, J.D. (2000). The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10, 429-439.
Jia, J., Zhang, L., Zhang, Q., Tong, C., Wang, B., Hou, F., Amanai, K., and Jiang, J. (2005). Phosphorylation by double-time/CKIepsilon and CKIalpha targets cubitus interruptus for Slimb/beta-TRCP-mediated proteolytic processing. Dev Cell 9, 819-830.
Jin, J., Arias, E.E., Chen, J., Harper, J.W., and Walter, J.C. (2006). A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23, 709-721.
Joazeiro, C.A., Wing, S.S., Huang, H., Leverson, J.D., Hunter, T., and Liu, Y.C. (1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309-312.
Kamura, T., Burian, D., Yan, Q., Schmidt, S.L., Lane, W.S., Querido, E., Branton, P.E., Shilatifard, A., Conaway, R.C., and Conaway, J.W. (2001). Muf1, a novel Elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbx1 to reconstitute a ubiquitin ligase. J Biol Chem 276, 29748-29753.
Kamura, T., Sato, S., Haque, D., Liu, L., Kaelin, W.G., Jr., Conaway, R.C., and Conaway, J.W. (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 12, 3872-3881.
Ko, H.W., Jiang, J., and Edery, I. (2002). Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420, 673-678.
Kobayashi, A., Kang, M.I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., Igarashi, K., and Yamamoto, M. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24, 7130-7139.
Koepp, D.M., Schaefer, L.K., Ye, X., Keyomarsi, K., Chu, C., Harper, J.W., and Elledge, S.J. (2001). Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173-177.
Kurz, T., Ozlu, N., Rudolf, F., O'Rourke, S.M., Luke, B., Hofmann, K., Hyman, A.A., Bowerman, B., and Peter, M. (2005). The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature 435, 1257-1261.
Kurz, T., Pintard, L., Willis, J.H., Hamill, D.R., Gonczy, P., Peter, M., and Bowerman, B. (2002). Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway. Science 295, 1294-1298.
Lee, J.D., Amanai, K., Shearn, A., and Treisman, J.E. (2002). The ubiquitin ligase Hyperplastic discs negatively regulates hedgehog and decapentaplegic expression by independent mechanisms. Development 129, 5697-5706.
Leverson, J.D., Joazeiro, C.A., Page, A.M., Huang, H., Hieter, P., and Hunter, T. (2000). The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol Biol Cell 11, 2315-2325.
Lin, X., Liang, M., and Feng, X.H. (2000). Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 275, 36818-36822.
Lincoln, C., Britton, J.H., and Estelle, M. (1990). Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2, 1071-1080.
Lu, Z., Xu, S., Joazeiro, C., Cobb, M.H., and Hunter, T. (2002). The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 9, 945-956.
Lyapina, S., Cope, G., Shevchenko, A., Serino, G., Tsuge, T., Zhou, C., Wolf, D.A., Wei, N., Shevchenko, A., and Deshaies, R.J. (2001). Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382-1385.
Margottin-Goguet, F., Hsu, J.Y., Loktev, A., Hsieh, H.M., Reimann, J.D., and Jackson, P.K. (2003). Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4, 813-826.
Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275.
Michel, J.J., McCarville, J.F., and Xiong, Y. (2003). A role for Saccharomyces cerevisiae Cul8 ubiquitin ligase in proper anaphase progression. J Biol Chem 278, 22828-22837.
Min, K.W., Kwon, M.J., Park, H.S., Park, Y., Yoon, S.K., and Yoon, J.B. (2005). CAND1 enhances deneddylation of CUL1 by COP9 signalosome. Biochem Biophys Res Commun 334, 867-874.
Misera, S., Muller, A.J., Weiland-Heidecker, U., and Jurgens, G. (1994). The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol Gen Genet 244, 242-252.
Moberg, K.H., Bell, D.W., Wahrer, D.C., Haber, D.A., and Hariharan, I.K. (2001). Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311-316.
Motzny, C.K., and Holmgren, R. (1995). The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech Dev 52, 137-150.
Nakayama, K.I., and Nakayama, K. (2006). Ubiquitin ligases: cell-cycle control and cancer. Nature reviews 6, 369-381.
Nandi, D., Tahiliani, P., Kumar, A., and Chandu, D. (2006). The ubiquitin-proteasome system. J Biosci 31, 137-155.
Ni, T., Li, W., and Zou, F. (2005). The ubiquitin ligase ability of IAPs regulates apoptosis. IUBMB life 57, 779-785.
Ohta, T., Michel, J.J., Schottelius, A.J., and Xiong, Y. (1999a). ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 3, 535-541.
Ohta, T., Michel, J.J., and Xiong, Y. (1999b). Association with cullin partners protects ROC proteins from proteasome-dependent degradation. Oncogene 18, 6758-6766.
Oron, E., Mannervik, M., Rencus, S., Harari-Steinberg, O., Neuman-Silberberg, S., Segal, D., and Chamovitz, D.A. (2002). COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in Drosophila melanogaster. Development 129, 4399-4409.
Osaka, F., Saeki, M., Katayama, S., Aida, N., Toh, E.A., Kominami, K., Toda, T., Suzuki, T., Chiba, T., Tanaka, K., et al. (2000). Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. The EMBO journal 19, 3475-3484.
Ou, C.Y., Lin, Y.F., Chen, Y.J., and Chien, C.T. (2002). Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev 16, 2403-2414.
Ou, C.Y., Pi, H., and Chien, C.T. (2003). Control of protein degradation by E3 ubiquitin ligases in Drosophila eye development. Trends Genet 19, 382-389.
Oved, S., Mosesson, Y., Zwang, Y., Santonico, E., Shtiegman, K., Marmor, M.D., Kochupurakkal, B.S., Katz, M., Lavi, S., Cesareni, G., et al. (2006). Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J Biol Chem 281, 21640-21651.
Pan, Z.Q., Kentsis, A., Dias, D.C., Yamoah, K., and Wu, K. (2004). Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985-1997.
Pause, A., Lee, S., Worrell, R.A., Chen, D.Y., Burgess, W.H., Linehan, W.M., and Klausner, R.D. (1997). The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci U S A 94, 2156-2161.
Petroski, M.D., and Deshaies, R.J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6, 9-20.
Pintard, L., Kurz, T., Glaser, S., Willis, J.H., Peter, M., and Bowerman, B. (2003a). Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol 13, 911-921.
Pintard, L., Willems, A., and Peter, M. (2004). Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. Embo J 23, 1681-1687.
Pintard, L., Willis, J.H., Willems, A., Johnson, J.L., Srayko, M., Kurz, T., Glaser, S., Mains, P.E., Tyers, M., Bowerman, B., et al. (2003b). The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311-316.
Pulipparacharuvil, S., Akbar, M.A., Ray, S., Sevrioukov, E.A., Haberman, A.S., Rohrer, J., and Kramer, H. (2005). Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J Cell Sci 118, 3663-3673.
Read, M.A., Brownell, J.E., Gladysheva, T.B., Hottelet, M., Parent, L.A., Coggins, M.B., Pierce, J.W., Podust, V.N., Luo, R.S., Chau, V., et al. (2000). Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol Cell Biol 20, 2326-2333.
Rolfe, M., Beer-Romero, P., Glass, S., Eckstein, J., Berdo, I., Theodoras, A., Pagano, M., and Draetta, G. (1995). Reconstitution of p53-ubiquitinylation reactions from purified components: the role of human ubiquitin-conjugating enzyme UBC4 and E6-associated protein (E6AP). Proc Natl Acad Sci U S A 92, 3264-3268.
Schneider, B.L., Yang, Q.H., and Futcher, A.B. (1996). Linkage of replication to start by the Cdk inhibitor Sic1. Science 272, 560-562.
Schwechheimer, C., and Deng, X.W. (2000). The COP/DET/FUS proteins-regulators of eukaryotic growth and development. Seminars in cell & developmental biology 11, 495-503.
Schwechheimer, C., Serino, G., Callis, J., Crosby, W.L., Lyapina, S., Deshaies, R.J., Gray, W.M., Estelle, M., and Deng, X.W. (2001). Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292, 1379-1382.
Schweisguth, F. (1999). Dominant-negative mutation in the beta2 and beta6 proteasome subunit genes affect alternative cell fate decisions in the Drosophila sense organ lineage. Proc Natl Acad Sci U S A 96, 11382-11386.
Schwob, E., Bohm, T., Mendenhall, M.D., and Nasmyth, K. (1994). The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233-244.
Seeger, M., Kraft, R., Ferrell, K., Bech-Otschir, D., Dumdey, R., Schade, R., Gordon, C., Naumann, M., and Dubiel, W. (1998). A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. Faseb J 12, 469-478.
Skowyra, D., Craig, K.L., Tyers, M., Elledge, S.J., and Harper, J.W. (1997). F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209-219.
Smelkinson, M.G., and Kalderon, D. (2006). Processing of the Drosophila hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb. Curr Biol 16, 110-116.
Stogios, P.J., Downs, G.S., Jauhal, J.J., Nandra, S.K., and Prive, G.G. (2005). Sequence and structural analysis of BTB domain proteins. Genome biology 6, R82.
Tan, P., Fuchs, S.Y., Chen, A., Wu, K., Gomez, C., Ronai, Z., and Pan, Z.Q. (1999). Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol Cell 3, 527-533.
Tsvetkov, L.M., Yeh, K.H., Lee, S.J., Sun, H., and Zhang, H. (1999). p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9, 661-664.
Uhle, S., Medalia, O., Waldron, R., Dumdey, R., Henklein, P., Bech-Otschir, D., Huang, X., Berse, M., Sperling, J., Schade, R., et al. (2003). Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. Embo J 22, 1302-1312.
Verma, R., Annan, R.S., Huddleston, M.J., Carr, S.A., Reynard, G., and Deshaies, R.J. (1997a). Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455-460.
Verma, R., Feldman, R.M., and Deshaies, R.J. (1997b). SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol Biol Cell 8, 1427-1437.
von Arnim, A.G., and Schwechheimer, C. (2006). Life is degrading--thanks to some zomes. Mol Cell 23, 621-629.
Wada, H., Yeh, E.T., and Kamitani, T. (1999). Identification of NEDD8-conjugation site in human cullin-2. Biochem Biophys Res Commun 257, 100-105.
Wang, Y., Lu, C., Wei, H., Wang, N., Chen, X., Zhang, L., Zhai, Y., Zhu, Y., Lu, Y., and He, F. (2004). Hepatopoietin interacts directly with COP9 signalosome and regulates AP-1 activity. FEBS letters 572, 85-91.
Waterman, H., Levkowitz, G., Alroy, I., and Yarden, Y. (1999). The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J Biol Chem 274, 22151-22154.
Watson, I.R., and Irwin, M.S. (2006). Ubiquitin and ubiquitin-like modifications of the p53 family. Neoplasia (New York, NY 8, 655-666.
Watts, R.J., Hoopfer, E.D., and Luo, L. (2003). Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38, 871-885.
Wee, S., Geyer, R.K., Toda, T., and Wolf, D.A. (2005). CSN facilitates Cullin-RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nat Cell Biol 7, 387-391.
Wei, N., Chamovitz, D.A., and Deng, X.W. (1994). Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78, 117-124.
Wei, N., Tsuge, T., Serino, G., Dohmae, N., Takio, K., Matsui, M., and Deng, X.W. (1998). The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr Biol 8, 919-922.
Welcker, M., Orian, A., Jin, J., Grim, J.E., Harper, J.W., Eisenman, R.N., and Clurman, B.E. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci U S A 101, 9085-9090.
Whitby, F.G., Xia, G., Pickart, C.M., and Hill, C.P. (1998). Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J Biol Chem 273, 34983-34991.
Willems, A.R., Schwab, M., and Tyers, M. (2004). A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta 1695, 133-170.
Winston, J.T., Strack, P., Beer-Romero, P., Chu, C.Y., Elledge, S.J., and Harper, J.W. (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13, 270-283.
Wirbelauer, C., Sutterluty, H., Blondel, M., Gstaiger, M., Peter, M., Reymond, F., and Krek, W. (2000). The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts. Embo J 19, 5362-5375.
Wolf, D.A., Zhou, C., and Wee, S. (2003). The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nat Cell Biol 5, 1029-1033.
Worby, C.A., Simonson-Leff, N., and Dixon, J.E. (2001). RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci STKE 2001, PL1.
Wu, J.T., Chan, Y.R., and Chien, C.T. (2006). Protection of cullin-RING E3 ligases by CSN-UBP12. Trends Cell Biol 16, 362-369.
Xirodimas, D.P., Saville, M.K., Bourdon, J.C., Hay, R.T., and Lane, D.P. (2004). Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83-97.
Yada, M., Hatakeyama, S., Kamura, T., Nishiyama, M., Tsunematsu, R., Imaki, H., Ishida, N., Okumura, F., Nakayama, K., and Nakayama, K.I. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. Embo J 23, 2116-2125.
Yang, X., Menon, S., Lykke-Andersen, K., Tsuge, T., Di, X., Wang, X., Rodriguez-Suarez, R.J., Zhang, H., and Wei, N. (2002). The COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Curr Biol 12, 667-672.
Yasui, K., Arii, S., Zhao, C., Imoto, I., Ueda, M., Nagai, H., Emi, M., and Inazawa, J. (2002). TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology (Baltimore, Md 35, 1476-1484.
Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P., and Yu, X.F. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056-1060.
Yu, Z.K., Gervais, J.L., and Zhang, H. (1998). Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A 95, 11324-11329.
Zhang, Q., Zhang, L., Wang, B., Ou, C.Y., Chien, C.T., and Jiang, J. (2006). A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. Dev Cell 10, 719-729.
Zhou, C., Seibert, V., Geyer, R., Rhee, E., Lyapina, S., Cope, G., Deshaies, R.J., and Wolf, D.A. (2001). The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p. BMC Biochem 2, 7.
Zhou, C., Wee, S., Rhee, E., Naumann, M., Dubiel, W., and Wolf, D.A. (2003). Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p. Mol Cell 11, 927-938.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31328-
dc.description.abstract泛素是一種小分子胜肽,泛素—蛋白解體系統負責許多細胞生理所必需的蛋白質降解.整個蛋白質降解的過程先是由泛素接合脢把泛素專一性地結合在即將被降解的標的蛋白上,再經過重複的接合脢作用,標的蛋白上聚合出長鏈型泛素聚合物,帶有長鏈型泛素聚合物的標的蛋白隨即被蛋白解體所辨識,並且被降解成短胜肽產物.細胞內有很多泛素接合脢,其中有一類稱為cullin-RING接合脢(簡稱CRL).完整的CRL是個由cullin蛋白為基石所建構的蛋白複合體.負責延攬受質的受質受器在cullin 的N端,而負責銜接泛素配合酵素(E2)的Roc1則座落在cullin的C端. 接合脢的酵素反應可視為CRL上的泛素藉由地緣之便,傳遞到同在CRL上的受質.Nedd8是胺基酸序列和三級結構都與泛素十分類似的一種小分子胜肽.它具有類似泛素的性質夠過neddylation的酵素反應能夠結合在其他蛋白如cullin之上.相反地透過CSN複合體催化的deneddylation酵素反應,Nedd8又可以從neddylated cullin上被切下來.過去的研究指出,CRL經過neddylation之後才能有效率的執行泛素接合脢的功能,可是有關deneddylation如何影響CRL酵素活性的了解甚少.本論文主要內容在於探討CSN突變果蠅的活體細胞內,cullin1和cullin3的穩定性變差.cullin穩定性變差的主要原因是在CSN突變果蠅裡,cullin一旦發生neddylation後就無法經由deneddylation回復到穩定的原態.結果細胞不再能夠保有足夠的cullin儲備,於是CRL的活性不但沒有因為neddylation而提高,反而因為cullin普遍不足而下降.在CSN突變果蠅細胞中,Nedd8和受質受器Slimb也變得特別不穩定.CSN突變和Nedd8突變,或和cullin突變,或和Slimb突變互相加成對果蠅的存活率影響,表示CSN調節CRL組成成員以及Nedd8的穩定性具有生理意義.但是對於特定的CRL受質如Ci,在CSN突變細胞中增加cullin1和Nedd8的量,不但不能藉由彌補CSN突變細胞中cullin1,Nedd8的儲備量而提高CRL的酵素活性,反而弔詭地減低了CRL的酵素活性,表示cullin1, Nedd8的量對CRL的酵素活性在不同deneddylation程度下會出現兩種截然不同的影響.論文最後探討了同樣是SCFSlimb接合脢受質的兩種蛋白質,被泛素--蛋白解體系統降解的程度受到CSN突變的影響卻有所不同,表示受質能夠左右CRL接合脢活性受neddylation/deneddylation調節的程度.zh_TW
dc.description.abstractUbiquitin-proteasome mediated proteolysis is an essential pathway involved in many cellular processes. Ubiquitin is a small polypeptide. Polymerized ubiquitin chains are first attached to the proteins designated to be degraded by a substrate specific ubiquitin E3 ligase, a process called ubiquitylation. The ubiquitylated protein is then recognized by the 19S proteasome and subsequently degraded by the 20S proteasome. Cullins are scaffold proteins that assemble substrate binding receptors/adaptors, and Roc1 into cullin-RING E3 ligase (CRL) complexes transferring ubiquitin moieties onto many cellular proteins. Nedd8 is an ubiquitin-like polypeptide that can be transferred onto the conserved lysines of cullins, a process called neddylation. Deneddylation, the reverse reaction that removes the Nedd8 moieties from cullins, is carried out by COP9 signalosome (CSN). Neddylation is essential for CRL activities in vivo. How deneddylation affects the activities CRLs hasn’t been fully explored. In this thesis, I first showed that cullin1 (Cul1) and cullin3 (Cul3) proteins are unstable in CSN mutant cells. Moreover, deneddylating activity in CSN is required to preserve Cul1 and Cul3 protein levels. In addition to cullins, Nedd8 and Slimb, one of the substrate receptors in Cul1 organized E3 (SCF), are also unstable in CSN mutant cells. These data indicate that the several CRL components could be protected by CSN from neddylation-induced degradations. The significance of CSN-mediated protection on CRLs is suggested by synergistic interaction between CSN5 mutant and several cullin mutants, Nedd8 mutant, as well as a dominant-negative Slimb mutant. Because neddylation-induced degradation of Slimb depends on SCF activity, rescuing Cul1 and Nedd8 protein levels in CSN mutant cells was found to paradoxically compromise SCFSlimb activity. This result is possibly due to the enhanced neddylation-induced degradation of Slimb. The significance of neddylation-induced degradation of cullins and Nedd8 is to preserve substrate degradation in this context, implying another layer of complexity in regulating CRL activity through neddylation and deneddylation. Finally, I found the protein levels of two SCFSlimb substrates changed differently in CSN mutant cells, implying that substrates may play a role on modulating the effects of neddylation and deneddylation on SCFSlimben
dc.description.provenanceMade available in DSpace on 2021-06-13T02:43:21Z (GMT). No. of bitstreams: 1
ntu-95-D92448003-1.pdf: 4170166 bytes, checksum: 22286581ff6596fc7070753bcaac150f (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsACKNOWLEDGEMENTS………………………………………………………v
ABSTRACT IN CHINESE…………………………………………………vi
ABSTRACT……………………………………………………………viii
INTRODUCTION……………………………………………………………1
Ubiquitin proteasome pathway………………………………………1
Hierarchical organization and substrate diversity of cullin-RING ubiquitin ligases ……………………………………4
Neddylation as a way to regulate the activities of CRLs………………………………………………………………………7
CSN-mediated deneddylation of CRLs………………………………9
CSN paradox…………………………………………………………………11
The CAND1-assisted cyclic model of neddylation and deneddylation…………………………………………………………13
MATERIALS AND METHOD
Genetics and molecular biology…………………………………………………………………15
Clonal analysis in mutant imaginal discs……………………15
RNA interference and cycloheximide chase……………………17
Immunostaining and immunoblotting………………………………17
RESULTS
Cullin protein levels in CSN5null cells and animals………19
Cul1 and Cul3 protein stability controlled by CSN5………20
Cul1 and Cul3 stabilities regulated by CSN deneddylating activity………………………………………………………………20
Degradation of cullins induced by neddylation………………22
Nedd8 protein turnover regulated by CSN and en bloc degradation of the neddylated cullins…………………………24
The effect of deneddylation on the stability of F-box protein Slimb…………………………………………………………25
The significance of Cul1, Cul3, Cul4, and Nedd8 protein levels maintained by CSN deneddylating activity………………………………………………………………26
Degradation mechanism of neddylated cullins…………………28
Slimb shielding Cul1 and Nedd8 from depletion………………29
The effects of deneddylation on SCF substrates, Cubitus interruptus (Ci), Armadillo (Arm), and dMyc…………………30
Delicate regulations on Ci degradation by deneddylation of SCFSlimb………………………………………………………………31
Paradoxical role of neddylation induced Cul1 and Nedd8 degradation in promoting Ci degradation………………………32
DISCUSSION AND PROSPECTIVES
Degradation of neddylated cullins in different species…34
The mechanism of neddylation-induced cullin degradation…35
The significance of neddylation-induced Cul1 and Nedd8 degradation……………………………………………………………36
Pro-degradation and anti-degradation of Cul1 and its transition by CSN……………………………………………………37
The possible clinical implications of the hypothetical biphasic CRL activities……………………………………………38
The opposite outcomes of the Ci and Arm in CSN5 mutant clones…………………………………………………………………39
Conclusion……………………………………………………………40
FIGURES
Figure 1. A schematic illustration of cullin-RING ligases (CRLs) and neddylation ……………………………………………42
Figure 2. Reduction of Cul1 and Cul3 protein levels in cells harbouring mutations in the CSN complex………………43
Figure 3. The effects of CSN5 on the protein stability of Cul1 and Cul3.………………………………………………………44
Figure 4. Requirement of CSN deneddylating activity to maintain Cul1 and Cul3 protein stability……………………45
Figure 5. CSN regulation of Cul1 and Cul3 protein levels through a neddylation-dependent mechanism……………………46
Figure 6. Degradation of Nedd8 in CSN5null cells…………48
Figure 7. The effects of neddylation and deneddylation on the autocatalytic destruction of Slimb………………………49
Figure 8. Genetic interactions between CSN5 and Cul1……50
Figure 9. Degradation of Cul1 and Cul3 in the absence of proteasome and lysosome……………………………………………51
Figure 10. en bloc degradation of neddylated Cul1in Slimbp1493 cells……………………………………………………53
Figure 11. Degradations of SCF substrates Ci, Arm and dMyc in CSN5null clones…………………………………………………54
Figure 12. The regulatory roles of Neddylated Cul1 and the autocatalytic destruction of Slimb on Ci protein levels in CSN5null clones………………………………………………………55
TABLE……………………………………………………………………56
REFERENCES……………………………………………………………57
APPENDIX………………………………………………………………72
dc.language.isoen
dc.subjectdeneddylationzh_TW
dc.subjectcullinzh_TW
dc.subjectcullin-RING接合脢zh_TW
dc.subject泛素zh_TW
dc.subjectCSN複合體zh_TW
dc.subjectneddylationzh_TW
dc.subjectNedd8zh_TW
dc.subjectdeneddylationen
dc.subjectUbiquitinen
dc.subjectcullin-RING ligase (CRL)en
dc.subjectcullinen
dc.subjectNedd8en
dc.subjectCSN complexen
dc.subjectneddylationen
dc.titleNedd8對cullin-RING泛素接合脢及其受質的影響zh_TW
dc.titleThe effects of Nedd8 on cullin-RING ubiquitin ligases and their substratesen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee呂勝春(Sheng-Chung Lee),陳瑞華(Ruey-Hwa Chen),施修明(Hsiu-Ming Shih),陳蕾惠(Rey-Huei Chen)
dc.subject.keyword泛素,cullin-RING接合脢,cullin,Nedd8,CSN複合體,neddylation,deneddylation,zh_TW
dc.subject.keywordUbiquitin,cullin-RING ligase (CRL),cullin,Nedd8,CSN complex,neddylation,deneddylation,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2006-11-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved