Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31322
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫振源,謝正勇
dc.contributor.authorMin-Lin Changen
dc.contributor.author章敏玲zh_TW
dc.date.accessioned2021-06-13T02:42:57Z-
dc.date.available2008-01-09
dc.date.copyright2007-01-09
dc.date.issued2006
dc.date.submitted2006-11-30
dc.identifier.citationAhmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270, 517–521.
Akiyama H, Itagaki S, McGeer PL (1988) Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesion. J Neurosci Res 20, 147-157.
Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial Glia Serve as Neuronal Progenitors in All Regions of the Central Nervous System. Neuron 41, 881–890.
Asher ML, nowak L (1988) Quisqualate- and kainate-activated channels in mouse central neurons in culture. J Physiol (London) 399, 277.
Ashwell K (1990) Microglia and cell death in the developing mouse cerebellum. Dev Brain Res 55, 219-230.
Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15, 303-308.
Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7, 111-118.
Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW, The Penn State Retina Research Group (1998) Neural apoptosis in the retina during experimental and human diabetes: Early onset and effect of insulin. J Clin Invest 102, 783-791.
Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31, 119-130.
Bernreuther C, Salein N, Matschke J, Hagel C (2006) Expression of doublecortin in tumours of the central and peripheral nervous system and in human non-neuronal tissues. Acta Neuropathol (Berl) 111, 247-254.
Bettler B, Boulter J, Hermans-Borgmeyer I, O’Shea-Greenfield A, Deneris ES, Moll C, Borgmeyer U, Hollmann M, Heinemann S (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583-595.
Bignami A, Dahl D (1979) The radial glia of M ller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein. Exp Eye Res 28, 63-69.
Boje KM, Arora PK (1992) Microglia-produced nitric oxideand reactive nitrogen oxides mediate neuronal cell death. Brain Res 587, 250-256.
Boulter J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S (1990) Molecular cloning and functional expression of gluutamate receptor subunit genes. Science 249, 1033-1037.
Brandstätter JH, Hartveit E, Sassoè-Pognetto M, Wässle, H (1994) Expression of NMDA and high-affinity kainate receptor subunit mRNAs in the adult rat retina. Eur. J Neurosci 6, 1100-1112.
Brandstätter JH, Koulen P, Wässle H (1997) Selective synaptic distribution of kainate receptor subunits in the two plexiform layers of the rat retina. J Neurosci 17, 9298-9307.
Brandstätter JH, Koulen P, Wässle H (1998) Diversity of glutamate receptors in the mammalian retina. Vis Res 38, 1385-1397.
Brorson JR, Manzollilo PA, Miller RJ (1994) Ca2+-entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinge cells. J Neurosci 14, 187.
Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467, 1 –10.
Chang CY, Chien HF, Jiang-shieh YF, Wu CH (2003) Microglia in the olfactory bulb of rats during postnatal development and olfactory nerve injury with zinc sulfate: A lectin labeling and ultrastrucutural study. Neurosci Res 45, 325-333.
Chang ML, Wu CH, Chien HF, Jiang-Shieh YF, Shieh JY, Wen CY (2006) Microglia/Macrophages Responses to Kainate-Induced Injury in the Rat Retina. Neurosci Res 54, 202-212.
Chang ML, Wu CH, Jiang-Shieh YF, Shieh JY, Wen CY (2006) Reactive changes of retinal astrocytes and Müller glial cells in kainate-induced neuroexcitotoxicity. J Anatomy (In Press).
Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634.
Choi DW (1994) calcium and excitotoxic neuronal injury. Ann NY Acad Sci 747, 162-171.
Colton CA, Gilbert DL (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223, 284-288.
Cornell-Bell AH, Thomas PG, Caffrey JM (1992) Ca2+ and filopodial responses to glutamate in cultured astrocytes and neurons. Can J Physiol Pharmacol 70, S206-18.
Coyle JT, Schwarcz R (1977) Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea. Nature 263, 244-246.
Coyle JT, Molliver ME, Kuhar MJ (1978) Morphologic analysis of kainic acid lesion of rat striatum. J Comp Neurol 180, 301-324.
Coyle JT (1983) Neurotoxic action of kainic acid. J Neurochem 41, 1-11.
Damodaran TV, Abou-Donia MB (2000) Alterations in levels of mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of hens Treated with diisopropylPhosphorofluoridate (DFP). Neurochem Res 25, 809–816.
Daou MC, Smith TW, Litofsky NS, Hsieh CC, Ross AH (2005) Doublecortin is preferentially expressed in invasive human brain tumors. Acta Neuropathol (Berl) 110, 472-480.
David EJ, Foster TD, Thomas WE (1988) Discrimination between different types of neuroglial cells in rat central nervous system using combined immuno- and enzyme histochemical methods. Immunobiology 178, 177-190.
D’Orlando C, Celio MR, Schwaller B (2002) Calretinin and calbindin D-28K, but not parvalbumin protect against gluatamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblatoma-retina hybrid cells. Brain Res 945, 181-190.
Eisenfeld AJ, Bunt-Milam AH, Sarthy PV (1984) Müller cell expression of glial fibrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina. Invest Ophthalmol Vis Sci 25, 1321-1328.
Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1990) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351, 745-748.
Egensperger R, Maslim J, Bisti S, Hollander H, Stone J (1996) Fate of DNA from retinal cells dying during development: uptake by microglia and macroglia (Müller cells). Brain Res Dev Brain Res 97, 1-8.
Engelhardt M, Wachs FP, Couillard-Despres S, Aigner L (2004) The neurogenic competence of progenitors from the postnatal rat retina in vitro. Exp Eye Res 78, 1025-1036.
Engelhardt M, Bogdahn U, Aigner L (2005) Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal [recursor protein doublecortin. Brain Res 1040, 98-111.
Ellison JA, de Vellis J (1995) Amoeboid microglia expressing GD3 ganglioside are concentrated in regions of oligodendrogenesis during development of the rat corpus callosum. Glia 14, 123-132.
Fauser S, Nguyen TD, Bekure K, Schluesener HJ, Meyermann R (2001) Differential activation of microglial cells in local and remote areas of IRBP1169-1191-induced rat uveitis. Acta Neuropathol 101, 565-571.
Feng L, Hatten MA, Heintz N (1994) Brain lipid-binding protein (BLBP): A novel signaling system in the developing mammalian CNS. Neuron 12, 895–908.
Ferreira IL, Duarte CB, Carvalho AP (1996) Ca2+ influx through glutamate receptor-associated channels in retina cells correlates with neuronal cell death. Eur. J Pharmacol 302, 153-162.
Ferrreira IL, Duarte CB, Carvalho AP (1998) Kainate-induced retina amacrine-like cell damage is mediated by AMPA receptors. Neuroreport 9, 3471-3475.
Fischer AJ, Reh TA (2003) Potential of Müller glia become neurogenic retinal progenitor cells. Glia 43, 70-76.
Fletcher EL, Hack I, Brandstatter JH, Wassle H (2000) Synaptic localization of NMDA receptor subunits in the rat retina. J Comp Neurol 420, 98-112.
Fornnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42, 1-11.
Frederiksen K, McKay RD (1988) Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J Neurosci 8, 1144–1151.
Frei K, Malipiero UV, Leist TP, Zinkermagel RM, Cchwab ME, Frntana A (1989) On the cellular source and function of interleukin 6 produced in the central nervous system in viral disease. Eur J Immunol 19, 689-694.
Gábriel R, de Souza S, Ziff EB, Witkovsky P (2002) Association of the AMPA receptor-related postsynaptic density proteins GRIP and ABP with subsets of glutamate-sensitive neurons in the rat retina. J Comp Neurol 449, 129-140.
Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC (1995) Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 61, 33-44.
Garcia-Valenzuela E, Sharma SC (1999) Laminar restriction of retinal macrophagic response to optic nerve axotomy in the rats. J Neurobiol 40, 55-66.
Garcia-Valenzuela E, Sharma SC, Pina AL (2005) Multilayered retinal microglial response to optic nerve transaction in rats. Molecular Vis 11, 225-231.
Gaughwin PM, Caldwell MA, Anderson JM, Schwiening CJ, Fawcett JW, Compston DA, Chandran S (2006) Astrocytes promote neurogenesis from oligodendrocyte precursor cells. Eur J Neurosci 23, 945-956.
Gilbertson TA, Scobery R, Wilson M (1991) Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science 251, 1613.
Giulian D, Baker TJ, Shin LN, Lachman LB (1986) Interleukin-1 of the central nervous system is produced by amoeboid microglia. J Exp Med 164, 594-604.
Glenn JA, Ward SA, Stone CR, Booth PL, Thomas WE (1992) Characterisation of ramified microglial cells: detailed morphology, morphological plasticity and proliferative capability. J Anat 180, 109-118.
Goebel DJ, Pourcho RG (1997) Calretinin in the cat retina: colocalizations with other calcium-binding proteins, GABA and glycine. Vis Neurosci 14, 311-322.
Goebel DJ, Poosch MS (2001) Transient down-regulation of NMDA receptor subunit gene expression in the rat retina following NMDA-induced neurotoxicity is attenuated in the presence of the non-competitive NMDA receptor antagonist MK-801. Exp Eye Res 72, 547-558.
Goodman JH, Wasterlain CG, Massasweh WF, Dean E, Sollas AL, Sloviter RS (1993) Calbindin-D28k immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat. Brain Res 606, 309-314.
Goto M, Inomata N, Ono H, Saito KI, Fukuda H (1981) Changes of electroretinogram and neurochemical aspects of GABAergic neurons of retina after intraocular injection kainic acid in rets. Brain Res 211, 305-314.
Gotz M, Barde YA (2005) Radial Glial Cells: Defined and Major Intermediates between Embryonic Stem Cells and CNS Neurons. Neuron 46, 369-372.
Graeber MB, Streit WJ, Kiefer R, Schoen SW, Kreutzberg GW (1990) New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J Neuroimmunol 27, 121-132.
Greenamyre JT (1986) The role of glutamate in neurotransmission and neurologic disease. Arch Neurol 43, 1058-1063.
Grossmann R, Stence N, Carr J, Fuller L, Waite M, Dailey ME (2002) Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia 37, 229-240.
Grunder T, Kohler K, Guenther E (2001) Alterations in NMDA receptor expression during retinal degeneration in the RCS rat. Vis Neurosci 18, 781-787.
Guo W, Zou S, Tal M, Ren K (2002) Activation of spinal kainate receptors after inflammation: behavioral hyperalgesia and subunit gene expression. Eur J Pharmacol 452, 309-318.
Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229, 15–30.
Hatten ME (1990) Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci 13, 179–184.
Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22, 511–539.
Hertz L, Peng L, Westergaard N, Yudkoff M, Schousboe A (1992) Neuronal-astrocyte interactions in metabolism of neurotransmitter amino acid of the glutamate family. In: Schousboe A, Diemer N, Kofod H (Ed.), Drug Research Related to Neuroactive Amino Acid, Copenhagen, Munkagaard, 30-48.
Hickey WF, Vass K, Lassmann H (1992) Bone marrow derived elements in the central nervous system: An immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol 51, 246-256.
Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17, 31-108.
Honjo M, Tanihara H, Kido N, Inatani M, Okazaki K, Honda Y (2000) Expression of ciliary neurotrophic factor activated by retinal Müller cells in eyes with NMDA- and kainic acid-induced neuronal death. Invest Ophthalmol Vis Sci 41, 552-560.
Hughes TE, Hermans-Borgmeyer I, Heinemann S (1992) Differential expression of glutamate receptor genes(GluR1-5)in the rat retina. Vis Neurosci 8, 49-55.
Ishikawa Y, Momoeda S, Yoshitomi F (1983) Origin of macrophage in photocoagulated rabbit retina. Jpn J Ophthalmol 27, 138-148.
Kawaguchi Y, Katsumaru H, Kosaks T, Heizmann CW, Hama K (1987) Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res 416, 369-374.
Keirstead SA, Miller RF (1995) Calcium waves in dissociated retinal glial (Müller) cells are evoked by release of calcium from intracellular stores. Glia 14, 14-22.
Kim IB, Kim KY, Joo CK, Lee MY, Oh SJ, Chung JW, Chun MH (1998) Reaction of Müller cells after increased intraocular pressure in the rat retina. Exp Brain Res 121, 419-424.
Kohno H, Sakai T, Kitahara K (2006) Induction of nestin, Ki-67, and cyclin D1 expression in Muller cells after laser injury in adult rat retina. Graefes Arch Clin Ophthalmol 244, 90-95.
Kolb H, Nelson R, Ahnelt P, Cuenca N (2001) Cellular organization of vertebrate retina. Prog Brain Res 131, 2-26.
Kreutz MR, Bockers TM, Bockmann J, Seidenbecher CI, Kracht B, Vorwerk CK, Weise J Sabel BA (1998) Axonal injury alters alternative splicing of the retinal NR1 receptor: the preferential expression of the NR1b isoforms is crucial for retinal ganglion cell survival. J Neurosci 18, 8278-8291.
Kugler P, Beyer A (2003) Expression of glutamate transporters in human and rat retina and rat optic nerve. Histochem Cell Biol 120, 199-212.
Lam TK, Chan WY, Kuang GB, Wei H, Shum AS, Yew DT (1995) Differential expression of glial fibrillary acidic protein (GFAP) in the retinue and visual cortices of rats with experimental renal hypertension. Neurosci Lett 198, 165-168.
LaVail MM (1979) The retinal pigment epithelium in mice and rats with inherited retinal degeneration.In: Zinn KM, Marmor MF (Eds.), The Retinal Pigment Epithelium. Harvard University Press, Cambridge, MA, 357-380.
Leavitt BR, Hernit-Grant CS, Macklis JD (1999) Mature Astrocytes Transform into Transitional Radial Glia within Adult Mouse Neocortex That Supports Directed Migration of Transplanted Immature Neurons. Exp Neurol 157, 43–57.
Lee J, Park K, Lee S, Wang K, Kang M, Park C, Huh Y (2002) Differential changes of calcium binding proteins in the rat striatum after kainic acid-induced seizure. Neurosci Lett 333, 87-90.
Lehre KP, Davanger S, Danbolt NC (1997) Localization of the glutamate transporters protein GLAST in rat retina. Brain Res 744, 129-137.
Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20, 4615-4626.
Li S, Mizota A, Adachi-Usami E (1999) Alterations of the electroretinogram by intravitreal kainic acid in the rat. Jpn J Ophthalmol 43, 495-501.
Ling EA, Paterson JA, Privat A, Mori S, Leblond P (1973) Investigation of glial cells in semithin section. I. Identification of glial cells in the brain of young rats. J Comp Neurol 149, 43-71.
Ling EA, Penny D, Leblond P (1980)Use of carbon-labelling to demonstrate the role of blood monocytes as precursors of the ‘amoeboid cells’ present in the corpus callosum of postnatal rats. J Comp Neurol 193, 631-657.
Ling EA, Paterson JA, Privat A, Mori S, Leblond P (1981) The origin and nature of microglia. In: Federoff S & Hertz L (Ed.), Advances in Cellular Neurobiology, Academic Press, New York, 2, 33-82.
Ling EA, Kaur C, Yick TY, Wong WC (1990) Immunocytochemical localization of CR3 complement receptors with OX-42 in amoeboid microglia in postnatal rats. Anat Embryol 182, 481-486.
Ling EA, Kaur C, Wong WC (1991) Expression of major histocompatibility complex and leukocyte common antigen in amoeboid microglia in postnatal rats. J Anat 177, 117-126.
Ling EA, Ng YK, Wu CH, Kaur C (2001) Microglia: its development and role as a neuropathology sensor. Prog Brain Res 132, 61-79.
Linser PJ, Sorrentino M, Moscona AA (1984) Cellular compartmentalization of carbonic anhydrase-C and glutamine synthetase in developing and mature mouse neural retina. Dev Brain Res 13, 65-71.
Lipton SA, Rosenberg PA (1994) Excitatory amino acids as afinal common pathway for neurological disorders. N Engl J Med 330, 613-622.
McDermott KW, Barry DS, McMahon SS (2005) Role of radial glia in cytogenesis, patterning and boundary formation in the developing spinal cord. J Anat 207, 241–250.
Mallat M, Houlgatte R, Brachet P, Prochiantz A (1989) Lipopolysaccharide-stimulated rat brain mcrophages release NGF in vitro. Dev Biol 133, 309-311.
Marc R (1999) Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation. J Comp Neurol 407, 47-64.
Massey SC, Mills SL (1996) A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J Comp Neurol 366, 15-33.
Massey SC, Mills SL (1999) Antibody to calretinin stains AII amarcrine cells in the rabbit retina: double-label and confocal analyses. J Comp Neurol 411, 3-18.
Mattson MP, Rychlik B, Chu C, Christakos S (1991) Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 6, 41-51.
McBain CJ, Meyer ML (1994) N-Methyl-D-aspartic acid receptor structure and function. Physiol Rev 74, 723-760.
McGeer EG, McGeer PL (1976) Duplication of biochemical changes of Huntington’s chorea by intrastiatal injections of glutamic and kainic acid. Nature 263, 517-519.
McGeer PL, McGeer EG (1982) Kainic acid: neurotoxic breakthrough. Crit Rev Toxicol 3, 1-20.
Merrill JE (1991) Effect of interleukin-1 and TNF-α on astrocytes, microglia, oligodendrocytes, and glia precursors in vitro. Dev Neurosci 13, 130-137.
Meyer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurons. J Physiol (London) 394, 501.
Miller SJ, Li H, Rizvi TA, Huang Y, Johansson G, Bowersock J, Sidani A, Vitullo J, Vogel K, Parysek LM, DeClue JE, Ratner N (2003) Brain lipid binding protein in axon-Schwann cell interactions and peripheral nerve tumorigenesis. Mol Cell Biol 23, 2213-2224.
Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, Aiello LP, Ogura Y, Adamis AP (1999) Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Nat Aca Sci USA 96, 10836-10841.
Morgan IG, Ingham CA (1981) Kainic acid affects both plexiform layers of chicken retina. Neurosci Lett 21, 275-280.
Morest DK, Silver J (2003) Precursors of Neurons, Neuroglia, and Ependymal Cells in the CNS: What Are They? Where Are They From? How Do They Get Where They Are Going? Glia 43, 6–18.
Nakanishi N, Shneider NA, Axel R (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5, 569-581.
Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19, 307-312.
Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11, 462-468.
Ogden TE (1994) Glia. In: Stephen JR (Ed.), Retina, St. Louis, Mosby, 54-57.
Olney JW (1969) Glutamate-induced retinal degeneration in neonatal mice. Electron microscope of acutely evolving lesion. J Neuropathol Exp Neurol 28, 455-474.
Olney JW, Rhee V, Ho OL (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77, 507-512.
Osborne NN, Desantis L, Bae JH, Ugarte M, Wood JP, Nash MS, Chidlow G (1999) Topically applied betaxolol attenuates NMDA-induced toxicity to ganglion cells and the effects of ischaemia to the retina. Exp Eye Res 69, 331-342.
O’Steen WK, Karcioglu ZA (1974) Phagocytosisi in the light-damaged albino rat eye: light and electron microscopic study. Am J Anat 139, 503-518.
Otori Y, Wei JY, Barnstable CJ (1998) Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. Invest Ophthalmol Vis Sci 39, 972-981.
Peng YW, Blackstone CD, Huganir RL, Yau KW (1995) Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience 66, 483-497.
Perry YH, Gorden S (1987) Modulation of CD4 antigen on macrophages and microglia in rat brain. J Exp Med 166, 1138-1143.
Phillips RG, Meier TJ, Giuli LC, McLaughlin JR, Ho DY, Sapolsky RM (1999) Calindin D28K gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults. J Neurochem 73, 1200-1205.
Pow DW, Barnett NL (2000) Developmental expression excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett 280, 21-24.
Qin P, Pourcho RG. (2001) Immunocytochemical localiztion of kainate-selective glutamate receptor subunits GluR5, GluR6, and GluR7 in the cat retina. Brain Res 890, 211-221.
Rabié A, Thomasset M, Parkes CO, Clavel MC (1985) Immunocytochemical detection of 28000-MW calcium-binding protein in horizontal cells of the rat retina. Cell Tissue Res 240, 493-496.
Rakic P (1995) Radial versus tangential migration of neuronal clones in the developing cerebral-cortex. Proc. Natl. Acad. Sci. USA 92, 11323–11327.
Rami A, Rabie A, Thomasset M, Krieglstein J (1992) Calbindin-D28K and ischemic damage of pyramidal cells in rat hippocampus. J Neurosci Res 31, 89-95.
Rauen T, Kanner BI (1994) Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae. Neurosci Lett 169, 137-140.
Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6, 36 [Epub ahead of print].
Reye P, Sullivan R, Fletcher EL, Pow DV (2002) Distribution of two splice variants of glutamate transporter GLT1 in the retinas of humans, monkeys, rabbits, rats, cats, and chickens. J Comp Neurol 445, 1-12.
Rogers JH (1992) In: Kendrew J et al. (Eds.), Encyclopedia of Molecular Biology, Blackwell Scientific.
Roque RS, Caldwell RB (1990) Müller cell changes precede vascularization of the pigment epithelium in the dystrophic rat retina. Glia 3, 464-475.
Roque RS, Rosales AA, Jingjing L, Agarwal N, Al-Ubaidi, MR (1999) Retina-derived microglia cells induce photoreceptor cell death in vitro. Brain Res 836: 110-119.
Rothman SM, Olney JW (1986) Glutamate and pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19, 105-111.
Sautter J, Sabel BA (1993) Recovery of brightness discrimination in adult rats despite progressive loss of retrogradely labelled retinal ganglion cells after controlled optic nerve crush. Eur J Neurosci 5, 680-690.
Sabel BA, Sautter J, Stoehr T, Siliprandi R (1995) A behavioral model of excitotoxity: retinal degeneration, loss of vision, ansd sebsequent recovery after intraocular NMDA administration in adult rats. Exp Brain Res 106, 93-105.
Sarthy PV (1985) Establishment of Müller cell cultures from adult rat retina. Brain Res 337, 138-141.
Schauwecker PE (2003) Differences in ionotropic glutamate receptor subunit expression are not responsible for strain-dependent susceptibility to excitotoxin-induced injury. Brain Res. Mol. Brain Res. 112, 70-81.
Schmitt A, Asan E, Lesch KP, Kugler P (2002) A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience 109, 45-61.
Schmued, LC, Albertson C, Jr WS (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751, 37-46.
Schultz K, Stell WK (1996) Immunocytochemical localization of thehigh-affinity glutamate transporter, EAAC1, in the retina of representative vertebrate species. Neurosci Lett 211, 191-194.
Schwarcz R, Coyle JT (1977) Kainic acid: neurotoxic effects after intraocular injection. Invest Ophthalmol Vis Sci 16, 141-148.
Seaberg RM, Kooy DV (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26, 125-131.
Sellner P (1994) Developmental regulation of fatty acid binding protein in neural tissue. Dev Dyn 200, 333-339.
Sellner PA (1993) Retinal FABP principally localizes to neurons and not to glial cells. Mol Cell Biochem 123, 121-127.
Shin DH, Lee HY, Lee HW, Lee KH, Lim HS, Jeon GS, Cho SS, Hwang DH (2000) Activation of microglia in kainic acid induced ret retinal apoptosis. Neurosci Lett 292, 159-162.
Sola C, Tusell JM, Serratosa J (1997) Calmodulin is expressed by reactive microglia in the hippocampus of kainic acid-treated mice. Neuroscience 81, 699-705.
Sucher NJ, Akbararian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Auan JP, Jones EG, Lipton SA (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit(NMDAR-L)in rodent brain. J Neurosci 15, 6509-6520.
Takashi M, Geeta P, Guey-Shuang W, Narsing AR (1999) Retinal microglia differentially express phenotypic markers of antigen-presenting cells in vitro. Invest Ophthal Vis Sci 40, 3186-3193.
Tropepe V, Coles BL, Chiasson BJ, et al. (2000) Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036.
Vandenbranden CA, Kamphuis W, Nunes Cardozo B, Kamermans M (2000) Expression and localization of ionotropic glutamate receptor subunits in the goldfish retina - an in situ hybridization and immunocytochemical study. J Neurocytol 29, 729-742.
Van Den Bosch L, Schwaller B, Vleminckx V, Meijers B, Stork S, Ruehlicke T, Van Houtte E, Klaassen H, Celio MR, Missiaen L, Robberecht W, Berchtold MW (2002) Protective effect of parvalbumin on excitotoxic motor neuron death. Exp Neurol 174, 150-161.
Vernadakis A (1996) Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol 49, 185-214.
Voigt T (1989) Development of glial-cells in the cerebral wall of ferrets – direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289, 74–88.
Walcott JC, Provis JM (2003) Müller cells express the neuronal progenitor cell marker nestin in both differentiated and undifferentiated human foetal retina. Clin Experiment Ophthalmol 31, 246–249.
Weiss JH, Turetsky D, Wilke G., Choi DW (1994) AMPA/kainate receptor-mediated damage to NADPH-diaphorase containing neurons is Ca2+-dependent. Neurosci Lett 167, 93-96.
Wiessner M, Fletcher EL, Fischer F, Rauen T (2002) Localization and possible function of the glutamate transporter, EAAC1, in the rat retina. Cell Tissue Res 310, 31-40.
Werner P, Voigt M, Keinänen K, Wisden W, Seeburg PH (1991) Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351, 742-744.
Wilson MA, Gaze RM, Goodhand IA, Taylor JSH (1992) Regeneration in the Xenopus tadpole optic nerve is precede by a massive macrophage/microgliai response. Anat Embryol 186, 75-89.
Wu CH, Wang HJ, Wen CY, Lien KC, Ling EA (1997) Response of amoeboid and ramified microglial cells to lipopolysaccharide injections in postnatal rats - a lectin and ultrastructural study. Neurosci Res 27, 133-141.
Xue LP, Lu J, Cao Q, Hu S, Ding P, Ling EA (2006) Müller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina. Neuroscience 139, 723-732.
Yenari MA, Minami M, Sun GH, Meier TJ, Kunis DM, McLaughlin JR, Ho DY, Sapolsky RM, Steinberg GK (2001) Calbindin D28K overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke 32,1028-1035.
Zeevalk GD, Nicklas WJ (1992) Evidence that the loss of the voltage-dependent Mg2+ block at the N-methyl-D-aspartate receptors underlies receptor activation during inhibition of neuronal metabolism. J Neurochem 59, 1211.
Zeng XX, Ng YK, Ling EA (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 17, 463-471.
Zhang C, Tso MO (2003) Characterization of activated retinal microglia following optic axotomy. J Neurosci Res 73, 840-845.
Zhang C, Lam TT, Tso MO (2005) Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury. Exp Eye Res (Epub ahead of print).
Zhang G, Raol YS, Hsu FC, Brooks-Kayal AR (2004) Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J Neurochem 88, 91-10.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31322-
dc.description.abstract本研究主要的目的在探討經由紅藻胺酸(kainate)所引發的興奮性神經毒性(excitotoxicity)反應後,視網膜內神經元與神經膠細胞相互作用之反應。首先,在給予紅藻胺酸一天後,具有FJB (Fluoro Jade B)免疫反應主要會出現在神經節細胞層(ganglion cell layer; GCL)和內核層(inner nuclear layer; INL)的內緣。此時,具有NR1 (NMDA receptor)和GluR2/3 (AMPA receptor)免疫反應的細胞開始減少,但在第七天上升。然而,具有GluR5/6/7 (KA receptor)和EAAT1 (excitatory amino acid transporters 1)免疫反應的細胞則在給予紅藻胺酸後會增加。雙重免疫螢光反應結果指出,在給予紅藻胺酸三天後,在Müller氏細胞和星狀神經膠細胞會同時表現GFAP和NR1 (NR1+/GFAP+)、GFAP和GluR2/3 (GluR2/3+/GFAP+)以及GFAP和GluR5/6/7 (GluR5/6/7+/GFAP+)。給予紅藻胺酸後,在神經節細胞(ganglion cells)和水平細胞(horizontal cells)上具有calbindin (CB)免疫反應的細胞沒有明顯的改變。相反的是,具有parvalbumin (PV)免疫反應的神經節細胞,有減少的情形。但仍可發現具有CB和PV點狀免疫染色的產物散佈在變薄的視網膜內。本實驗結果顯示,這些不同的離子性麩氨酸鹽接受器之次單位體,在紅藻胺酸所引發的興奮性神經毒性反應中各自扮演不同的角色。在Müller氏細胞和星狀神經膠細胞上增加興奮性胺基酸運輸者與GFAP/iGluRs的表現,代表他們在紅藻胺酸所引發的類似興奮性神經毒性反應過程中,與麩氨酸鹽代謝系統障礙所引發的神經退化有密切關係。此外,具有CB及PV免疫反應的細胞與鈣離子的緩衝無關。
第二,在給予紅藻胺酸後,增加的complement receptor type 3 (CR3)、the major histocompatibility complex (MHC) class II和ED-1的免疫反應細胞主要是出現在內核層內緣。有趣的是,可在不同的時程裏,在光受器層的外節(OSPRL)發現具有這些免疫反應的細胞。根據定量分析數據,CR3的免疫數值是在給予紅藻胺酸七天後急速的達到最高峰,然後消退。相對的,MHC class II或ED-1的免疫數值則在給予紅藻胺酸三天前,和緩的達到高峰,然後緩慢的消退。雙重免疫螢光反應進一步顯示,微小膠細胞/巨噬細胞會同時表現CR3和ED1 (OX42+/ED1+)或MHC class II molecules (OX-42+/OX-6+),並在給予紅藻胺酸早期,維持分枝狀的型態。電子顯微鏡結果顯示,具有CR3的微小膠細胞/巨噬細胞,呈現豐富的細胞質包含著許多具有小泡和噬菌體。同時,有些類似Müller氏細胞和星狀神經膠細胞,也可吞噬外來物質。
第三,在給予紅藻胺酸後,Müller氏細胞和星狀神經膠細胞會活化並增加nestin、glial fibrillary acidic protein (GFAP)和glutamine synthetase (GS)的表現。主要的發現是給予紅藻胺酸一天開始,GFAP合併著nestin的表現有明顯增加。根據西方點墨法的統計數據顯示,nestin、GFAP和GS的表現相較於正常的視網膜有明顯增加的情形。而雙重免疫螢光反應顯示,Müller氏細胞和星狀神經膠細胞會表現放射狀神經膠細胞的標誌,並且會共同表現nestin和bromodeoxyuridine (BrdU),暗示其可能再進入細胞週期裏。在Müller氏細胞和星狀神經膠細胞增加這些蛋白質的表現,可能代表著在給予紅藻胺酸後所引發的受傷,會增加神經膠細胞的反應,並引發與再生成果相關的去分化反應。另外,在紅藻胺酸後所造成的傷害中,增加在Müller氏細胞和星狀神經膠細胞內BLBP和DCX的表現,暗示著這些細胞具有去分化的潛力,並在視網膜神經退化的過程中,再次獲得這些不成熟的分子。
zh_TW
dc.description.abstractThe present study aimed to investigate the interaction between glial cells and neurons in the adult rat retina after kainic acid (KA)-induced excitotoxicity. First, prominent cell death revealed by Fluoro Jade B (FJB) staining appeared in the ganglion cell layer (GCL) and inner border of the inner nuclear layer (INL) at 1 day post-injection. The immunoreactivity of NR1 (NMDA receptor) and GluR2/3 (AMPA receptor) was decreased initially at the same time intervals but elevated at 7 days. However, the expression of GluR5/6/7 (KA receptor) and EAAT1 (excitatory amino acid transporters 1) were increased at 1 day after KA treatment. Double labeling study has revealed that the retinal Müller glial cells expressed concurrently GFAP and NR1 antigens (GFAP+/NR1+), GluR2/3 (GFAP+/GluR2/3+) or GluR5/6/7 (GFAP+/GluR5/6/7+) after 3 days KA challenge. Calbindin (CB) labelled ganglion cells and horizontal cells showed no significant changes throughout the excitotoxic lesion. On the contrary, parvalbumin (PV) immunoreactivity in ganglion cells was decreased. Remarkably, KA-induced neurotoxicity also resulted in the expression of CB or PV in cells scattered throughout the shrunk retina. Present results suggest that different iGluRs subunits probably play different roles in mediating kainate-induced excitotoxicity. That the retinal Müller glial cells and astrocytes were induced to express EAAT1 and GFAP/ iGluRs further indicates that they are linked to neuronal degeneration in the glutamatergic system in this KA-induced excitotoxicity.
Second, an increased expression of the complement receptor type 3 (CR3), the major histocompatibility complex (MHC) class II and ED-1 antigens were mainly observed in the inner retina after kainate injection. Interestingly, some immunoreactive cells appeared in the outer segment of photoreceptor layer (OSPRL) at different time intervals. Our quantitative analysis further showed that CR3 immunoreactivity was drastically increased peaking at 7 days but subsided thereafter. MHC class II and ED-1 immunoreactivities showed a moderate but steady increase peaking at 3 days and declined thereafter. Double labeling study further revealed that retinal microglia/macrophages expressed concurrently CR3 and ED-1 antigens (OX-42+/ED-1+) or MHC class II molecules (OX-42+/OX-6+) and remained branched in shape at early stage of kainate challenge. By electron microscopy, microglia/macrophages with CR3 immunoreactivity displayed abundant cytoplasm containing a few vesicles and phagosomes. Other cells ultrastructurally similar to Müller cells or astrocytes could also engulf exogenous substances.
Third, both the astrocytes and Müller glial cells reacted vigorously to kainate injection as shown by their up-regulated expression of nestin, glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). A major finding was the induced expression of nestin together with GFAP beginning at 1 day post-injection of kainate. Western blotting analysis confirmed a marked increase in expression of nestin, GFAP and GS when compared to untreated/normal retina. Double labeling study has revealed that astrocytes and Müller glial cells expressed radial glia marker, nestin, and incorporated bromodeoxyuridine (BrdU) to re-enter into their cell cycle. The induced expression of these proteins in astrocytes and Müller glial cells indicated an induction of gliotic responses and de-differentiation that may be associated with regenerative efforts after kainate-induced injury. Additionally, induced expression of brain lipid-binding protein (BLBP) and doublecortin (DCX) in kainate-impacted astrocytes and Müller glial cells re-strengthened the potentiality of these cells to de-differentiate and reacquire an immature molecular profile in retinal neurodegeneration.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:42:57Z (GMT). No. of bitstreams: 1
ntu-95-F89446008-1.pdf: 4055720 bytes, checksum: 18fe3ee2c02d8296124c2b7893d8b1cb (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要..................................................i
英文摘要................................................iii
第一章、文獻回顧..........................................1
一、引言.................................................2
二、視網膜的組織結構.....................................3
三、麩氨酸鹽為視網膜內最主要的興奮性神經傳導物質.........9
四、麩氨酸鹽與興奮性毒性的關係..........................12
五、興奮性神經毒性對視網膜內神經元的影響................13
(1)興奮性毒性對離子性麩氨酸鹽接受器的影響..............14
(2)興奮性毒性與鈣離子結合蛋白的相關性..................15
六、興奮性毒殺對視網膜內神經膠細胞的影響................17
(1)興奮性毒性對微小膠細胞的影響........................17
(2)興奮性毒性對Müller氏細胞和星狀神經膠細胞的影響......18
七、興奮性毒性影響視網膜內神經元的存活與再生............20
八、工作假說............................................21
九、研究目的............................................22
第二章、材料與方法.......................................23
一、材料................................................24
二、方法................................................25
(1)光學顯微鏡觀察......................................25
1.Fluoro-Jade B .....................................25
2.免疫細胞化學法.....................................25
3.雙重免疫細胞化學法.................................26
(2)免疫電子顯微鏡染色法觀察............................27
(3)西方免疫墨點法......................................28
(4)資料定量及分析......................................28
第三章、結果.............................................30
一、紅藻胺酸所引發的類似興奮性神經毒性反應後,視網膜組織結構的改變.................................................31
(1)神經元在視網膜板層結構的變化–NeuN免疫染色..........31
(2)興奮性神經毒性反應後,退化神經元的分佈–FJB染色.....31
二、紅藻胺酸所引發的類似興奮性神經毒性反應後,離子性麩氨酸鹽接受器的次單位體NR1、GluR2/3、GluR5/6/7及興奮性胺基酸運輸者的變化.................................................32
(1)NR1分佈及數量的變化.................................32
(2)GluR2/3分佈及數量的變化.............................32
(3)GluR5/6/7分佈及數量的變化...........................33
(4)興奮性神經毒性反應後,Müller氏細胞和星狀神經膠細胞上的離子性麩氨酸鹽接受器的次單位體(NR1、GluR2/3及GluR5/6/7)的變化.......................................................33
(5)EAAT1免疫染色分佈及數量的變化.......................33
三、在紅藻胺酸所引發的類似興奮性神經毒性反應後,鈣離子結合蛋白的改變...............................................34
(1)鈣離子結合蛋白CB免疫反應的變化......................34
(2)鈣離子結合蛋白PV免疫反應的變化......................35
四、紅藻胺酸所引發的類似興奮性神經毒性反應後,用來標示微小膠細胞的補體受器3、組織相容性抗原種類二及溶解酶抗原在不同時程的變化.................................................35
(1)補體受器3的變化.....................................35
(2)組織相容性抗原種類二的變化..........................36
(3)溶解酶抗原的變化....................................37
(4)微小膠細胞/巨噬細胞的免疫分子間(OX42/OX6及OX42/ED1) 的變 化...................................................37
(5)給予紅藻胺酸後,微小膠細胞/巨噬細胞超微結構上補體受器3的變化...................................................38
五、紅藻胺酸所引發的類似興奮性神經毒性反應後, Müller氏細胞和星狀神經膠細胞內的麩氨酸合成酶及神經膠纖維酸性蛋白在不同傷害時程的變化.........................................39
(1)麩氨酸合成酶的免疫..................................39
(2)神經膠纖維酸性蛋白的免疫反應........................39
六、紅藻胺酸所引發的類似興奮性神經毒性反應後,視網膜可能再生的現象.................................................40
(1)神經性前驅細胞標誌蛋白nestin免疫反應................40
(2)興奮性神經毒性反應後, Müller氏細胞和星狀神經膠細胞的增殖的演變...............................................40
(3)Müller氏細胞和星狀神經膠細胞內的Nestin、腦脂質結合蛋白或Doublecortin的表現.....................................40
第四章、討論............................................42
一、視網膜內神經元對興奮性毒性的反應....................43
(1)在正常的視網膜內,離子性麩氨酸鹽接受器的分佈模式....43
(2)在紅藻胺酸所引發的類似興奮性神經毒性反應後,離子性麩氨酸鹽接受器的次單位體NR1、GluR2/3及GluR5/6/7的變化........44
(3)在紅藻胺酸所引發的類似興奮性神經毒性反應後,在Müller氏細胞和星狀神經膠細胞上興奮性胺基酸接受器與運輸者的變化...45
(4)在紅藻胺酸所引發的類似興奮性神經毒性反應後,鈣離子結合蛋白CB及PV的變化.........................................46
二、視網膜內神經膠細胞對興奮性毒性的反應................47
(1)在紅藻胺酸所引發的類似興奮性神經毒性反應後,微小膠細胞/巨噬細胞的活化與其他疾病模式的比較....................47
(2)在紅藻胺酸所引發的類似興奮性神經毒性反應後,微小膠細胞/巨噬細胞免疫分子各有其特異性表現......................48
(3)在紅藻胺酸所引發的類似興奮性神經毒性反應後,活化的微小膠細胞/巨噬細胞的活化型式和可能來源......................50
(4)在紅藻胺酸所引發的類似興奮性神經毒性反應中,微小膠細胞/巨噬細胞並非是唯一的吞噬細胞..........................51
三、在受傷的視網膜內Müller氏細胞和星狀神經膠細胞具有神經性前趨細胞的潛力...........................................51
(1)視網膜內Müller氏細胞和星狀神經膠細胞本質上是一種特化的放射狀神經膠細胞(radial glia)..........................51
(2)在紅藻胺酸所引發的類似興奮性神經毒性反應後,nestin、BLBP及DCX的變化與在神經退化過程中所扮演角色的相關性......52
(3)在紅藻胺酸所引發的類似興奮性神經毒性反應後,Müller氏細胞和星狀神經膠細胞具有增生與去分化的潛力.................53
四、結論................................................55
參考文獻.................................................56
圖表說明.................................................74
dc.language.isozh-TW
dc.title紅藻胺酸處理後對大白鼠視網膜內神經元及神經膠細胞的影響zh_TW
dc.titleNeuronal and Glial Cells Response to Kainate-Induced Injury in Rat Retinaen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee謝松蒼,劉江川,吳慶祥
dc.subject.keyword星狀神經膠細胞/Muller氏細胞,退化/再生,興奮毒性,紅藻胺酸,微小膠細胞/巨噬細胞,視網膜,zh_TW
dc.subject.keywordastrocytes/Muller glial cells,degeneration/regeneration,excitotoxicity,kainic acid,microglia/macrophages,retina,en
dc.relation.page148
dc.rights.note有償授權
dc.date.accepted2006-12-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
3.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved