Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周仲島
dc.contributor.authorTsung-Jung Leeen
dc.contributor.author李宗融zh_TW
dc.date.accessioned2021-06-13T02:42:45Z-
dc.date.available2006-12-15
dc.date.copyright2006-12-15
dc.date.issued2006
dc.date.submitted2006-11-30
dc.identifier.citation王翔儀,2006:垂直風切對於颱風強度影響的機制探討。國立臺灣大學大氣科學研究所碩士論文,共85頁。
周仲島、張保亮、李文兆,1994:都卜勒雷達在颱風環流中尺度結構分析的應用。大氣科學,22,2,163-188。
周仲島、鄧秀明、張保亮,1996:都卜勒雷達在颱風中心定位與最大風速半徑決定的應用。大氣科學,24,1,1-24。
周仲島、顏健文、趙坤,2004:台灣地區登陸颱風降雨結構之雷達觀測。大氣科學,32,183-204。
周仲島,2005:花蓮縣和平鄉和平電廠附近颱風侵襲期間最大陣風職推估。國立台灣大學大氣科學研究報告書,共119頁。
張保亮,2000:登陸颱風環流變化分析:賀伯 (1996) 個案研究。國立台灣大學大氣科學研究所博士論文,共158頁。
張雅茹,2004:利用Extended-GBVTD方法反演非軸對稱颱風(颶風)風場結構。國立中央大學大氣物理研究所碩士論文,共95頁。
高聿正,2003:納莉颱風近中心環流結構特徵分析。國立臺灣大學大氣科學研究所碩士論文,共105頁。
劉素屏,2004:GBVTD與VDAD方法在非軸對稱渦旋風場反演上的測試。國立臺灣大學大氣科學研究所碩士論文,共98頁。
顏健文,2003:侵台颱風降雨結構之時空變化特徵。國立臺灣大學大氣科學研究所碩士論文,共98頁。
Bender, M. A., 1997:The effect of relative flow on the asymmetric structure of the interior of hurricanes. J. Atmos. Sci., 54, 703-724.
Brand, S., and J. W. Blelloch, 1974:Changes in the characteristics of typhoons crossing the island of Taiwan. Mon. Wea. Rev., 102, 708–713.
Corbosiero, K. L., and J. Molinari, 2002: The efects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130,2110–2123.
___, and ___, 2003:The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366–376.
DeMaria. M., 1996:The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088.
Dodge, P., R. W. Burpee and F. D. Marks Jr., 1999: The kinematic structure of a hurricane with sea level pressure less than 900 mb. Mon Wea Rev., 127, 987–1004.
Frank, W. M. and E. A. Ritchie, 1999︰ Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev.,127,2044–2061.
___, and ___, 2001︰Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269.
Gray, G. M, 1968:Global view of the origin of tropical disturbance and Sstorms. Mon Wea Rev., 96, 669–700.
Hanley, D., J. Molinari and D. Keyser, 2001:A composite study of the interactions between tropical cyclones and upper-topospheric toughs. Mon. Wea. Rev., 129, 2570–2584.
Harasti, P. R., W.-C. Lee and M. M. Bell, 2005:Rapid intensification of hurricane Charley (2004) derived from WSR-88D data prior to landfall. Part II︰ HVVP adjustment for the environmental wind and central pressure retrieval. 32nd Conf. on Radar Meteorology.
Jones, S. C, 1995:The evolution of vortices in vertical shear. I:Intensity barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821-851.
Kuo, H. C., R. T. Williams, J.-H. Chen and Y.-L Chen. 2001:Topographic effects on barotropic vortex motion︰ No mean flow. J. Atmos. Sci., 58, 1310–1327.
Kuo, Y. H., W. Wang, Q. Zhang, W.-C. Lee, M. Bell. 2003 : High-resolution simulation of Hurricane Danny (1997): Comparison with radar observations. 25nd Conf. on Hurricanes and Tropical Meteorology.
Lee, W.-C., F. D. Marks Jr., and R. E. Carbone, 1994:Velocity Track Display—A technique to extract real-time tropical cyclone circulations using a single airborne doppler radar. J. Atmos. Oceanic Technol., 11, 337–356.
___, B.J.-D. Jou, P.-L. Chang, and S.-M. Deng., 1999:Tropical cyclone kinematic structure retrieved from single-doppler radar observations. Part I︰ Interpretation of doppler velocity patterns and the GBVTD Technique. Mon. Wea Rev., 127, 2419–2439.
___, F. D. Marks, 2000︰ Tropical cyclone kinematic structure retrieved from single-doppler radar observations. Part II:The GBVTD-simplex center finding algorithm. Mon. Wea. Rev., 128, 1925–1936.
___, B.J.-D. Jou, P.-L. Chang and F. D. Marks Jr., 2000:Tropical cyclone kinematic structure retrieved from single-doppler radar observations. Part III︰ Evolution and structures of typhoon Alex (1987). Mon. Wea. Rev., 128, 3982–4001.
Liou, Y.-C., T.-C.C. Wang, W.-C. Lee., and Y.-J. Chang., 2006:The retrieval of asymmetric tropical cyclone structures using doppler radar simulations and observations with the extended GBVTD technique. Mon. Wea. Rev., 134, 1140–1160.
Marks., F. D. ,Jr. and R. A. Houze, Jr., 1987:Inner core structure of hurricane Alicia from airborne doppler radar observations. J. Atmos. Sci., 44, 1296–1317.
___, ___, and J. F. Gamache, 1992:Dual-aircraft investigation of the inner core of hurricane Norbert. Part I︰ Kinematic structure. J. Atmos. Sci., 11, 919–942.
Merrill, R. T., 1988:Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 1678–1687.
Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache. 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-doppler radar. Mon. Wea. Rev., 128, 1653–1680.
Roux, F., and F. D. Marks Jr., 1996:Extended Velocity Track Display (EVTD):An improved processing method for doppler radar observations of tropical cyclones. J. Atmos. Oceanic Technol., 13, 875–899.
___, C.-M. Fabrice , L.-B. Antoine and O. Nuissier. 2004:Structure and evolution of intense tropical cyclone Dina near La Réunion on 22 January 2002︰ GB-EVTD analysis of single doppler radar observations. J. Atmos. Oceanic Technol., 21, 1501–1518.
Shea, D. J., and W. M. Gray., 1973:The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30, 1544–1564.
Yeh, T.-C. and R. L. Elsberry., 1993:Interaction of typhoons with the Taiwan orography. Part I:Upstream track deflections. Mon. Wea. Rev., 121, 3193–3212.
___, and ___, 1993: Interaction of typhoons with the Taiwan orography. Part II:Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213–3233.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31319-
dc.description.abstract地基速度軌跡顯示法(GBVTD)在許多登陸台灣的颱風研究中,已被證明能有效的反演颱風運動結構特徵。然而其所使用的反演座標以及忽略平均風垂直雷達波束分量的假設,在平均風垂直雷達波束分量較大的情況下,會造成反演結果有較大的誤差。周等(1996)進一步發展速度距離乘積方位顯示法(VDAD),在VDAD座標下,平均風呈一組平行線,識別平均風遠比在GBVTD座標下容易。因此,本文以VDAD為基礎,發展一套利用雷達觀測資料反演平均風的疊代方法。
  本文將理想阮肯渦旋嵌入在預設之平均風環境裡,對此疊代算法進行測試。結果顯示,反演之平均風大小與方向均與預設值相當接近,風速誤差約1 m s-1,風向誤差則在10°以內。反演結果的誤差則是對於渦旋中心距雷達之距離、資料中的雜訊、以及軸對稱徑向風較為敏感。
本文同時也將此平均風疊代法應用於納坦颱風(2004)。利用五分山和花蓮雷達觀測資料,分別透過GBVTD計算其軸對稱切向風,結果顯示,兩座雷達計算之軸對稱切向風最大值相差達14 m s-1,而這樣的差異可歸因於納坦颱風平均風垂直雷達觀測分量較為顯著所造成。進一步將此平均風疊代法應用於納坦颱風,結果顯示,兩座雷達計算之軸對稱切向風最大值差異顯著降低至1.2 m s-1。配合討論垂直風切對於降雨分布以及納坦颱風接近台灣地形時路徑轉變的可能影響,也論證了此平均風疊代法之重要性。
zh_TW
dc.description.abstractGround-based velocity track display (GBVTD) technique has been proven to be effective on retrieving the kinematic structure of landfalling typhoons in Taiwan. However, significant errors are found due to the limitation of GBVTD technique especially when the environmental mean wind component perpendicular to the line connecting the radar and the typhoon center is large. A new iterative method, based on the velocity distance azimuth display (VDAD) technique proposed by Jou et al. (1996), has been developed to solve the environmental mean wind from the observed radial velocity data.
In this thesis, an iterative method is designed for solving the environmental mean wind. This method is tested by setting up an experiment that an ideal Rankine vortex is embedded within a pre-assigned uniform mean wind environment. The results show that the error of retrieved mean wind speed is less than 1 m s-1 and the mean wind direction is less than 10°. These errors are sensitive to the distance between the vortex center and the radar, the noise of the data, the, the mean tangential wind speed, and the mean radial wind speed.
The mean wind solver has been applied to a real typhoon case, Nock-Ten (2004). Using Hwa-Lien (HL) and Wu-Feng-Shan (WFS) radar data set respectively, the mean tangential wind component of Nock-Ten has been retrieved by original GBVTD method. It is found that the retrieved maximum mean tangential wind from HL is 14 m s-1 less than that solved by WFS data set. This large difference has been attributed to significant mean wind component perpendicular to the line connecting the radar and the typhoon center. After applying the newly developed mean wind solver to the data set, the difference of the retrieved maximum mean tangential wind has been reduced to 1.2 m s-1 which is significantly less than what was calculated originally. The importance of the mean wind solver is also demonstrated by discussing the mean vertical wind shear on precipitation distribution and the possible influence on the track of the storm while it is very close to the Taiwan topography.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:42:45Z (GMT). No. of bitstreams: 1
ntu-95-R93229014-1.pdf: 3643477 bytes, checksum: 0580becd295aed88544f768c58eef1ee (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目 錄
致謝----------------------------------------------------------------------------------I
中文摘要--------------------------------------------------------------------------III
英文摘要--------------------------------------------------------------------------IV
目錄---------------------------------------------------------------------------------V
表錄-------------------------------------------------------------------------------VII
圖錄------------------------------------------------------------------------------VIII
第一章 前言---------------------------------------------------------------------1
1-1 研究背景---------------------------------------------------------------1
1-2 研究動機與目的------------------------------------------------------3
第二章 求解平均風之疊代方法---------------------------------------------5
2-1 GBVTD方法回顧----------------------------------------------------5
2-2 現有求解平均風方法說明------------------------------------------9
2-3 擬雙都方法求解平均風-------------------------------------------10
2-4 VDAD方法----------------------------------------------------------12
2-5 平均風疊代方法之原理-------------------------------------------14
2-6 疊代方法的計算步驟----------------------------------------------16
第三章 平均風反演在理想渦旋條件之測試----------------------------19
3-1 實驗設計-------------------------------------------------------------19
3-1-1 軸對稱渦旋--------------------------------------------------19
3-1-2 中心定位敏感度測試--------------------------------------20
3-1-3 軸對稱渦旋加雜訊-----------------------------------------20
3-1-4 渦旋中心相對雷達之距離--------------------------------21
3-1-5軸對稱渦旋加軸對稱徑向風------------------------------21
3-1-6 非對稱渦旋--------------------------------------------------21
3-2 實驗測試結果-------------------------------------------------------22
3-2-1 軸對稱渦旋--------------------------------------------------22
3-2-2 中心定位敏感度測試--------------------------------------23
3-2-3 軸對稱渦旋加雜訊-----------------------------------------24
3-2-4 渦旋中心相對雷達之距離--------------------------------24
3-2-5 軸對稱渦旋加軸對稱徑向風-----------------------------25
3-2-6 非對稱渦旋--------------------------------------------------25
3-3 理想渦旋測試小結-------------------------------------------------26
第四章 納坦颱風(2004)環流結構與平均風反演(個案分析)--------28
4-1 納坦颱風簡介-------------------------------------------------------28
4-2 資料-------------------------------------------------------------------28
4-3 平均風的計算-------------------------------------------------------30
4-4 納坦颱風之結構分析----------------------------------------------32
4-4-1 平均風隨時間和高度的變化-----------------------------32
4-4-2 軸對稱結構隨時間的變化--------------------------------33
4-4-3非軸對稱結構隨時間的變化------------------------------35
第五章 討論-------------------------------------------------------------------37
5-1 求解平均風方法討論----------------------------------------------37
5-2 平均風對於環流結構的影響-------------------------------------38
5-3 影響納坦颱風路徑可能的原因----------------------------------40
第六章 結論--------------------------------------------------------------------42
參考文獻 -----------------------------------------------------------------------44
附錄A 搜尋範圍大小的選取-----------------------------------------------48
附錄B 納莉颱風平均風計---------------------------------------------------48
附表圖 --------------------------------------------------------------------------49
dc.language.isozh-TW
dc.subject平均風zh_TW
dc.subjectGBVTDzh_TW
dc.subjectVDADzh_TW
dc.subject疊代法zh_TW
dc.subject垂直風切zh_TW
dc.subjectVDADen
dc.subjectIterative methoden
dc.subjectEnvironmental mean winden
dc.subjectGBVTDen
dc.subjectVertical wind shearen
dc.title都卜勒雷達在颱風環流結構與平均風反演之應用zh_TW
dc.titleDoppler Radar Application on Typhoon Circulation and Mean Wind Retrievalen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳泰然,李清勝,吳俊傑,廖宇慶
dc.subject.keywordGBVTD,平均風,VDAD,疊代法,垂直風切,zh_TW
dc.subject.keywordGBVTD,Environmental mean wind,Iterative method,VDAD,Vertical wind shear,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2006-12-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved