請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31301完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李水盛,張煥宗,郭錦樺 | |
| dc.contributor.author | Lin-Chau Chang | en |
| dc.contributor.author | 張琳巧 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:41:35Z | - |
| dc.date.available | 2012-01-09 | |
| dc.date.copyright | 2007-01-09 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-12-26 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31301 | - |
| dc.description.abstract | 為了解應用毛細管電泳於藥物分析之可行性,本研究以膠束電動層析法及微乳劑電動層析法兩種模式為探討之核心。中草藥萃取物的混合物,因成分複雜,須要高解析度之分析方法加以分離。本研究以膠束電動層析法,分析常見中藥材黃連、黃芩及大黃之13種指標成分的混合物。結果發現,有機修飾劑乙腈之添加百分比,會造成解析度、峰形和遷移窗域顯著的改變。藉由調整緩衝溶液酸鹼值、界面活性劑之濃度及乙腈之添加百分比,13種指標成分得以成功分離。其緩衝溶液之組成為,在pH值7.3下,3 mM di-sodium tetraborate、10 mM sodium dihydrogen phosphate、50 mM sodium deoxycholate與30%乙腈之混合溶液。應用此方法分析含上述三種藥材之三黃瀉心湯時,可以定量萃取物中所含之八種成分,此方法可作為分析其他混合此三種藥材之起始條件。
由於固醇類荷爾蒙之分析,對於診斷、預後及藥物品質管制等皆具重要性,因此,本研究利用含陽離子界面活性劑cetyltrimethylammonium bromide (CTAB) 之膠束電動層析法,同時分析分屬雄性素、雌性素、助孕素及糖皮質素之固醇類荷爾蒙,以期增進對分析此類物質時所可能產生的各種狀況之了解。結果顯示,重要影響因子包含CTAB之濃度、有機修飾劑之種類和比例及樣品間質等。其中,尤以有機修飾劑之影響最為顯著,其於緩衝溶液中影響解析度,而於樣品間質中則影響峰形。在施加電壓-25 kV下,以含有pH 9.0之100 mM Tris-boric acid buffer、40 mM CTAB 及 20% 2-propanol之混合溶液,得以成功分離cortisone、hydrocortisone、estriol、testosterone、estrone、progesterone及estradiol。 對於分析結構相似度高、且厭水性高之各種型式的tocopherols,本研究採用峰效率及溶解能力高之微乳劑電動層析法進行分析,並探討緩衝溶液系統、環糊精的種類與濃度、溫度及樣品間質等,對於分析效果之影響。在-26 kV、25 °C下,利用含有4% (w/w) sodium dodecyl sulfate (SDS)、6.6% (w/w) 1-butanol、0.8% (w/w) n-octane、20% (w/w) 2-propanol、68.6% (w/w) phosphate (25 mM, pH 2.5) 及25 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) 之微乳劑系統,得以成功分離α-、γ-、δ-tocopherol、α-tocopherol acetate及抗氧化劑butylated hydroxytoluene (BHT)。由以上之結果得知,在適當之條件控制下,具高解析度、高分析效能及低樣品與溶媒消耗量之毛細管電泳,確實具有應用於藥物分析之價值和前景。 | zh_TW |
| dc.description.abstract | The aim of the present study was to elucidate the feasibility of capillary electrophoresis, with focus on micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) in pharmaceutical analysis. The components of the mixture of Chinese herbal extracts were usually complex, which necessitated the use of analytical methods with high resolution power. Therefore, MEKC was applied to analyze a mixture of 13 bioactive components of common Chinese herbs including Coptidis Rhizoma, Scutellariae Radix, and Rhei Rhizoma. Acetonitrile percentage was found to significantly influence the resolution, peak shape, and elution window. By adjusting buffer pH, the concentration of surfactant, and acetonitrile proportion, 13 bioactive components could be successfully separated at pH 7.3 using a buffer mixture of 3 mM di-sodium tetraborate, 10 mM sodium dihydrogen phosphate, and 50 mM sodium deoxycholate with 30% (v/v) acetonitrile. Eight components of San-huang-xie-xin-tang, which contained all three herbs, could be determined using the developed method. The separation condition could serve as a starting point to evaluate other related formulae containing these herbs.
Since the analysis of steroid hormones was important for diagnosis, prognosis, and quality control of pharmaceutical products, MEKC with a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used to simultaneously analyze the steroid hormones which belonged to androgens, estrogens, progestins, and glucocorticoids. The aim of the present study was to expand the understanding of the separation phenomena which would be encountered regarding the analyses of steroid hormones. Influential parameters included the concentration of CTAB, type and proportion of organic modifiers, and sample matrix. Organic modifier was the most prominent parameter, since it affected the resolution through the presence in separation buffer and the peak shape though the existence in sample matrix. Successful separation of cortisone, hydrocortisone, estriol, testosterone, estrone, progesterone, and estradiol was achieved at -25 kV using 100 mM Tris-boric acid buffer (pH 9.0) with 40 mM CTAB and 20% 2-propanol. MEEKC, claimed to attain high peak efficiency with great solubilization power, was also utilized in the present study to separate different forms of tocopherols with highly structural similarities and high hydrophobicities. We investigated the effects of various parameters, such as buffer system, type and concentration of cyclodextrins, temperature, and sample matrix on the separation of tocopherols. By using a buffer mixture of 4% (w/w) sodium dodecyl sulfate (SDS), 6.6% (w/w) 1-butanol, 0.8% (w/w) n-octane, 20% (w/w) 2-propanol, 68.6% (w/w) phosphate (25 mM, pH 2.5), and 25 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), the separation of α-, γ- and δ-tocopherol, α-tocopherol acetate, as well as the antioxidant butylated hydroxytoluene (BHT) at -26 kV, 25 °C was succeeded. The results suggested that under proper control of separation conditions, capillary electrophoresis, due to its high resolution power, high separation efficiency, and low sample and solvent consumption, was indeed of great values to be applied in pharmaceutical analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:41:35Z (GMT). No. of bitstreams: 1 ntu-95-D92423003-1.pdf: 1448594 bytes, checksum: a4209645f3876569d643110cd682ef63 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 口試委員會審定書.........................................i
誌謝.....................................................ii 中文摘要................................................iii 英文摘要..................................................v 目錄...................................................viii 圖目錄.................................................xiv 表目錄................................................xviii 第一章 序論 壹、毛細管電泳的歷史與文獻回顧..............................................................................1 貳、毛細管電泳的分析原理及概要..............................................................................4 2.1. 毛細管電泳裝置簡介....................................................................................4 2.2. 電泳原理概要................................................................................................4 2.3. 電滲流 (electroosmotic flow, EOF) .............................................................5 2.4. 評估分離效果之常用公式............................................................................6 2.4.1. 峰效率.................................................................................................6 2.4.2. 解析度.................................................................................................6 參、與本論文相關之電泳技術 3.1 膠束電動層析法 (micellar electrokinetic chromatography, MEKC) 簡介..7 3.1.1. 膠束電動層析法之分離原理...........................7 3.1.2. 膠束系統...........................................7 3.1.3. 膠束電動層析法之最佳化.............................9 3.1.3.1. 分離效率 (efficiency) ..........................10 3.1.3.2. 選擇性 (selectivity) ...........................10 3.1.3.3. 分配作用 (partitioning) ........................11 3.1.3.4. 遷移窗域 (migration window) ....................12 3.2. 微乳劑電動層析法 (microemulsion electrokinetic chromatography, MEEKC) 簡介........................................................................13 3.2.1. 微乳劑及微乳劑電動層析法之發展緣起、概要及其應用............13 3.2.2. 微乳劑系統.......................................................................................14 3.2.3. 微乳劑電動層析法...........................................................................15 3.2.4. 影響微乳劑電動層析法分離結果之因素.......................................15 3.2.4.1. 界面活性劑之種類及濃度....................................................15 3.2.4.2. 油相種類................................................................................17 3.2.4.3. 有機修飾劑之加入................................................................17 3.2.4.4. 輔助界面活性劑之種類及濃度............................................18 3.2.4.5. 緩衝溶液種類及濃度............................................................18 3.2.4.6. 緩衝溶液系統酸鹼度 (pH值) .............................................18 3.2.4.7. 緩衝溶液添加物....................................................................19 3.2.4.8. 樣品間質及注射時間............................................................19 3.2.4.9. 微乳劑製備步驟之影響........................................................20 3.2.4.10. 溫度效應..............................................................................20 3.3. 微乳劑電動層析法與膠束電動層析法之比較..........................................21 肆、研究動機................................................................................................................23 伍、參考文獻................................................................................................................24 第二章 以膠束電動層析法分析含有黃連生物鹼 (coptis alkaloids)、黃芩黃酮類 (scute flavonoids) 及大黃 (rhubarb) 蒽醌 (anthraquinones) 與雙蒽酮類 (bianthrones) 之研究 壹、序論與研究目的....................................................................................................49 貳、實驗部分................................................................................................................51 2.1. 儀器..............................................................................................................51 2.2. 藥品與試劑..................................................................................................51 2.3. 標準品溶液之製備......................................................................................51 2.4. 檢品溶液之製備..........................................................................................52 2.5. 毛細管電泳系統..........................................................................................52 2.6. 毛細管之處理..............................................................................................53 2.7. 分析方法之確效..........................................................................................53 2.7.1. 精密度 (precision) ...........................................................................53 2.7.2. 線性 (linearity) ................................................................................54 2.7.3. 偵測極限 (limit of detection, LOD) ...............................................54 2.7.4. 準確度 (accuracy) ...........................................................................54 參、結果與討論............................................................................................................55 3.1. 分析方法之建立..........................................................................................55 3.2. 分析參數之探討..........................................................................................56 3.2.1. 緩衝溶液酸鹼值...............................................................................56 3.2.2. 界面活性劑sodium deoxycholate之濃度........................................56 3.2.3. 添加有機修飾劑乙腈之百分比.......................................................57 3.3. 最佳分析條件..............................................................................................58 3.4. 分析方法之確效..........................................................................................58 3.4.1. 精密度 (precision) ...........................................................................58 3.4.2. 線性 (linearity) ................................................................................59 3.4.3. 偵測極限 (limit of detection, LOD)................................................59 3.4.4. 準確度 (accuracy) ...........................................................................59 3.5. 三黃瀉心湯之定量......................................................................................60 肆、結論.......................................................................................................................61 伍、參考文獻................................................................................................................62 第三章 以膠束電動層析法配合紫外光吸收或雷射誘導螢光偵測法分析固醇類荷爾蒙 壹、序論與研究目的....................................................................................................88 貳、實驗部分................................................................................................................90 2.1. 儀器..............................................................................................................90 2.1.1. 紫外光吸收偵測...............................................................................90 2.1.2. 雷射誘導螢光偵測...........................................................................90 2.2. 藥品與試劑..................................................................................................90 2.3. 標準品溶液之製備......................................................................................91 2.4. 檢品溶液之製備..........................................................................................91 2.4.1. Trisequens錠劑..................................................................................91 2.4.2. 黃體素注射液 (progesterone injection)...........................................91 2.5. 最佳化緩衝溶液之製備..............................................................................92 2.6. 毛細管電泳系統..........................................................................................92 2.6.1. 紫外光吸收偵測...............................................................................92 2.6.2. 雷射誘導螢光偵測...........................................................................92 2.7. 毛細管之處理..............................................................................................92 2.8. 計算電泳淌度之公式..................................................................................93 2.9. 偵測極限 (limit of detection, LOD).........................................................93 2.10. 利用標準添加法定量................................................................................94 2.11. 含量信賴區間之評估................................................................................94 參、結果與討論............................................................................................................96 3.1. 分析方法之建立..........................................................................................96 3.2. 分析參數之探討..........................................................................................97 3.2.1. 有機修飾劑種類之影響...................................................................97 3.2.2. 添加異丙醇比例之影響...................................................................98 3.2.3. CTAB濃度之影響.............................................................................98 3.2.4. 樣品間質中甲醇比例之影響...........................................................99 3.3. 最佳化緩衝溶液……………………….....................…………………….100 3.4. 遷移順序之探討................................................................……………......101 3.5. 分析物的偵測極限 (limit of detection, LOD)...................................102 3.6. 檢品溶液的分析........................................................................................102 3.6.1. 市售含有estradiol hemihydrate錠劑之分析.................................102 3.6.2. 市售含有progesterone注射劑之分析...........................................103 肆、結論......................................................................................................................105 伍、參考文獻..............................................................................................................106 第四章 以環糊精修飾之微乳劑電動層析法分離α-、γ-、δ-tocopherol及α-tocopherol acetate 壹、序論與研究目的..................................................................................................132 貳、實驗部分..............................................................................................................134 2.1. 儀器............................................................................................................134 2.2. 藥品與試劑................................................................................................134 2.3. 標準品溶液之製備....................................................................................135 2.4. 檢品溶液之製備........................................................................................135 2.5. 最佳化緩衝溶液之製備............................................................................135 2.6. 毛細管電泳系統........................................................................................135 2.7. 毛細管之處理............................................................................................136 2.8. 分析方法之確效........................................................................................137 2.8.1. 精密度 (precision)..........................................................................137 2.8.2. 線性 (linearity)...............................................................................137 2.8.3. 偵測極限 (limit of detection, LOD)..............................................138 2.8.4. 定量極限 (limit of quantitation, LOQ) .........................................138 2.8.5. 準確度 (accuracy) .........................................................................138 參、結果與討論..........................................................................................................139 3.1. 分析方法之建立........................................................................................139 3.2. 分析參數之探討........................................................................................140 3.2.1. DM-β-CD濃度之影響.....................................................................140 3.2.2. 溫度之影響.....................................................................................141 3.2.3. 樣品間質之影響.............................................................................141 3.3. 分離機制之探討........................................................................................141 3.4. 分析方法之確效........................................................................................143 3.4.1. 精密度 (precision).............................................................................143 3.4.2. 線性 (linearity)...............................................................................143 3.4.3. 偵測極限 (limit of detection, LOD)..............................................143 3.4.4. 定量極限 (limit of quantitation, LOQ)..........................................144 3.4.5. 準確度 (accuracy) .........................................................................144 3.5. 實際樣品之檢測........................................................................................144 肆、結論........................................................................................................................145 伍、參考文獻................................................................................................................146 第五章 總結..............................................................................................................169 附錄............................................................................................................................171 圖目錄 Figure 1-1. The instrumentation setup of capillary electrophoresis....................44 Figure 1-2. Electrical double layer.......................................................................44 Figure 1-3. Schematic representation of MEKC..................................................45 Figure 1-4. Basic structure of the amino acid-based polymeric surfactants.........45 Figure 1-5. Schematic diagram of water-soluble polyelectrolyte complex between polyacrylic acid and alkyltrimethylammonium salts....................................................................................................46 Figure 1-6. Pictorial representation of the combination of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) to form a bicelle................................................................................................46 Figure 1-7. Schematic of surfactant coated oil droplet........................................47 Figure 1-8. Principles of MEEKC.......................................................................47 Figure 2-1. Structures of 13 compounds analyzed and tetrandrine (I.S.)...................................................................................................69 Figure 2-2. Effect of buffer pH on migration time of the analytes…...............70 Figure 2-3. Effect of SDC concentration on migration time of the analytes..............................................................................................71 Figure 2-4. Stereoscopic views of the helix found in the rubidium deoxycholate (RbDC) crystal structure viewed (a) along and (b) perpendicular to the helical axis…............................................................................72 Figure 2-5. Effect of ACN percentage on migration time of the analytes..............................................................................................73 Figure 2-6. Electropherogram of 13 analytes under optimized separation conditions.......................................................................................74 Figure 2-7. Electropherogram of San-huang-xie-xin-tang extract under optimized separation conditions.........................................................................75 Figure 2-8. Calibration curve of coptisine by linear regression analysis..........76 Figure 2-9. Calibration curve of berberine by linear regression analysis.........76 Figure 2-10. Calibration curve of palmatine by linear regression analysis........77 Figure 2-11. Calibration curve of baicalin by linear regression analysis...........77 Figure 2-12. Calibration curve of sennoside B by linear regression analysis.....78 Figure 2-13. Calibration curve of sennoside A by linear regression analysis…....78 Figure 2-14. Calibration curve of emodin by linear regression analysis............79 Figure 2-15. Calibration curve of rhein by linear regression analysis................79 Figure 3-1. Structures of seven analyzed steroids...........................................116 Figure 3-2. Influence of organic modifiers on separation of seven steroid hormones.........................................................................................117 Figure 3-3. Influence of 2-propanol on separation of seven steroid hormones.........................................................................................118 Figure 3-4. Influence of CTAB on separation of seven steroid hormones...................................................................................…..119 Figure 3-5. Influence of methanol (60-100%) in sample matrix on separation of seven steroid hormones................................................................120 Figure 3-6. Influence of PEO on separation of seven steroid hormones.........................................................................................121 Figure 3-7. Influence of median- and long-chain alcohols on separation of seven steroid hormones.............................................................................122 Figure 3-8. (a) Electropherogram of estradiol hemihydrate tablet using estriol as an internal standard; (b) Electropherogram of progesterone injection using testosterone as an internal standard........................................123 Figure 3-9. Standard addition curve of estradiol by linear regression analysis............................................................................................124 Figure 3-10. Standard addition curve of progesterone by linear regression analysis............................................................................................124 Figure 3-11. Influence of CTAB (0-80 mM) in sample matrix on separation of seven steroid hormones.................................................................125 Figure 4-1. Structures of different forms of tocopherols used, vitamin A palmitate, and BHT.......................................................................152 Figure 4-2. Effect of DM-β-CD on migration time of tocopherols and BHT.................................................................................................153 Figure 4-3. Effect of temperature on migration time of tocopherols and BHT.................................................................................................154 Figure 4-4. Electropherogram of four tocopherols studied and BHT under the optimized condition.........................................................................155 Figure 4-5. Electropherograms of vitamin A palmitate, four tocopherols, and BHT under optimized conditions in the (a) presence and (b) absence of DM-β-CD... ...............................................................156 Figure 4-6. Calibration curve of α-tocopherol by linear regression analysis….157 Figure 4-7. Calibration curve of γ-tocopherol by linear regression analysis….157 Figure 4-8. Calibration curve of δ-tocopherol by linear regression analysis….158 Figure 4-9. Electropherograms of vitamin E supplement (a) with and (b) without the addition of α-tocopherol acetate and BHT under optimized conditions........................................................................................159 表目錄 Table 1-1. Polymeric micelles for achiral separations and their target analytes..............................................................................................48 Table 2-1. Migration times (min) of 13 analytes............................................80 Table 2-2. Repeatability and reproducibility of migration times for 13 analytes.............................................................................................83 Table 2-3. Peak-area-ratios of 8 analytes.........................................................84 Table 2-4. Repeatability and reproducibility of peak-area-ratios for 8 analytes..............................................................................................85 Table 2-5. Linear relationships between peak-area-ratios and concentrations (µg/ml) for 8 analytes.....................................................................86 Table 2-6. Limits of detection of 13 analytes at detection wavelength of 270 nm...................................................................................................86 Table 2-7. Intra-assay (n=3) and inter-assay (n=9) determinations of 8 components in spiked San-huang-xie-xin-tang..............................87 Table 2-8. Contents of 8 components in San-huang-xie-xin-tang (n=3)…........87 Table 3-1. Influence of organic modifiers on the apparent mobility of electroosmotic flow and the absolute values of the net mobilities of the analytes...................................................................................126 Table 3-2. Influence of 2-propanol on the apparent mobility of electroosmotic flow and the absolute values of the net mobilities of the analytes............................................................................................127 Table 3-3. Influence of CTAB on the apparent mobility of electroosmotic flow and the absolute values of the net mobilities of the analytes............................................................................................128 Table 3-4. Comparison of limits of detection using UV absorption (at wavelength of 224 nm) and LIF detection (at excitation wavelength of 266 nm) for the tested steroids....................................................129 Table 3-5. Results of standard addition analysis of two real samples..............130 Table 3-6. Data used for the calculation of the standard addition curve of estradiol........................................................................................130 Table 3-7. Data used for the calculation of the standard addition curve of progesterone.................................................................................131 Table 4-1. Effect of cyclodextrins on the separation of a sample mixture containing four tocopherols and BHT.........................................160 Table 4-2. Effect of sample matrixes (A-D) on peak efficiency of four tocopherols and BHT.......................................................................161 Table 4-3. Mobilities (cm2V-1s-1) of vitamin A palmitate, four tocopherols, and BHT under optimized conditions in the presence of DM-β-CD.........................................................................................162 Table 4-4. Mobilities (cm2V-1s-1) of vitamin A palmitate, four tocopherols, and BHT under optimized conditions in the absence of DM-β-CD.........................................................................................162 Table 4-5. Migration times (min) of three tocopherols at three different concentration levels.........................................................................163 Table 4-6. Peak-area-ratios of three tocopherols at three different concentration levels.................................................................................................165 Table 4-7. Intra-assay precision (n=3) and intermediate precision (n=9) of migration times (tm) and peak-area-ratios and accuracy (n=9) data of α-, γ-, and δ-tocopherol at three concentration levels..............167 Table 4-8. Linear relationships of tocopherols between peak-area-ratios and concentrations (µg/ml)….............................................................167 Table 4-9. Limits of detection (LOD) and limits of quantitation (LOQ) of tocopherols at wavelength of 205 nm..............................................168 Table 4-10. Comparison of label claim with the estimation of the amount of each tocopherol determined.....................................................................168 | |
| dc.language.iso | zh-TW | |
| dc.subject | 維生素E | zh_TW |
| dc.subject | 毛細管電泳 | zh_TW |
| dc.subject | 膠束電動層析法 | zh_TW |
| dc.subject | 微乳劑電動層析法 | zh_TW |
| dc.subject | 三黃瀉心湯 | zh_TW |
| dc.subject | 固醇類荷爾蒙 | zh_TW |
| dc.subject | tocopherols | en |
| dc.subject | capillary electrophoresis | en |
| dc.subject | micellar electrokinetic chromatography | en |
| dc.subject | microemulsion electrokinetic chromatography | en |
| dc.subject | San-huang-xie-xin-tang | en |
| dc.subject | steroid hormones | en |
| dc.title | 三黃瀉心湯、固醇類荷爾蒙及維生素E之毛細管電泳分析 | zh_TW |
| dc.title | The Analysis of San-huang-xie-xin-tang, Steroid Hormones, and Tocopherols by Capillary Electrophoresis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳信隆,李安榮,陳繼明,許順吉 | |
| dc.subject.keyword | 毛細管電泳,膠束電動層析法,微乳劑電動層析法,三黃瀉心湯,固醇類荷爾蒙,維生素E, | zh_TW |
| dc.subject.keyword | capillary electrophoresis,micellar electrokinetic chromatography,microemulsion electrokinetic chromatography,San-huang-xie-xin-tang,steroid hormones,tocopherols, | en |
| dc.relation.page | 171 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-12-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
