請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31287完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋聖榮 | |
| dc.contributor.author | Ya-Jiun Liu | en |
| dc.contributor.author | 劉亞君 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:40:42Z | - |
| dc.date.available | 2007-01-24 | |
| dc.date.copyright | 2007-01-24 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2007-01-03 | |
| dc.identifier.citation | 汪良奇 (2004) 鄂霍次克海化石矽藻類群研究—重建178萬年來海冰變化與古氣候變遷:國立彰化師範大學生物學系碩士論文,57頁
周祐民 (2003) 鄂霍次克海岩心MD012414之磁學研究—180萬年來東北亞古氣候及古環境變遷:國立台灣師範大學地球科學研究所碩士論文,81頁 André K., (2001) Ozeanographie, Produktivität und Meereisverbreitung im Ochotskischen Meer während der letzten ca. 350 ka. Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel, 114pp. Balsam, W., Ji, J., and Chen, J., (2004) Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and planetary science letters 223, pp.335-348 Bassinot, F., and Baltzer, A. 2002 WEPAMA Cruise MD122/IMAGES VII on board RV ”Marion Dufresne”. Institut Polaire Francais- Paul-Emile Victor. 41-43 Becquey, S., and Gersonde, R., (2002) Past hydrographic and climatic changes in the Subantarctic zone of the South Atlantic- The Pleistocene record from ODP Site 1090. Palaeogeogr. Palaeoclimatol. Palaeoecol 182, pp. 221-239 Berger, W.H., and Jansen, E., (1994) Mid-Pleistocene climate shift:The Nansen connection. In:The Polar Oceans and their Role in Shaping the Global Environment. American Geophysical Union, Washington, DC, pp. 295-311. Berger, W.H., and Wefer, G., (2003) On the Dynamics of the ice ages: stage-11 paradox, mid-Brunhes climatie shift, and 100-ky cycle, In:Earth’s climate and orbital eccentricity, the marine isotope stage 11 question. American Geophysical Union, Washington, DC. pp. 41-59 Broeser, A.T.C., Ziveri, P., and Honjo, S., (2000) Coccolithophore (-CaCO3) flux in the Sea of Okhotsk: seasonality, settling and alteration processes. Marine Micropaleontology 39, 179-200 Clark, P.U., Richard, B.A., and Pollard, D., (1999) Northern hemisphere ice-sheet influences on global climate change. Science 286, 1104-1111 Fagel, N., Boski, T., Likhoshway, L., and Oberhaensli, H., (2003) Late Quaternary clay mineral records in central Lake Baikal (Academician ridge, Siberia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, pp. 159-179 George, W.L.III, Byorn, S.,Brent, L.L., Paul, J.B., and Norman, S., (1997) Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochimica et Cosmochimica Acta 61 (19), 4043-4052 Guo, Z., Liu, T., Fedoroff, N., Wei, L., Ding, Z., Wu, N., Lu, H., Jiang, W., and An, Z., (1998) Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic. Global and planetary changes 18, pp.113-128 Gorbarenko, S.A., (1996) Stable isotope and lithologic evidence of late-glacial and Holocene oceanography of the Northwestern Pacific and its marginal seas. Quaternary Res. 46, 230-250 Gorbarenko, S.A., Chekhovskaya M.P., and Souhton J.R., (1998) On the paleoenvironment of the central part of the Sea of Okhotsk during the past Holocene glaciation. Oceanography 38 (2), 277-280 Gorbarenko, S.A., Khusid, T.A., Basov, I.A., Oba, T., Southon, J.R., and Koizumi, I., (2002a) Glacial Holocene environment of the Southeastern Okhotsk Sea: evidence from geochemical and palaeontological data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177, 237-263 Gorbarenko, S.A., Nürnberg, D., Derkachev, A.N., Astakhov, A.S., Southon, J.R., and Kaiser, A., (2002b) Magnetostratigraphy and tephrochronology of the upper Quaternary sediments in the Okhotsk Sea: implications of terrigenous, volcanogenic, and biogenic matter supply. Marine Geology 183, 107-129 Gorbarenko, S.A., Southon, J.R., Keigwin, L.D., Cherepanova, M.V., and Gvozdeva, I.G., (2004) Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological, and paleontological evidence. Palaeogeog. Palaeoclim. Palaeoaco. 209, 281-301 Helmke, J.P., Bauch, H.A., Röhl, U., and Mazaud, A., (2005) Changes in sedimentation patterns of the Nordic Sea region across the mid-Pleistocene. Marine geology 215, 107-122 Heslop, D., Dekkers, MJ., and Langereis, C.G. (2002) Timing and structure of mid-Pleistocene transition: records from the loess deposits of northern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, pp.133-143. Imbrie, J., Berger, A., Boyle, E.A., Clemens, S.C.,Duffy, A., Howard, W.R., Kukla, G., Kuzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., Toggweiler, J.R., (1993) On the structure and origin of major glaciation cycles:2. The 100.000-year cycle, Paleoceanography 8, pp. 699-735 Kadko, D., and Heath, G.R., (1984) Models of depth dependent bioturbation at MANOP site H in the east equatorial Pacific. J. Geophys. Res. 89, 6567-6570 Kawahata, H., Oshima, H., Shimada, C., Oba, T., (2003) Terrestrial-oceanic environmental changes in the southern Okhotsk Sea during the Holocene. Quart. Int. 108, 67-76 Kegwin, L.D., (1998) Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography 13(4), 323-339 Lawrence, A. K., (1999) 14. Data report: Mass accumulation rates and composition of Neogene ice-rafted debris, site 919, Irminger basin. Proc. of the Ocean Drilling Program, science results. 163, 159-161 Lee, C.Y., Tsai, J.H., Ho, H.H., Yang, T.F., Chung, S.L., Chen, C.H., (1996) Quantitative analysis in rock samples by X-ray fluorescence spectrometer (I) major elements. Abstract of Annual Meeting of the Geological Society of China, Taiwan, pp. 418-420 (in Chinese) Lisitzin, A.P. (1996) Oceanic Sedimentation: Lithology and Geochemistry. Amreican Geophysical Union, Washington, D.C. 151-157pp Liu, Y.-J., Song, S.-R., Lee Teh-Quei, Chen Yaw-Lin and Chen Huei-Fen, (2006) Mineralogical and Geochemical Changes in the Sediments of the Okhotsk Sea during Deglacial Periods in the Past 500 kyrs, Global and planetary changes. doi:10.1016/j.gloplacha.2006.01.007(in press) McCave, I.N., Manighetti, B., and Robison, S.G., (1995) Sortable silt anf fine sediment size/composition slicing: Parameter for palaeocurrent speed and palaeoceanography. Paleoceanography 10(3), 593-610 Mudelsee, M., and Schulz, M., (1997) The Pleistocene climate transition: onset of 100 ka cycles lags ice volume build-up by 280 ka. Earth and planetary science letters 151, pp 117-123 Nimmergut A., and Abelmann A., (2002) Spatial and seasonal changes of radiolarian standing stocks in the Sea of the Okhotsk. Deep-Sea Research part I 49, 463-493 Nürnberg, D., and Tiedemann, R., (2004) Environmental change in the Sea of Okhotsk during the last 1.1 million years. Paleoceanography 19, PA401, doi:10.1029/2004PA001023 Prokopenko, A.A., Karabanov, E.B., Williams, D.F., Kuzmin, M.I., Shackleton, N.J., Crowhurst, S.J., Peck, J.A., Gvozdkov, A.N., and King, J.W., (2001) Biogenic silica record of the lake of the Baikal response to climatic forcing during the Brunhes. Quaternary Research 55, 123-132 Prokopenko, A.A., Williams, D.F., Kuzmin, M.I., Karabanov, E.B., Khursevich, G.K., and Peck, J.A., (2002) Mute climate variations in continental Siberia during the mid-Pleistocene epoch. Nature 418, pp. 65-68 Richards, F.A., (1965) Anoxic basins and fjords. In “Chemical Oceanography” (J. P. Riley and G. Skirrow, Eds), Academic Press, London and New York, 611-646 Rossignol-Strick, M., Paterne, M., Bassinot, F.C.,Emeis K.-C. and De Lange, G.J. (1998) An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature 392, 269-272 Sawlan, J.J., and Murray, J.W., (1983) Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth Planet. Sci. Lett. 64, 213-230 Schmieder, F., Dobenech, T., and Bleil, U., (2000) The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event. Earth and planetary science letters 179, pp 539-549 Seki, O., Kawamura, K., Ikehara, M., Nakatsuka, T., Oba, (2004a) Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs. Organic Geochemistry 35, 347-354 Seki, O., Ikehara, M., Kawamura, K., Nakatsuka, T., Ohnishi, K., Wakatsuchi, M., Narita, H., and Sakamoto, T., (2004b) Reconstructuction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr, Paleoceanography 19, PA1016, doi:10.1029/2002PA000808 Shackleton, N.J., (2000) The 100,000-years ice-ahe cycle identified anf found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897-1902 Shiga, K., and Koizumi, I., (2000) Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom. Marine Micropaleontology 38, 91-117 Sighinolfi, G..P., and Tateo, F., (1998) Mineralogical and geochemical criteria for distinguishing turbidite and hemipelagic pelites -- the Maastrichtian of the northern Apennines. Sedimentary Geology 115, 301-313 Stuut, J-B. W., Prins, M.A., Schneider, R.R., Weltje, G.J., Jansen, J.H. F., and Postma, G., (2002) A 300-kyrs record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Marine Geology 180, 221-233 Tamburini, F., Huon, S., Stenmann, P., Grousset, F.E., Adate, T., and Follmi, K.B, (2002) Dysaerobic conditions during Heinrich events 4 and 5: evidence from phosphorus distribution in a North Atlantic deep-sea core. Geochimica Et Cosmochimica Acta 66 (23), 4069-4083 Ternois, Y., Kawamura, K., Keigwin, L., Ohkouchi, N., and Nakatsuka, T., (2001) A biomarker approach for assessing marine and terrigenous inputs to the sediments of the Sea of Okhotsk for the last 27,000 ka. Geochimica Et Cosmochimica Acta 65 (5), 791-802 Thomson ,J., Higgs, N.C., Jarvis, I., Hydes, D.J., Colley, S., and Wilson, T.R.S., (1986) The behavior of manganese in the Atlantic carbonate sediments. Geochimica Et Cosmochimica Acta 50, 1807-1818 Thomson, J., Higgs, N.C., Croudace, I.W., Colley, S., and Hydes, D., (1993) Redox zonation of elements at an oxic / post-oxic boundary in deep-sea sediments. Geochimica et Cosmochimica Acta 57, 579-595 Trask, P.D., (1932) Origin and Environments of Source Sediments of Petroleum., American Petroleum Institute, Houston. 323 pp. Xiao, J., and An, Zhisheng. (1999) Three large shift in Asian monsoon circulation indicated by loess-paleosol sequences in China and late Cenozoic deposits in Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, pp.179-189 Yusuke, O., Takahashi, K., Yoshitani, H., Nakatsuka, T., Ikehara, M., and Wakatsuchi, M., (2003) Radiolarians under the seanoally sea-ice covered conditions in the Okhotsk Sea: flux and their implications for paleoceanography. Marine Micropaleontology 49. 195-230 Zech, W., R. Baumler, O. Savoskul, O. A. Braitseva, and J. Melekestsev, (1997) Evidence of middle Pleistocene glaciation in SW Kamtchatka, Z. Gletscherkd. Glazialgeol. 33(1), 15-20 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31287 | - |
| dc.description.abstract | 鄂霍次克海位於太平洋的西北方及亞洲的東北方,是世界上最大的邊緣海,具有季節性海冰變化的特徵。MD012414岩芯採樣位置位於鄂霍次克海的中央,是目前本海域的紀錄中最長的一根岩芯。據古地磁定年的結果,本岩芯可記錄鄂霍次克海中央過去約一百七十七萬年來的環境變遷。本研究利用礦物組成分析、主要化學元素分析、海冰漂礫物質與沉積物粒徑組成等方法對岩芯沉積物進行分析,以探討過去一百七十七萬年來,鄂霍次克海的環境變遷。
本岩芯沉積物的主要礦物組成大致可區分成三種:陸源碎屑性礦物以石英及長石礦物為主;生物源礦物即方解石與蛋白石;和沉積環境氧化還原指示礦物,如白雲石等。其中,生物源礦物含量變化,可以將整根岩芯的記錄分成四大時期:第一時期,約一百七十七萬年前到一百二十五萬年前,蛋白石含量峰值出現頻率為整根岩芯中最高的時期,可表示鄂霍次克海表層有較高的生產力;第二時期,約一百二十五萬到八十萬年前,生物源沉積物的含量最少,沉積物以陸源礦物為主且IRD含量略高,是生物記錄稀少的時期;第三時期,四十八萬年到八十萬年前左右,生物源礦物的組成幾乎只有方解石,可反應營養鹽組成變化,而造成鈣質殼體生物成為優勢;第四時期,約四十八萬年以來的沉積物記錄大致可以與晚第四紀全球氣候十萬年週期的變遷相呼應。 元素分析的結果中,SiO2/Al2O3及CaO/Al2O3與蛋白石及方解石變化相呼應,可看出相似的趨勢;TiO2/Al2O3、Al2O3/Al2O3、Fe2O3/Al2O3和K2O/Al2O3等比值則與陸源碎屑物質的供應有關;而晚第四紀的沉積物記錄中,間冰期初期,P2O5/Al2O3與MnO/Al2O3比值都會有突然增加的情形,反映因沉積速率突增而造成沉積物表層或次表層中的氧被耗盡而形成還原環境的情形。海冰漂礫物質的分析結果顯示,八十萬至八十五萬年前左右,鄂霍次克海的沉積環境發生明顯的轉變,可能因為海域東部的堪察加半島上山嶽冰川擴張的結果所致,此記錄可能與全球水氣循環的平衡有關。另外,岩芯沉積物中細顆粒陸源物質的粒徑變化與礦物及主要元素等結果的變化沒有明顯的相關性,可能因為沉積作用中另有海冰的參與,而增加其複雜性,令傳統海洋岩芯沉積物粒徑分析的參數在此並不適用。 | zh_TW |
| dc.description.abstract | The Okhotsk Sea located in the northwestern Pacific and also the northeastern Asia is the largest marginal sea in the world and is characterized by seasonal sea-ice. Core MD012414 is collected in the central of the Okhotsk Sea and is the longest sedimentary core in the area. According to the paleomagnetic stratigraphy, the core recorded the environmental changes in the past 1.77 Myrs. The proxies including mineral assemblages, major elements, sea-ice rafted materials and grain size analyses of the core sediments were utilized to discuss the environmental changes. Three mineral assemblages of core sediments can be distinguished and described as followed; the first, terrigenous minerals including quartz and plagioclase; the second, minerals of biogenous shells containing calcite and opal; and the last, the dolomite peaked out in early of interglacial periods of late Quaternary and related to the oxic-reduced condition. Based on the variations of biogenous minerals, the whole core records can be distinguished into four periods. The first period, from 1.77 Ma to 1.25 Ma, the Okhotsk Sea was in a circumstance of high siliceous productivity. The second period, from 1.25 Ma to 0.8 Ma, showed low biogenous mineral contents and represented a severe environment. The third period, from 0.8 Ma to 0.48 Ma, calcite was the major biogenous minerals instead of opal. It implied a different nutrient condition. The fourth period characterized by five 100 kyrs cycling were corresponded to the late Quarternary glacial-interglacial cycles. As the results of major elements, the variations of SiO2/Al2O3 and CaO/Al2O3 were related to opal and calcite, respectively; the ratios of TiO2/Al2O3、Al2O3/Al2O3、Fe2O3/Al2O3 and K2O/Al2O3 were associated with detridus materials, and the ratios of P2O5/Al2O3 and MnO/Al2O3, increased suddenly in the early of deglacial periods of late Quaternary were sensitive to the oxic-reduced conditions. The record of sea-ice rafted materials suggests a change of the sedimentation environment occurred in 0.8 Ma. It may be correlated to the extensive mountain glaciers of Kamchatka when the global atmospheric circulation was in a different condition. The results of grain size analyses of the core sediments showed no close relationships with the variations of mineral and major elements. It infers that the sea-ice rafted materials disturbed the grain size distributions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:40:42Z (GMT). No. of bitstreams: 1 ntu-95-R91224102-1.pdf: 2739551 bytes, checksum: 5b9876e0e6856fc9b5fb31d4ca213653 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 第一章 緒論-----------------------------------------------------------------------------------1
1.1 研究區域-----------------------------------------------------------------------------1 1.2 前人研究-----------------------------------------------------------------------------2 1.3 研究目的-----------------------------------------------------------------------------5 第二章 研究材料與研究方法--------------------------------------------------------------6 2.1 研究材料及樣品採集--------------------------------------------------------------6 2.2 研究方法-----------------------------------------------------------------------------6 2.2.1 礦物組成分析--------------------------------------------------------------6 2.2.2 主要元素組成分析--------------------------------------------------------8 2.2.3 粗顆粒物質的計數--------------------------------------------------------9 2.2.4 粒徑分析--------------------------------------------------------------------9 第三章 年代模式----------------------------------------------------------------------------11 第四章 結果----------------------------------------------------------------------------------15 4.1 礦物組成----------------------------------------------------------------------------15 4.2 岩心沉積物的主要元素變化----------------------------------------------------17 4.3 冰漂礫計算結果-------------------------------------------------------------------21 4.4 沉積物粒徑的分布結果----------------------------------------------------------24 第五章 討論----------------------------------------------------------------------------------26 5.1 礦物種類和含量的意義------------------------------------------26 5.2 各主要元素所代表之意義-------------------------------------------------------------30 5.3 生物源物質與陸源物質之間含量變化----------------------------------------31 5.4 冰漂礫變化的控制因素--------------------------------------------------------------36 5.5 錳和磷富化的原因--------------------------------------------------------------------38 5.6 沉積物粒徑變化的討論----------------------------------------------------------40 第六章 結論----------------------------------------------------------------------------------41 參考文獻----------------------------------------------------------------------------------------44 附錄一 岩心沉積物中各礦物含量百分比---------------------------------------------51 附錄二 岩心沉積物中各主要元素含量百分比---------------------------------------77 附錄三 岩芯沉積物中>250um之粗顆粒物質的計數-------------------------------86 附錄四 岩芯紀錄中落石出現頻率------------------------------------------------------94 附錄五 岩芯沉積物<250um之粒徑分析結果----------------------------------------96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 環境變遷 | zh_TW |
| dc.subject | 鄂霍次克海 | zh_TW |
| dc.subject | 礦物 | zh_TW |
| dc.subject | minerals | en |
| dc.subject | environment changes | en |
| dc.subject | Okhotsk sea | en |
| dc.title | 西太平洋鄂霍次克海1.8百萬年來之環境變遷 | zh_TW |
| dc.title | Environmental changes of the Okhotsk Sea in the western Pacific since 1.8 Ma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏國彥,李德貴,陳明德 | |
| dc.subject.keyword | 鄂霍次克海,礦物,環境變遷, | zh_TW |
| dc.subject.keyword | Okhotsk sea,minerals,environment changes, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-01-04 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
