Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31254
標題: 使用Lasso-Cp選取線性模型解釋變數之探討
Study on the Lasso Method for Variable Selection
in Linear Regression Model with Mallows' Cp
作者: Hsin-Hsiung Huang
黃信雄
指導教授: 陳宏(Hung Chen)
關鍵字: 最小角度回歸,
Least angle regression,Forward selection,
出版年 : 2006
學位: 碩士
摘要: 當線性回歸模型中的自變數極多時, 正規化是個常用的辦法來達到降低被選取回歸模型複雜度之目的。Lasso (Tibshirani, 1996) 被認為是可以達到選取模型參數精簡目的之正規化方法。當線性回歸模型中的自變數為么正且自變數個數及樣本數個數相近時, 本論文探討使用Lasso 與Cp辦法選擇重要自變數的操作性質。考慮的操作性質, 包含了被選取自變數的個數及被選取真實自變數佔被選取自變數的比例。當Lasso 與Cp作為多重假設檢定辦法時, 這些結論也適用之。
When the number of predictors in a linear regression model is large, regularization is a commonly used method to reduce the complexity of the fitted model. LASSO (Tibshirani, 1996) is being advocated as a useful regulation
method for achieving sparsity or parsimony of resulting fitted model. In this thesis, we study the operating characteristics of LASSO coupled with Mallows’Cp on identifying the orthonormal predictor variables of linear regression when the number of predictors and the number of the observation are of the same magnitude. The characteristics includes the chosen number of predictors and the proportion of correctly identified predictors. This result can be useful in multiple testing.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31254
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
688 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved