Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31244
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞松(Ruey-Song Chen),陳敏慧(Min-Huey Chen)
dc.contributor.authorWan-Yu Tsengen
dc.contributor.author曾琬瑜zh_TW
dc.date.accessioned2021-06-13T02:38:05Z-
dc.date.available2007-02-02
dc.date.copyright2007-02-02
dc.date.issued2007
dc.date.submitted2007-01-15
dc.identifier.citation1. Resin composite restorative materials. Powers J.M. and Sakaguchi LR edited. Dental Materials. 12th ed. St. Louis: Mosby, 2006, p. 190
2. Composite restorative materials. Powers J.M. Craig R.C. edited. Dental Materials. 11th ed. St. Louis: Mosby, 2002, p. 232-236
3. Polymers and Polymerization. Robert G. Craig. Craig R.C. edited. Dental Materials. 11th ed. St. Louis: Mosby, 2002, p. 185-198
4. Restorative Resins. Rawls HR and Esquivel-Upshaw J. Anusavice KJ edited. Phillips’ Science of Dental Materials 7th ed. St. Louis: Saunders, 2003, p. 399-442
5. Emami N, Soderholm KJ. Influence of light-curing procedures and photo-initiator/co-initiator composition on the degree of conversion of light-curing resins. J Mater Sci Mater Med. 2005;16:47-52.
6. Jancar J, Wang W, DiBenedetto AT. Morphogenesis of tetrafunctional bis-GMA/TEGDMA Networks.
http:/www.fch.vutbr.cz/udalosti/mol/sbornik99/jancar1.pdf
7. Dictionary of composite materials technology. Lee MS edited. CRC publisher. 1989.
8. F e Silva AL, Pereira GD, Dias CT, Sartini Paulillo LA. Effect of the composite photoactivation mode on microtensile bond strength and Knoop microhardness. Dent Mater. 2006;22(3):203-10.
9. Handbook of composites. Lubin G edited. 2nd ed., Van Nostrand Reinhold Publisher. 1981.
10. Alvarez-Gayossoa C, Barcelo´-Santanaa F, Guerrero-Ibarraa J, Sa´ez- EspS´nolaa G, and Canseco-MartS´nezb M. Calculation of contraction rates due to shrinkage in light-cured composites. Dent Mater. 2004;20: 228- 235
11. Lee IB, Cho BH, Son HH, Um CM. A new method to measure the polymerization shrinkage kinetics of light cured composites. J Oral Rehabil. 2005;32:304-14.
12. Cehreli MC, Canay S. Comparison of post-gel shrinkage strains in light-polymerized composite resins. J Prosthet Dent. 2002;88:461-6.
13. Oberholzer T.G., Preez I.C., and Kidd M. Effect of LED curing on the microlleakage, shear bond strength and surface hardness of a resin-based composite restoration. Biomaterials. 2005;26:3981-6.
14. Silikasa N., Eliadesb G., and Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater 2000;16: 292–296
15. Rahiotis C, Kakaboura A, Loukidis M, Vougiouklakis G. Curing efficiency of various types of light-curing units. Eur J Oral Sci. 2004;112:89-94.
16. Mehl A, Hickel R, Kunzelmann KH. Physical properties and gap formation of light-cured composites with and without 'softstart-polymerization'. J Dent. 1997;25:321-30.
17. Unterbrink GL, Muessner R. Influence of light intensity on two restorative systems. J Dent. 1995;23:183-9
18. Caughman WF, Caughman GB, Shiflett RA, Rueggeberg F, Schuster GS. Correlation of cytotoxicity, filler loading, and curing time of dental composites. Biomaterials.1991; 12:737–740.
19. Davidson CL, Feilzer AJ .Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent.1997;25:435–440
20. Venhoven BAM, de Gee AJ, Davidson CL. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials.1993;14:871–875.
21. Lindberg A, Peutzfeldt A, van Dijken JW. Effect of power density of curing unit, exposure duration, and light guide distance on composite depth of cure. Clin Oral Investig. 2005;9:71-6
22. Lim BS, Ferracane JL, Sakaguchi RL, and Condon JR. Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent Mater 2002; 18: 436-444.
23. Watts DC, and Hindi AA. Intrinsic ‘soft-start’ polymerization shrinkage-kinetics in an acrylatebased resin-composite. Dent Mater 1999;15: 39–45
24. AUJ Yap, MS Soh and KS Siow. Post-gel shrinkage with pulse activation and soft-start polymerization. Oper Dent . 2002; 27: 81-87
25. Lindberg A., Peutzfeldt A., and van Dijken J. W. Effect of power density of curing unit, exposure duration, and light guide distance on composite depth of cure. Clinic Oral Invest. 2005 9:71-6
26. Aguiar FH, Braceiro AT, Ambrosano GM, Lovadino JR. Hardness and diametral tensile strength of a hybrid composite resin polymerized with different modes and immersed in ethanol or distilled water media. Dent Mater. 2005 Dec;21(12):1098-103.
27. Rahiotis C, Kakaboura A, Loukidis M, Vougiouklakis G. Curing efficiency of various types of light-curing units. Eur J Oral Science 2004;112: 89–94.
28. Hofmann N, Denner W, Hugo B, and Klaiber B. The influence of plasma arc vs. halogen standard or soft-start irradiation on polymerization shrinkage kinetics of polymer matrix composites J Dent 2003;31, 383–393
29. Hofmann N, Hugo B, Klaiber B. Effect of irradiation type (LED or QTH) on photoactivated composite shrinkage strain kinetics, temperature rise, and hardness. Eur J Oral Science 2002;110: 471–479.
30. Watts DC, Marouf AB, and Al-Hindia AM. Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development. Dent Mater 2003;19: 1–11
31. Sakaguchi RL, Wiltbank BD, and Murchison CF. Contraction force rate of polymer composites is linearly correlated with irradiance. Dent Mater.2004; 20: 402–407
32. Watts DC .Reaction kinetics and mechanics in photo-polymerised networks. Dent Mater 2005;21: 27–35
33. Feilzer AJ, Dooren LH, de Gee AJ, Davidson CL. Influence of light-intensity on polymerization shrinkage and integrity of restoration-cavity interface. Eur J Oral Sci.1995; 103:322-326.
34. Asmussen E, Peutzfeldt A (2003). Two-step curing: influence on conversion and softening of a dental polymer. Dent Mater 19:466- 470
35. Soh MS, Yap AU (2004). Influence of curing modes on crosslink density in polymer structures. J Dent 32:321-326.
36. Oberholzer TG, Du Preez IC, Kidd M. Effect of LED curing on the microleakage, shear bond strength and surface hardness of a resin-based composite restoration. Biomaterials. 2005;26:3981-6.
37. Price RB, Felix CA, Andreou P. Knoop hardness of ten resin composites irradiated with high-power LED and quartz-tungsten-halogen lights. Biomaterials. 2005;26:2631-41.
38. Asmussen E, Peutzfeldt A. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur J Oral Sci. 2005;113:96-8.
39. Soh MS, Yap AU, Siow KS. The effectiveness of cure of LED and halogen curing lights at varying cavity depths. Oper Dent. 2003;28:707-15.
40. Asmussen E, Peutzfeldt A. Light-emitting diode curing: influence on selected properties of resin composites. Quintessence Int. 2003 Jan;34(1):71-5.
41. Glossary of strain. http://www.vishay.com/company/brands/measurements-group/guide/glossary/microstr.htm
42. Strain from Wikipedia, http://en.wikipedia.org/wiki/Strain
43. De Gee AJ, Davidson CL, Smith A. A modified dilatometer for continuous recording of volumetric polymerization shrinkage of composite restorative materials. J Dent 1981;9:36—42.
44. Rosin M, Urban AD, Gartner C, Bernhardt O, Splieth C, Meyer G. Polymerization shrinkage-strain and microleakage in dentin-bordered cavities of chemically and light-cured restorative materials. Dent Mater 2002;18:521—8.
45. Reed B, Dickens B, Dickens S, Parry E. Volumetric contraction measured by a computer-controlled mercury dilatometer. J Dent Res 1996;75:2184
46. Long JR. Microstrain and shrinkage of composites cured with different light sources and curing modes. J Dent Res 2000; 79:599.
47. Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater 1991;7:281—7.
48. Watts DC, Marouf AS. Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials. Dent Mater 2000;16:447—51.
49. de Gee AF, Feilzer AJ, Davidson CL. True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater 1993;9:11—14.
50. Venhoven BA, De Gee AJ, Davidson CL. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials 1993;14:871—5.
51. Dennison JB, Yaman P, Seir R, Hamilton JC. Effect of variable light intensity on composite shrinkage. J Prosthet Dent 2000; 84:499—505
52. Sakaguchi RL, Versluis A, Douglas WH. Analysis of the strain gage method for measurement of postgel shrinkage in composite resins. Dent Mater. 2004;20:388-96.
53. Sakaguchi RL, Wiltbank BD, Shah NC. Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dent Mater. 2004;20:388-96.
54. Nazanin E, So¨derholmb KM, Berglunda LA. Effect of light power density variations on bulk curing properties of dental composites. J Dent. 2003;31:189-96.
55. Sakaguchi RL, Versluis A, Douglas WH. Analysis of strain gage method for measurement of post-gel shrinkage in composite resins. Dent Mater 1997;13:233–9
56. Chen MH, Chen CR, Hsu SH, Sun SP, Su WF. Low shrinkage light curable nanocomposite for dental restorative material. Dent Mater. 2006 ;22:138-45.
57. Calheiros FC, Fernanda TS, Braga RR, Cardoso PE. Polymerization contraction stress of low-shrinkage composites and its correlation with microleakage in class V restorations. J Dent. 2004;32: 407-412
58. Watts DC, Cash AJ. Kinetic measurements of photo-polymerization contraction in resins and composites. Meas Sci Technol 1991;2:788–94.
59. Watts DC, Marouf AS. Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials. Dent Mater. 2000;16:447-51.
60. Pianelli C, Devaux J, Bebelman S, Leloup G. The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. J Biomed Mater Res. 1999;48(5):675-81.
61. Stansbury JW, Dickens SH. Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater. 2001;17:71-9.
62. Imazato S, McCabe JF, Tarumi H, Ehara A, Ebisu S. Degree of conversion of composites measured by DTA and FTIR. Dent Mater. 2001 ;17:178-83.
63. Introduction to Fourier Transform Infrared Spectrometry http://mmrc.caltech.edu/mmrc_html/FTIR/FTIRintro.pdf
64. Neves AD, Discacciati JA, Orefice RL, Yoshida MI. nfluence of the power density on the kinetics of photopolymerization and properties of dental composites. J Biomed Mater Res B Appl Biomater. 2005.15;72:393-400.
65. Moin Jan C, Nomura Y, Urabe H, Okazaki M, Shintani H. The relationship between leachability of polymerization initiator and degree of conversion of visible light-cured resin. J Biomed Mater Res. 2001;58(1):42-6.
66. Park YJ, Chae KH, Rawls HR. Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater. 1999;15:120-7.
67. Stahl F, Ashworth SH, Jandt KD, Mills RW. Light-emitting diode (LED) polymerisation of dental composites: flexural properties and polymerisation potential. Biomaterials. 2000;21:1379-85.
68. Vandewalle KS, Ferracane JL, Hilton TJ, Erickson RL, Sakaguchi RL. Effect of energy density on properties and marginal integrity of posterior resin composite restorations. Dent Mater. 2004 ;20:96-106.
69. Sakaguchi RL, Berge HX. Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J Dent. 1998 ;26:695-700.
70. Lu H, Stansbury JW, Bowman CN. Towards the elucidation of shrinkage stress development and relaxation in dental composites. Dent Mater. 2004 ;20:979-86.
71. Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G, Davidson CL. The effect of the photopolymerization method on the quality of composite resin samples. J Oral Rehabil. 1998 ;25:436-42.
72. Emami N, Soderholm KJ. How light irradiance and curing time affect monomer conversion in light-cured resin composites. Eur J Oral Sci. 2003 ;111:536-42.
73. Dewaele M, Truffier-Boutry D, Devaux J, Leloup G. Volume contraction in photocured dental resins: the shrinkage-conversion relationship revisited. Dent Mater. 2006;22:359-65.
74. Eick JD, Smith RE, Pinzino CS, Kotha SP, Kostoryz EL, Chappelow CC. Photopolymerization of developmental monomers for dental cationically initiated matrix resins. Dent Mater. 2005 ;21:384-90.
75. How to prepare IR samples? http://www.nuance.northwestern.edu/KeckII/ftir4.asp
76. Asmussen E. Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res. 1982;90:484-9.
77. Ferracane JL, Greener EH. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res. 1986; 20:121-31.
78. Wataha JC, Hanks CT, Strawn SE and Fat JC. Cytotoxicity of components of resins and other dental restorative materials. J Oral Rehabil;1994: 453–462
79. Wataha JC, Rueggeberg FA, Lapp CA, Lewis JB, Lockwood PE, Ergle JW and Mettenburg DJ. In vitro cytotoxicity of resin-containing restorative materials after aging in artificial saliva. Clin Oral Investig;1999:144–149
80. Hanks CT, Wataha JC and Sun ZL. In vitro models of biocompatibility: a review. Dent Mater;1996: 186–193
81. Schedle A, Franz A, Rausch-Fan X, Spittler A, Lucas T, Samorapoompichit P and Sperr W. Cytotoxic effects of dental composites, adhesive substances, compomers and cements. Dent Mater;1998:429–440
82. Konradsson K, and van Dijken JW. Interleukin-1 levels in gingival crevicular fluid adjacent to restorations of calcium aluminate cement and resin composite. J Clin Periodontol;2005:462–466
83. Ferracane, J. L. Elution of leachable components from composites. J Oral Rehabil;1994:441–452
84. Tarle Z, Meniga A, KneževiX A, Šutalo J, RistiX M, Pichler G. Composite conversion and temperature rise using a conventional, plasma arc, and an experimental blue LED curing unit. J Oral Rehabil. 2002;29:662-667
85. Uhl A, Mills RW, and Jandt KD. Photoinitiator dependent composite depth of cure and Knoop hardness with halogen and LED light curing units. Biomaterials 2003.24;1787-1795.
86. Uhl A, Mills RW, Rzanny AE, and Jandt KD. Time dependence of composite shrinkage using halogen and LED light curing. Dent Mater. 2005; 21: 278-286.
87. Neumann MG, Schmitt CC, Ferreira GC and Corrêa IC. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater. 2006;22:576-84.
88. Biocompatibility of Dental Materials. Powers J.M. and Sakaguchi LR edited. Dental Materials. 12th ed. St. Louis: Mosby, 2006, p. 115
89. Schwengberg S, Bohlen H, Kleinsasser N, Kehe K, Seiss M, Walther UI, Hickel R, Reichl FX. In vitro embryotoxicity assessment with dental restorative materials. J Dent. 2005;33:49-55
90. Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ.Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater. 2004;20:12-20.
91. Caughman WF, Rueggeberg FA, Curtis JW. Clinical guidelines for photocuring restorative resins. J Amer Denl Asso 1995;126:1280–1286
92. Ruyter IE, Øysæd H, Svendsen SA. Conversion in different depths of ultraviolet and visible light activated composite materials: Remaining methacrylate groups in composite restorative materials. Acta Odontol Scand, 1982;40:179-192.
93. Caughman WF, Rueggeberg FA Shedding new light on composite polymerization. Oper Dent 2002;27:636–638
94. Rueggeberg FA, Caughman WF, and Curtis JW Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent 1994;19:26–32
95. Emami N, So derholm KJM, Berglund LA. Effect of light power density variations on bulk curing properties of dental composites. J Dent.2003;31:189-96
96. Wataha JC, Lockwood PE, Lewis JB, Rueggeberg FA, Messer RL. Biological effects of blue light from dental curing units. Dent Mater.2004;20:150-7.
97. St-Georges AJ, Swift EJ, Thompson JY, Heymann HO. Irradiance effects on the mechanical properties of universal hybrid and flowable hybrid resin composites .Dent Mater. 2003;19: 406-13.
98. Oberholzer TG, Pameijer CH, Grobler SR, Rossouw RJ. Volumetric polymerisation shrinkage of different dental restorative materials. SADJ. 2004 ;59:8-12.
99. Suh BI. Controlling and understanding the polymerization shrinkage-induced stresses in light-cured composites. Compend Contin Educ Dent Suppl, 1999:S34-41.
100. Asmussen E, Peutzfeldt A. Influence of Pulse-Delay Curing of Softening of Polymer Structures. J Dent Res; 2001:1570-1573.
101. Yap AU, Soh MS, Han TT, Siow KS. Influence of curing lights and modes on cross-link density of dental composites. Oper Dent;2004:410-5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31244-
dc.description.abstract複合樹脂是目前臨床上常用的填補材料之一,並且因其價格低廉,操作簡易,以及顏色美觀,使得其應用範圍越來越廣泛。然而,在聚合過程中,樹脂具有收縮的現象,常常造成術後敏感、二度齲齒、填補物邊緣變色、甚至牙髓發炎。為了改進複合樹脂的性質,許多人研發出新的聚合模式和光聚機。因此,本實驗的目的,在於使用不同的聚合模式和光聚機,測量臨床上常用的不同複合樹脂其收縮時的微應變和單體聚合程度之變化,並探討其對於細胞毒性反應之相關性。
  實驗的三種複合樹脂包括微粒型、混成型、以及流動型三種。聚合使用的光聚機為鹵素光及發光二極體兩種光源,並依照不同模式進行光照。三種受試的光聚機為XL3000(3M公司),Optilux501 (Kerr 公司),和LEDemetron (Kerr公司)。
單體聚合的動態過程變化由FTIR光譜分析儀測量。單體測試的樣本厚度,以及照射方法,均和微應變測試相同。另外,並測試了最高聚合速率、最高聚合速率發生之時間、最高聚合速率時的單體聚合程度、以及在300秒後的最終聚合程度等因子。
  實驗亦比較不同光聚模式對於不同複合樹脂應力作用及聚合度與細胞毒性的反應。結果顯示,當照射能量越強,單體聚合程度也越高,直至達到平衡。在同樣的能量下,微粒型聚合樹脂的單體聚合程度是三種複合樹脂中最低的。 以三種複合樹脂來說,微應變和單體聚合程度都具有二次方程式的關係。除了boost 模式以外,當微應變越高,單體聚合程度也越佳。
  在細胞毒性反應測試中,實驗組和對照組(不加入樹脂樣品單獨培養者)未見有意義的差別,顯示此聚合程度並未造成細胞之毒性。
zh_TW
dc.description.abstractResin composites are widely used in modern dentistry. However, the unpolymerized monomer and shrinkage in polymerization procedure caused severe problems, such as post-operative sensitivity, recurrent caries, marginal discoloration, and even pulpitis. In order to improve the properties of resin composites, some new curing machines with different modes were developed. However, there was no correlated investigation of the relationship between curing modes, curing units as well as physical properties and cytotoxicity of resin composites. Therefore, the aims of this study were to setup a mode of investigation for understanding the relationship between curing modes of curing units as well as physical properties and cytotoxicity of resin composites. Three kinds of resin composites including microfilled, all-purposed, and flowable types were investigated. Halogen light and light emitting diode curing units with different curing modes were compared. Properties of resin composites including microstrain, monomer conversion and cytotoxicity were investigated. The hypotheses of the study were: 5. When the total applied energy was increased, the microstrain and degree of conversion were also increased. 6. The relationships between total energy and microstrain or degree of conversion for three resin composites were predictable. 7. The soft-start method could provide a good method to cure resin composite with similar degree of conversion and less microstrain. 8. With lower monomer conversion, the cytotoxic effects would be more obvious. In this serial studies, the results indicated that when the applied energy was increased, the monomer conversion value was increased, and then reached a plateau. Under the same energy level, the monomer conversion of microfilled resin composite (Heliomolar) was the lowest among the three resin composites. There is a predicted quadratic equation manner relationship between microstrain and monomer conversion value of each composite cured with each curing machine. When the microstrain was increased, the monomer conversion value was increased with all curing modes except boost mode. In cytotoxicity test, there was no significant difference between the experimental groups and control group (cells cultured without resin samples immersed). The hypothesis 1 and 2 were confirmed. However, the hypothesis 3 and 4 was partially confirmed. The results indicated that the soft-start method could offer less or equal microstrain of resin composites with the same degree of conversion.For clinical application, soft-start method is suitable for high-matrix-content resin composites and better for shallow cavity restorations.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:38:05Z (GMT). No. of bitstreams: 1
ntu-96-D88422003-1.pdf: 2442906 bytes, checksum: 0f7c3137c8d47bf29384b6e532beba9b (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents致謝銘--------------------------------------------------------------1
Content--------------------------------------------------------------------------------------------3
Abbreviation-------------------------------------------------------------------------------------7
Chinese Abstract------------------------------------------------------------------------------10
English Abstract-------------------------------------------------------------------------------12
Chapter 1 Literature Review-----------------------------------------------------------15
1.1 Composition of resin composites-----------------------------------------------15
1.2 Factors influence the physical properties of resin composites during polymerization process------------------------------------------------------------18
1.2.1 Gel point--------------------------------------------------------------------18
1.2.2 Polymerization method: fast versus soft-start ------------------------20
1.2.3 Curing light sources: quartz-tungsten-halogen light versus light-emitted diode light -----------------------------------------------------------22
1.3 Physical and chemical properties of resin composites-----------------------24
1.3.1 Measurement of shrinkage and microstrain---------------------------24
1.3.2 Measurement of monomer conversion---------------------------------27
1.4 Cytotoxicity of resin composites-------------------------------------------------30
1.5 Hypotheses and purposes---------------------------------------------------------32
Chapter 2 Materials and Methods---------------------------------------------------34
2.1 Instruments-------------------------------------------------------------------------34
2.2 Curing machines and light sources spectrum analysis--------------------36
2.3 Resin composites-------------------------------------------------------------------38
2.4 Microstrain experiments---------------------------------------------------------39
2.5 Monomer conversion--------------------------------------------------------------41
2.6 Cytotoxicity test---------------------------------------------------------------------43
2.6.1 Cell culture--------------------------------------------------------------------43
2.6.2 Cytotoxicity of resin composites--------------------------------------------45
2.5 Statistics-------------------------------------------------------------------------------48
Chapter 3 Results-------------------------------------------------------------------49
3.1 Output of light curing units--------------------------------------------------------49
3.1.1 Surface area of curing tip---------------------------------------------------49
3.1.2 Total output power, power density of light curing units, and total energy emitted on samples------------------------------------------------50
3.2 Spectral distribution of light curing units--------------------------------------51
3.3 Microstrain of resin composites---------------------------------------------------52
3.3.1 The real-time microstrain curves-------------------------------------------52
3.3.2 Relationship between microstrain and total applied energy--------------------------------------------------------------------53
3.4 Degree of monomer conversion: comparison of three resin composites---55
3.4.1 Parameters of monomer conversion--------------------------------------55
3.4.2 Relationship between monomer conversion and total energy----------57
3.5 Cytotoxicty of resin composites----------------------------------------------------59
Chapter 4 Discussion---------------------------------------------------------------------60
4.1 Light curing units------------------------------------------------------------------60
4.1.1 Spectral distribution of three light curing units--------------------------60
4.1.2 Power output for light curing units----------------------------------------62
4.2 Microstrains of resin composites------------------------------------------------63
4.2.1 Strain gage method---------------------------------------------------------63
4.2.2 Comparison of the microstrains of resin composites--------------------65
4.3 Monomer conversion of resin composites--------------------------------------69
4.3.1 The FTIR -ART method------------------------------------------------69
4.3.2 Comparison of monomer conversion--------------------------------70
4.4 Cytotoxicity of resin composites-------------------------------------------------76
Chapter 5 Conclusion--------------------------------------------------------------------78
Reference----------------------------------------------------------------------------------------80
Tables -------------------------------------------------------------------------------------------94
Figure and figure legends -----------------------------------------------------------------101
Appendix: Accepted manuscripts--------------------------------------------------------127
dc.language.isoen
dc.subjectmicrostrainen
dc.subjectFTIRen
dc.subjectmonomer conversionen
dc.subjectcuring modeen
dc.subjectcytotoxicityen
dc.title不同光照模式對於複合樹脂之應力作用、聚合反應及細胞毒性之影響zh_TW
dc.titleEffects on curing modes on microstrain, polymerization, and cytotoxicity of resin compositesen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee林俊彬(Chun-Pin Lin),楊台鴻(Tai-Horng Young),王兆麟(Jaw-Lin Wang)
dc.subject.keywordFTIR,微應變,單體聚合程度,光照模式,細胞毒性,zh_TW
dc.subject.keywordFTIR,microstrain,monomer conversion,curing mode,cytotoxicity,en
dc.relation.page184
dc.rights.note有償授權
dc.date.accepted2007-01-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved