Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31241
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源
dc.contributor.authorTen-Lin Liuen
dc.contributor.author劉天麟zh_TW
dc.date.accessioned2021-06-13T02:37:54Z-
dc.date.available2007-01-24
dc.date.copyright2007-01-24
dc.date.issued2006
dc.date.submitted2007-01-15
dc.identifier.citation申雍。2001。精準農業體系整合應用。精準農業。p. 186-203。國立中興大學農學院。
作物施肥手冊。1996。行政院農業委員會,臺灣省政府農林廳編印。第五版。
李子純。1983。磷素肥料在土壤中的變化聚積及其被旱作利用之研究。中華農業研究。32:172-184。
李文輝。1998。食用玉米。台南區農業改良場特刊第2號。p.17-22。
李達源、莊愷瑋。2001。地理統計於重金屬汙染場址危害範圍界定之應用。地理統計在農業和環境科學之應用研討會論文集。p. 57-78。中國農化學會、臺灣大學農業化學系、國科會生命科學研究推動中心主辦。
馬清華。1996。臺灣主要土壤磷肥有效性指標動力變化之研究及磷肥需要量的估算。國立臺灣大學農業化學研究所博士論文。
陳吉村。1997。臺灣地區農田土壤肥力管理及改良資訊系統之建立。國立臺灣大學農業化學研究所博士論文。
楊純明、林俊義。2004。水稻精準農業體系之研究。水稻精準農業體系。p.1-12。行政院農業委員會農業試驗所特刊編號第105號。
彰化縣土壤調查報告。1969。臺灣省立中興大學農學院土壤學系。
劉天麟、李達源、陳吉村、郭鴻裕、陳尊賢。2003。臺灣新研擬土壤管理組資訊系統之建立。土壤管理組規劃及應用研討會論文集。p.41-59。中華土壤肥料學會、國立台灣大學農業化學系主辦。
臺灣農家要覽。1996。農作篇 (一),糧食作物。p. 37-138。財團法人豐年社發行。
Baxter, S.J., and M.A. Oliver. 2005. The spatial prediction of soil mineral N and potentially available N using elevation. Geoderma 128:325-339.
Bourennane, H., D. King, and A. Couturier. 2000. Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities. Geoderma 97:255-271.
Bronson, K.F., J.W. Keeling, J.D. Booker, T.T. Chua, T.A. Wheeler, R.K. Boman, and R.J. Lascano. 2003. Influence of landscape position, soil series, and phosphorus fertilizer on cotton lint yield. Agron. J. 95:949-957.
Brus, D.J., J.J. De Gruijter, B.A. Marsman, R. Visschers, A.K. Bregt, A. Breeuwsma, and J. Bouma. 1996. The performance of spatial interpolation methods and choropleth maps to estimate properties at points: A soil survey case study. Environmetrics 7:1-16.
Brus, D. J. 1994. Improving design-based estimation of spatial means by soil map stratification – a case study of phosphate saturation. Geoderma. 62:233-246.
Carré, F., and M.C. Girard. 2002. Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes. Geoderma 110:241-263.
Cambardella, C. A., T. B. Moorman, J. M. Novak, T. B. Parkin, D. L. Karlen, R. F. Turco, and A. E. Konopka. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58: 1501-1511.
Chang, J., D.E. Clay, C.G. Carlson, C.L.Reese, S.A. Clay, and M.M. Ellsbury. 2004. Defining yield goals and management zones to minimize yield and nitrogen and phosphorus fertilizer recommendation errors. Agron. J. 96:825-831.
Chien, S. H., and W. R. Clayton. 1980. Application of Elovich equation to the kinetics of phosphorus release and sorption in soils. Soil Sci. Soc. Am. J. 44: 265-268.
Daniel, T. C., A. N. Sharpley, and J. L. Lemunyon. 1998. Agricultural phosphorus and eutrophication: A symposium overview. J. Environ. Qual. 27: 251-257.
Deutsch, C.V., and A.G. Journel. 1998. GSLIB: Geostatistical software library and user’s guide. 2nd ed. Oxford University Press, New York.
Ersahin, S. 2003. Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Sci. Soc. Am. J. 67:1848-1855.
Ferguson, R.B., R.M. Lark, and G.P. Slater. 2003. Approaches to management zone definition for use of nitrification inhibitors. Soil Sci. Soc. Am. J. 67:937-947.
Fleming, K.L., D.G. Westfall, D.W. Wines, and M.C. Brodahl. 2000. Evaluating farmer defined management zone maps for variable rate fertilizer application. Precis. Agric. 2:201-215.
Franzen, D.W., D.H. Hopkins, M.D. Sweeney, M.K. Ulmer, and A.D. Halvorson. 2002. Evaluation of soil survey scale for zone development of site-specific nitrogen management. Agron. J. 94:381-389.
Gamma Design Software. 1994. GS+ for Windows V. 5.3.2. Gamma Design Software, Plainwell, MI.
Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p. 383-411. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. ASA and SSSA, Madison, WI.
Goovaerts, P. 1997. Geostatistics for natural resources evaluation. Oxford University Press, New York.
Goovaerts, P., and A.G. Journel. 1995. Integrating soil map information in modeling the spatial variation of continuous soil properties. Euro. J. Soil Sci. 46:397-414.
Gotway, C. A., and G. W. Hergert. 1997. Incorporating spatial trends and anisotropy in geostatistical mapping of soil properties. Soil Sci. Soc. Am. J. 61:298-309.
Hengl, T., G.B.M. Heuvelink, and A. Stein. 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120:75-93.
Heuvelink, G.B.M., and M.F.P. Bierkens. 1992. Combining soil maps with interpolations from point observations to predict quantitative soil properties. Geoderma 55:1-15.
Indiati, R., C. Izza, A. Figliolia, B. Felici, E. Coppola, and A. Buondonno. 1995. Aphosphate availability index (“F”) for optimizing a soil phosphate requirement rating. Commun. Soil Sci. Plant Anal. 26:2667-2682.
Indiati, R., U. Neri, A. N. Sharpley, and M. L. Fernandes. 1999. Extractability of added phosphorus in short-term equilibration tests of Portuguese soils. Commun. Soil Sci. Plant Anal. 30: 1807-1818.
Jones, C. A., A. N. Sharpley and J. R. Williams. 1984. A simplified soil and plant phosphorus model: I. Documentation. Soil Sci. Soc. Am. J. 48:800-805.
Journel, A.G., and C.J. Huijbregts. 1978. Mining geostatistics. Academic Press, New York.
Juang, K. W., D. C. Liou, and D. Y. Lee. 2002. Site-specific phosphorus application based on the kriging fertilizer-phosphorus availability index of soils. J. Environ. Qual. 31: 1248-1255.
Juang, K.W., and D.Y. Lee. 1998. A comparison of three kriging methods using auxiliary variables in heavy-metal contaminated soils. J. Environ. Qual. 27: 355-363.
Koch, B., R. Khosla, W.M. Frasier, D.G. Weatfall, and D. Inman. 2004. Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron. J. 96:1572-1580.
Kravchenko, A.N. 2003. Influence of spatial structure on accuracy of interpolation methods. Soil Sci. Soc. Am. J. 67:1564-1571.
Liu, M., D.E. Kissel, M.L. Cabrera, and P.F. Vendrell. 2005. Soil lime requirement by direct titration with a single addition of calcium hydroxide. Soil Sci. Soc. Am. J. 69:522-530.
Mallarino, A. P. 1996. Spatial variability patterns of phosphorus and potassium in no-tilled soils for two sampling scales. Soil Sci. Soc. Am. J. 60:1473-1481.
MapInfo User’s Guide. 1999. MapInfo Corporation. Troy, NY.
McDowell, R. W., and A. N. Sharpley. 2001. Approximating phosphorus release from soils to surface runoff and subsurface drainage. J. Environ. Qual. 30: 508-520.
McLean, E.O. 1982. Soil pH and lime requirement. p. 199-223. In A.L. Page (ed.) Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA, Madison, WI.
Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15:1409-1416.
Moorhead, K. K., and E. O. McLean. 1985. Improved corrective fertilizer recommendations based on two-step alternative usage of soil test: 4. Studies of field plot samples. Soil Sci. 139: 131-138.
Mueller, T.G., F.J. Pierce, O. Schabenberger, and D.D. Warncke. 2001. Map quality for site-specific fertility management. Soil Sci. Soc. Am. J. 65:1547-1558.
Mueller, T.G., and F.J. Pierce. 2003. Soil carbon maps: Enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Sci. Soc. Am. J. 67:258-267.
Mueller, T.G., N.B. Pusuluri, K.K. Mathias, P.L. Cornelius, R.I. Barnhisel, and S.A. Shearer. 2004. Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci. Soc. Am. J. 68:2042-2047.
Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31-36.
Nash, M.H., L. A. Daugherty, A. Gutjahr, P. J. Wierenga, and S. A. Nance. 1988. Horizontal and vertical kriging of soil properties along a transect in southern New Mexico. Soil Sci. Soc. Am. J. 52:1068-1090.
Nelson, L. B. 1972. Agricultural chemicals in relation to environmental quality: Chemical fertilizers, present and future. J. Environ. Qual. 1: 2-6.
Nicholson, H. P. 1975. The needs for water quality models on agricultural watersheds. J. Environ. Qual. 4: 21-23.
Oberthür, T., A. Dobermann, and H.U. Neue. 1996. How good is a reconnaissance soil map for agronomic purposes? Soil Use Manage. 12:33-43.
Oberthür, T., P. Goovaerts, and A. Dobermann. 1999. Mapping soil texture classes using field texturing, particle size distribution and local knowledge by both conventional and geostatistical methods. Euro. J. Soil Sci. 50:457-479.
Odeh, I.O.A., A.B. McBratney, and D.J. Chittleborough. 1995. Further results on prediction of soil properties from terrain attributes: heterotropic cokriging and regression-kriging. Geoderma 67:215-226
Odeh, I.O.A., A.B. McBratney, and D.J. Chittleborough. 1994. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 63:197-214.
Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Cric. 939.
Olsen’s Agricultural Laboratory. 1997. Fertilizer recommendations booklet. Olsen’s Agricultural Laboratory, Inc. Http://www.olsenlab.com/
Onken, A. B. and R. L. Matheson. 1982. Dissolution rate of EDTA-extractable phosphate from soils. Soil Sci. Soc. Am. J. 46:276-279.
Ovalles, F. A. and M. E. Collins. 1988. Evaluation of soil variability in northwest Florida using geostatistics. Soil Sci. Soc. Am. J. 52: 1702-1708.
Raven, K. P., and L. R. Hossner. 1994. Soil phosphorus desorption kinetics and its relationship with plant growth. Soil Sci. Soc. Am. J. 58: 416-423.
Rejesus, R.M., and R.H. Hornbaker. 1999. Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois. Agric. Ecosyst. Environ. 75:41–53.
Schepers, A.R., J.F. Shanahan, M.A. Liebig, J.S. Schepers, S.H. Johnson, and A. Luchiari, Jr. 2004. Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agron. J. 96:195-203.
Sharpley, A. N., S. C. Chapra, R. Wedepohl, J. T. Sims, T. C. Daniel, and K. R. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 23: 437-451.
Sharpley, A. N., U. Singh, G. Uehara, and J. Kimble. 1989. Modeling soil and plant phosphorus dynamics in calcareous and highly weathered soils. Soil Sci. Soc. Am. J. 53: 153-158.
Sikora, F. J., J. P. Copeland, G. L. Mullins, and J. M. Bartos. 1991. Phosphorus dissolution kinetics and bioavailability of water-insoluble fractions from monoammonium phosphate fertilizers. Soil Sci. Soc. Am. J. 55: 362-368.
Snepvangers, J.J.J.C., G.B.M. Heuvelink, and J.A. Huisman. 2003. Soil water content interpolation using spatial-temporal kriging with external drift. Geoderma 112:253-271.

Soil Survey Staff. 1993. Soil survey manual. USDA-SCS Agric. Handb. 18. U.S. Gov. Print. Office, Washington, DC.
StatSoft. 2001. STATISTICA for Windows v. 6.0. StatSoft, Tulsa, OK.
Torrent, J. 1986. Rapid and slow phosphorus sorption by Mediterranean soils: effect of iron oxide. Soil Sci. Soc. Am. J. 50: 78-82.
Trangmar, B.B., R.S. Yost, and G. Uehara. 1986. Spatial dependence and interpolation of soil properties in West Sumatra, Indonesia: I. Anisotropic variation. Soil Sci. Soc. Am. J. 50:1391-1395.
Triantafilis, J., A.I. Huckel, and I.O.A. Odeh. 2001a. Comparison of statistical prediction methods for estimating field-scale clay content using different combinations of ancillary variables. Soil Sci. 166:415-427.
Triantafilis, J., I.O.A. Odeh, and A.B. McBratney. 2001b. Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Sci. Soc. Am. J. 65:869-878.
Utset, A., T. López, and M. Díaz. 2000. A comparison of soil maps, kriging and a combined method for spatially predicting bulk density and field capacity of ferralsols in the Havana-Matanzas Plain. Geoderma 96:199-213.
Voltz, M., P. Lagacherie, and X. Louchart. 1997. Predicting soil properties over a region using sample information from a mapped reference area. Euro. J. Soil Sci. 48:19-30.
Weaver, A.R., D.E. Kissel, F. Chen, L.T. West, W. Adkins, D. Rickman, and J.C. Luvall. 2004. Mapping soil pH buffering capacity of selected fields in the coastal plain. Soil Sci. Soc. Am. J. 68:662-668.
Withers, P. J. A., I. A. Davidson, and R. H Foy. 2000. Prospects for controlling nonpoint phosphorus loss to water: A UK perspective. J. Environ. Qual. 29: 167-175.
Wu, J., W.A. Norvell, D.G. Hopkins, D.B. Smith, M.G. Ulmer, and R.M. Welch. 2003. Improved prediction and mapping of soil copper by kriging with auxiliary data for cation-exchange capacity. Soil Sci. Soc. Am. J. 67:919-927.
Yost, R. S., G. Uehara, and R. L. Fox. 1982. Geostatistical analysis of soil chemical properties of large land areas. I. Semi-Variograms. Soil Sci. Soc. Am. J. 46:1028-1032.
Zhu, J., C.L.S. Morgan, J.M. Norman, W. Yue, and B. Lowery. 2004. Combined mapping of soil properties using a multi-scale tree-structured spatial model. Geoderma 118:321-334.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31241-
dc.description.abstract為降低農業土壤不當的磷肥施用對環境造成的危害,並且提高肥料施用之效益,需對磷肥施用進行定址管理。對磷肥施用進行定址管理,為考量作物差異與土壤性質變異下,將田間土壤規劃出差異性施肥之磷肥施用管理區。管理區之界定需要有準確之土壤性質空間分佈圖,因此本論文第一章提出了一個結合土壤圖類別資訊的地理統計模式,稱為克利金法結合土壤圖繪圖界線 ( The kriging combined with soil map-delineation, KSMD),用以改善土壤性質空間分佈之推估。KSMD法為依據土壤圖之土系界線,將採樣點資料分組以將資料之變異源區分成兩部分,分別為土系間變異與土系內變異。KSMD法與一般克利金 (ordinary kriging, OK) 法模擬推估之結果比較,兩者之乖離率 (bias) 相似,而KSMD法相對於OK法之推估不精密度的減少率 (percentage of the decrease of estimation imprecision, DIP %) 於土壤性質之砂粒、坋粒、黏粒含量、pH、Mehlich-3 Ca與P,分別為34 %、40 %、48 %、20 %、42 %、與3 %,表示KSMD會有較高之精密度,因此能改善土壤性質空間分佈之推估。
土壤性質除了在空間分佈上具有變異性以外,部份土壤性質亦會隨著時間而變化,例如磷肥有效性指標 (fertilizer-phosphorus availability index, Fp)。磷肥有效性指標為描述磷肥施用後其仍能維持有效性之比率,其為反映土壤固定磷之能力。土壤固定磷之能力會隨時間增加而加強,因此本論文第二章探討了不同時間下之磷肥有效性指標的空間分佈之推估的兩種方式:先以克利金法進行空間分佈推估再套配動力學模式;先建立動力學模式再推估動力學模式參數之空間分佈。其中先建立動力學模式再推估動力學模式參數之空間分佈之方式,會因動力模式之參數已有偏差之情形下再進行空間分佈推估,使得推估結果有明顯之偏差。因此在時間變化上之資料較少的情形下,先進行空間分佈推估再套配動力模式的空間分佈推估結果較穩健,故較為適合用於推估不同時間下磷肥有效性指標之空間分佈。
而現行磷肥施用之推薦,係以速測法測得之土壤有效磷量將土壤肥力分級,再依據不同作物別推薦其磷肥施用量。此種施肥推薦之方式僅考慮施肥量與作物產量之關係,並無法評估施肥後土壤有效性磷量的變化。在維持作物產量之條件下,同時考慮施肥後土壤有效性磷量的變化,以進行磷肥施用之定址管理,將可提高施肥之效率。因此本論文第三章由土壤有效磷量 (P0) 與磷肥有效性指標 (Fp) 及不同作物之土壤有效磷臨界濃度 (Pc),計算出不同作物之需磷量 (Pneed),將需磷量等級距的劃分作為磷肥施用管理組之分組。此種管理組之建立方式,同時考慮到作物最適產量與施肥後土壤有效磷量變化,因此可提高磷肥施用之定址管理的效率。
zh_TW
dc.description.abstractTo mitigate the impact on the environment from agriculture and to improve the efficiency of fertilizer application, soil site-specific management is needed. The site-specific phosphorus management is proposed in this study by delineating management zones for variable rate fertilizer application to manage in-field variability. The quality of mapping soil properties would impact the performance of soil site-specific management. Thus, a kriging model combined with soil map-delineation (KSMD), taking into account the variation components of soil type effect and residual to improve the estimation of soil properties, was proposed. The KSMD estimation was based on the soil map-delineation of soil types to group the sampled observations, and separated the variation of soil properties into two parts: one between soil types and the other within each soil type. When comparing KSMD and ordinary kriging (OK), the mean errors (ME) of KSMD and OK estimations were similar. However, decreases in estimation of imprecision for KSMD relative to OK (DIP %) for sand, silt, and clay contents, pH, and Mehlich-3 Ca and P were 34 %, 40 %, 48 %, 20 %, 42 %, and 3 % respectively. These results suggested that the proposed KSMD method could increase the precision of the interpolation of soil properties and improve the estimation of soil properties.
In addition to spatial variability of soil properties, some soil properties have temporal variability, such as fertilizer-P availability index (Fp). The Fp is a ratio of the increase in extractable soil P to amount of P added, which represents the fixation tendency of soils. In chapter 2 of this dissertation, the estimation of Fp at different incubation time was performed by using the kriging-prior-to-Elovich-fitted and the Elovich-fitted-prior-to-kriging estimations. The results showed that the parameter a and b of the kinetics of Fp had bias prior to the kriging estimation of spatial distribution of Fp and hereafter could lead to a deviation of the Elovich-fitted-prior-to-kriging estimation. Compared to the Elovich-fitted-prior-to-kriging estimation, the kriging-prior-to-Elovich-fitted estimation was an unbiased estimator, and thus was a more robust and suitable estimating method for the estimation of Fp at different incubation time under the constraint of limited temporal data.
Traditional recommendation for fertilizer P application was based on the soil test result to evaluate the soil fertility level for the recommendation of fertilizer application for different crops. This way of recommendation for fertilizer P application considered the effect of amounts of fertilizer applied on crop yield only, but didn’t evaluate the change of availability of P in soil after fertilizer P applied. For improving the efficiency of fertilizer P application, site-specific P management zones should take into account the maintainability of desired crop yield and the variation of available P in soil after fertilizer P applied. In the last chapter of this dissertation, site-specific P management zones were delineated by dividing the amounts of P needed (Pneed) with equal range. The Pneed was calculated from the amount of available P (P0) in soil prior to fertilizer applied and fertilizer-P availability index (Fp) under different criteria concentration of P (Pc) in soil for various crops. Both of the optimal crop yields and the variance of availability of P in soil after fertilizer P applied were considered, and then the efficiency of site-specific P management could be improved.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:37:54Z (GMT). No. of bitstreams: 1
ntu-95-D89623403-1.pdf: 2503805 bytes, checksum: 966035cb0634a2d92227f3b9156e994b (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
摘要……………………………………………………………… I
Abstract…………………………………………………………… III
目錄………………………………………………………………… V
表次………………………………………………………………… VIII
圖次………………………………………………………………… IX

第一章 緒言……………………………………………………… 1
第二章 克利金法結合土壤圖之類別資訊於土壤性質空間分佈之推估…………………………………………………………………… 3
第一節 前言……………………………………………………… 3
第二節 材料與方法…………………………………………………5
一、研究區與土壤性質分析……………………………………… 5
二、數化土壤圖之應用…………………………………………… 7
三、地理統計 - 變異圖模式與克利金法……………………… 7
四、土系界線對空間變異的影響………………………………… 10
五、克利金法結合土壤圖繪圖界線 (The kriging combined with soil map-delineation, KSMD) ………………………………… 10
六、模擬程序與內插法之比較…………………………………… 11
第三節 結果與討論……………………………………………… 13
一、土壤圖邊界…………………………………………………… 13
二、資料之特性及空間結構……………………………………… 15
三、KSMD法之可行性評估與OK法之比較………………………… 18
四、OK法與KSMD法之不精密度 (IP) 空間分佈………………… 33
第四節 結論……………………………………………………… 40
第三章 磷肥有效性指標之時間與空間分佈推估…………………41
第一節 前言…………………………………………………………41
第二節 材料與方法…………………………………………………43
一、研究區與土壤樣品採集……………………………………… 43
二、土壤磷肥有效性指標之測定與不同時間下之變化………… 43
三、磷肥有效性指標在不同時間下之空間分佈的推估………… 45
四、模擬推估之程序與比較……………………………………… 46
第三節 結果與討論…………………………………………………49
一、土壤有效性磷肥與磷肥有效性指標之特性及空間結構…… 49
二、土壤磷肥有效性指標之動態變化套配Elovich形式動力模式之結果及其參數之空間結構特性……………………………………… 54
三、先進行Fp之空間分佈推估,再將各位置之Fp套配動力模式,得到各位置之動力模式,以進行FP在不同時間下之空間分佈的推估之模擬推估結果………………………………………………………………58
四、先建立FP之動力模式,再以參數進行空間分佈推估,得到各位置之動力模式,以進行FP在不同時間下之空間分佈的推估之模擬推估結果………………………………………………………………………61
五、先進行空間分佈推估再套配動力模式的推估,與先建立動力模式再以參數進行空間分佈推估,對FP在不同時間下之空間分佈的模擬推估結果之比較…………………………………………………………64
第四節 結論……………………………………………………………73
第四章 以有效性磷與磷肥有效性指標規劃不同作物之磷肥施用管理組……………………………………………………………………74
第一節 前言…………………………………………………………74
第二節 材料與方法…………………………………………………76
一、研究地點與土壤性質資料………………………………………76
二、有效性磷量之空間分佈與不同時間下磷肥有效性指標之空間分佈之推估…………………………………………………………………76
三、不同作物之有效磷臨界濃度與生育特性………………………77
四、磷肥施用管理組之建立…………………………………………81
第三節 結果與討論…………………………………………………82
一、土壤有效性磷量 (P0) 之空間分佈………………………… 82
二、不同時間下磷肥有效性指標之空間分佈…………………… 84
三、不同作物之磷肥施用管理組之建立………………………… 89
四、以有效磷量 (P0) 規劃磷肥施用管理組…………………… 106
第四節 結論…………………………………………………………108
第五章 總結…………………………………………………………110
第六章 參考文獻……………………………………………………114
第七章 附錄…………………………………………………………121
dc.language.isozh-TW
dc.subject定址管理zh_TW
dc.subject磷肥有效性指標zh_TW
dc.subject空間分佈zh_TW
dc.subject類別資訊zh_TW
dc.subject土壤圖zh_TW
dc.subject克利金法zh_TW
dc.subjectcategorical informationen
dc.subjectfertilizer-phosphorus availability indexen
dc.subjectsite-specific managementen
dc.subjectsoil mapen
dc.subjectspatial distributionen
dc.title土壤性質空間與時間分佈之推估應用於土壤定址管理zh_TW
dc.titleEstimation of Spatial-Temporal Distribution of Soil Properties Applied on Soil Site-Specific Managementen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee鄭克聲,陳尊賢,鍾仁賜,何聖賓,賴朝明,申雍
dc.subject.keyword定址管理,克利金法,土壤圖,類別資訊,空間分佈,磷肥有效性指標,zh_TW
dc.subject.keywordsite-specific management,soil map,categorical information,spatial distribution,fertilizer-phosphorus availability index,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2007-01-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved