Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31231
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋
dc.contributor.authorYu-Fen Linen
dc.contributor.author林玉芬zh_TW
dc.date.accessioned2021-06-13T02:37:18Z-
dc.date.available2008-02-02
dc.date.copyright2007-02-02
dc.date.issued2007
dc.date.submitted2007-01-17
dc.identifier.citation1. Konturek, J. W. (2003) Discovery by Jaworski of Helicobacter pylori and its pathogenetic role in peptic ulcer, gastritis and gastric cancer. J. Physiol Pharmacol. 54 Suppl 3, 23-41
2. Marshall, B. J. and Warren, J. R. (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273-1275
3. O'Toole, P. W., Lane, M. C., and Porwollik, S. (2000) Helicobacter pylori motility. Microbes. Infect. 2, 1207-1214
4. Scott, D. R., Marcus, E. A., Weeks, D. L., and Sachs, G. (2002) Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology 123, 187-195
5. Karita, M., Tsuda, M., and Nakazawa, T. (1995) Essential role of urease in vitro and in vivo Helicobacter pylori colonization study using a wild-type and isogenic urease mutant strain. J. Clin. Gastroenterol. 21 Suppl 1, S160-S163
6. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M., and Venter, J. C. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547
7. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R., Noonan, B., Guild, B. C., deJonge, B. L., Carmel, G., Tummino, P. J., Caruso, A., Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang, Q., Taylor, D. E., Vovis, G. F., and Trust, T. J. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-180
8. Kusters, J. G., van Vliet, A. H., and Kuipers, E. J. (2006) Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 19, 449-490
9. Kuipers, E. J., Israel, D. A., Kusters, J. G., Gerrits, M. M., Weel, J., van Der, E. A., van Der Hulst, R. W., Wirth, H. P., Hook-Nikanne, J., Thompson, S. A., and Blaser, M. J. (2000) Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. J. Infect. Dis. 181, 273-282
10. Blaser, M. J. (1998) Helicobacter pylori and gastric diseases. BMJ 316, 1507-1510
11. Parkin, D. M. (2001) Global cancer statistics in the year 2000. Lancet Oncol. 2, 533-543
12. Perez-Perez, G. I., Rothenbacher, D., and Brenner, H. (2004) Epidemiology of Helicobacter pylori infection. Helicobacter. 9 Suppl 1, 1-6
13. Pounder, R. E. and Ng, D. (1995) The prevalence of Helicobacter pylori infection in different countries. Aliment. Pharmacol. Ther. 9 Suppl 2, 33-39
14. Replogle, M. L., Glaser, S. L., Hiatt, R. A., and Parsonnet, J. (1995) Biologic sex as a risk factor for Helicobacter pylori infection in healthy young adults. Am. J. Epidemiol. 142, 856-863
15. Covacci, A., Telford, J. L., Del, G. G., Parsonnet, J., and Rappuoli, R. (1999) Helicobacter pylori virulence and genetic geography. Science 284, 1328-1333
16. Konno, M., Fujii, N., Yokota, S., Sato, K., Takahashi, M., Sato, K., Mino, E., and Sugiyama, T. (2005) Five-year follow-up study of mother-to-child transmission of Helicobacter pylori infection detected by a random amplified polymorphic DNA fingerprinting method. J. Clin. Microbiol. 43, 2246-2250
17. Rowland, M., Daly, L., Vaughan, M., Higgins, A., Bourke, B., and Drumm, B. (2006) Age-specific incidence of Helicobacter pylori. Gastroenterology 130, 65-72
18. Ernst, P. B. and Gold, B. D. (2000) The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol. 54, 615-640
19. Peterson, W. L. (1991) Helicobacter pylori and peptic ulcer disease. N. Engl. J. Med. 324, 1043-1048
20. Parsonnet, J., Friedman, G. D., Vandersteen, D. P., Chang, Y., Vogelman, J. H., Orentreich, N., and Sibley, R. K. (1991) Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127-1131
21. Nomura, A., Stemmermann, G. N., Chyou, P. H., Kato, I., Perez-Perez, G. I., and Blaser, M. J. (1991) Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N. Engl. J. Med. 325, 1132-1136
22. Blaser, M. J. and Atherton, J. C. (2004) Helicobacter pylori persistence: biology and disease. J. Clin. Invest 113, 321-333
23. Nomura, A., Stemmermann, G. N., Chyou, P. H., Perez-Perez, G. I., and Blaser, M. J. (1994) Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann. Intern. Med. 120, 977-981
24. Kuipers, E. J., Thijs, J. C., and Festen, H. P. (1995) The prevalence of Helicobacter pylori in peptic ulcer disease. Aliment. Pharmacol. Ther. 9 Suppl 2, 59-69
25. Rauws, E. A. and Tytgat, G. N. (1990) Cure of duodenal ulcer associated with eradication of Helicobacter pylori. Lancet 335, 1233-1235
26. Hentschel, E., Brandstatter, G., Dragosics, B., Hirschl, A. M., Nemec, H., Schutze, K., Taufer, M., and Wurzer, H. (1993) Effect of ranitidine and amoxicillin plus metronidazole on the eradication of Helicobacter pylori and the recurrence of duodenal ulcer. N. Engl. J. Med. 328, 308-312
27. Ciociola, A. A., McSorley, D. J., Turner, K., Sykes, D., and Palmer, J. B. (1999) Helicobacter pylori infection rates in duodenal ulcer patients in the United States may be lower than previously estimated. Am. J. Gastroenterol. 94, 1834-1840
28. Chu, K. M., Kwok, K. F., Law, S., and Wong, K. H. (2005) Patients with Helicobacter pylori positive and negative duodenal ulcers have distinct clinical characteristics. World J. Gastroenterol. 11, 3518-3522
29. Borody, T. J., George, L. L., Brandl, S., Andrews, P., Ostapowicz, N., Hyland, L., and Devine, M. (1991) Helicobacter pylori-negative duodenal ulcer. Am. J. Gastroenterol. 86, 1154-1157
30. Ekstrom, A. M., Held, M., Hansson, L. E., Engstrand, L., and Nyren, O. (2001) Helicobacter pylori in gastric cancer established by CagA immunoblot as a marker of past infection. Gastroenterology 121, 784-791
31. Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., Taniyama, K., Sasaki, N., and Schlemper, R. J. (2001) Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784-789
32. Watanabe, T., Tada, M., Nagai, H., Sasaki, S., and Nakao, M. (1998) Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology 115, 642-648
33. Honda, S., Fujioka, T., Tokieda, M., Satoh, R., Nishizono, A., and Nasu, M. (1998) Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res. 58, 4255-4259
34. Rieder, G., Merchant, J. L., and Haas, R. (2005) Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 128, 1229-1242
35. Kuipers, E. J., Uyterlinde, A. M., Pena, A. S., Roosendaal, R., Pals, G., Nelis, G. F., Festen, H. P., and Meuwissen, S. G. (1995) Long-term sequelae of Helicobacter pylori gastritis. Lancet 345, 1525-1528
36. Correa, P., Haenszel, W., Cuello, C., Tannenbaum, S., and Archer, M. (1975) A model for gastric cancer epidemiology. Lancet 2, 58-60
37. Hansson, L. E., Nyren, O., Hsing, A. W., Bergstrom, R., Josefsson, S., Chow, W. H., Fraumeni, J. F., Jr., and Adami, H. O. (1996) The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N. Engl. J. Med. 335, 242-249
38. Suerbaum, S. and Michetti, P. (2002) Helicobacter pylori infection. N. Engl. J. Med. 347, 1175-1186
39. Stolte, M. and Meining, A. (1998) Helicobacter pylori and Gastric Cancer. Oncologist. 3, 124-128
40. Blaser, M. J. (1995) The role of Helicobacter pylori in gastritis and its progression to peptic ulcer disease. Aliment. Pharmacol. Ther. 9 Suppl 1, 27-30
41. Bechi, P., Balzi, M., Becciolini, A., Maugeri, A., Raggi, C. C., Amorosi, A., and Dei, R. (1996) Helicobacter pylori and cell proliferation of the gastric mucosa: possible implications for gastric carcinogenesis. Am. J. Gastroenterol. 91, 271-276
42. Houghton, J. and Wang, T. C. (2005) Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. Gastroenterology 128, 1567-1578
43. Labigne, A., Cussac, V., and Courcoux, P. (1991) Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J. Bacteriol. 173, 1920-1931
44. Smoot, D. T., Mobley, H. L., Chippendale, G. R., Lewison, J. F., and Resau, J. H. (1990) Helicobacter pylori urease activity is toxic to human gastric epithelial cells. Infect. Immun. 58, 1992-1994
45. Kuwahara, H., Miyamoto, Y., Akaike, T., Kubota, T., Sawa, T., Okamoto, S., and Maeda, H. (2000) Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect. Immun. 68, 4378-4383
46. Harris, P. R., Mobley, H. L., Perez-Perez, G. I., Blaser, M. J., and Smith, P. D. (1996) Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterology 111, 419-425
47. Nomura, S., Suzuki, H., Masaoka, T., Kurabayashi, K., Ishii, H., Kitajima, M., Nomoto, K., and Hibi, T. (2005) Effect of dietary anti-urease immunoglobulin Y on Helicobacter pylori infection in Mongolian gerbils. Helicobacter. 10, 43-52
48. Velin, D., Bachmann, D., Bouzourene, H., and Michetti, P. (2005) Mast cells are critical mediators of vaccine-induced Helicobacter clearance in the mouse model. Gastroenterology 129, 142-155
49. Eaton, K. A., Brooks, C. L., Morgan, D. R., and Krakowka, S. (1991) Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 59, 2470-2475
50. Eaton, K. A., Suerbaum, S., Josenhans, C., and Krakowka, S. (1996) Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 64, 2445-2448
51. Boren, T., Falk, P., Roth, K. A., Larson, G., and Normark, S. (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892-1895
52. Ilver, D., Arnqvist, A., Ogren, J., Frick, I. M., Kersulyte, D., Incecik, E. T., Berg, D. E., Covacci, A., Engstrand, L., and Boren, T. (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373-377
53. Guruge, J. L., Falk, P. G., Lorenz, R. G., Dans, M., Wirth, H. P., Blaser, M. J., Berg, D. E., and Gordon, J. I. (1998) Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc. Natl. Acad. Sci. U. S. A 95, 3925-3930
54. Gerhard, M., Lehn, N., Neumayer, N., Boren, T., Rad, R., Schepp, W., Miehlke, S., Classen, M., and Prinz, C. (1999) Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc. Natl. Acad. Sci. U. S. A 96, 12778-12783
55. Yamaoka, Y., Kikuchi, S., el-Zimaity, H. M., Gutierrez, O., Osato, M. S., and Graham, D. Y. (2002) Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology 123, 414-424
56. Yamaoka, Y., Kwon, D. H., and Graham, D. Y. (2000) A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A 97, 7533-7538
57. Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F. O., Forsberg, L., Roche, N., Angstrom, J., Larsson, T., Teneberg, S., Karlsson, K. A., Altraja, S., Wadstrom, T., Kersulyte, D., Berg, D. E., Dubois, A., Petersson, C., Magnusson, K. E., Norberg, T., Lindh, F., Lundskog, B. B., Arnqvist, A., Hammarstrom, L., and Boren, T. (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573-578
58. Muotiala, A., Helander, I. M., Pyhala, L., Kosunen, T. U., and Moran, A. P. (1992) Low biological activity of Helicobacter pylori lipopolysaccharide. Infect. Immun. 60, 1714-1716
59. Bliss, C. M., Jr., Golenbock, D. T., Keates, S., Linevsky, J. K., and Kelly, C. P. (1998) Helicobacter pylori lipopolysaccharide binds to CD14 and stimulates release of interleukin-8, epithelial neutrophil-activating peptide 78, and monocyte chemotactic protein 1 by human monocytes. Infect. Immun. 66, 5357-5363
60. Lupetti, P., Heuser, J. E., Manetti, R., Massari, P., Lanzavecchia, S., Bellon, P. L., Dallai, R., Rappuoli, R., and Telford, J. L. (1996) Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J. Cell Biol. 133, 801-807
61. Cover, T. L. and Blaser, M. J. (1992) Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 267, 10570-10575
62. Papini, E., Satin, B., Norais, N., de, B. M., Telford, J. L., Rappuoli, R., and Montecucco, C. (1998) Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Invest 102, 813-820
63. Hennig, E. E., Godlewski, M. M., Butruk, E., and Ostrowski, J. (2005) Helicobacter pylori VacA cytotoxin interacts with fibronectin and alters HeLa cell adhesion and cytoskeletal organization in vitro. FEMS Immunol. Med. Microbiol. 44, 143-150
64. Cover, T. L. and Blanke, S. R. (2005) Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat. Rev. Microbiol. 3, 320-332
65. Cover, T. L. (1996) The vacuolating cytotoxin of Helicobacter pylori. Mol. Microbiol. 20, 241-246
66. Atherton, J. C., Cao, P., Peek, R. M., Jr., Tummuru, M. K., Blaser, M. J., and Cover, T. L. (1995) Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270, 17771-17777
67. van Doorn, L. J., Figueiredo, C., Sanna, R., Pena, S., Midolo, P., Ng, E. K., Atherton, J. C., Blaser, M. J., and Quint, W. G. (1998) Expanding allelic diversity of Helicobacter pylori vacA. J. Clin. Microbiol. 36, 2597-2603
68. Atherton, J. C., Peek, R. M., Jr., Tham, K. T., Cover, T. L., and Blaser, M. J. (1997) Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 112, 92-99
69. Shimoyama, T., Yoshimura, T., Mikami, T., Fukuda, S., Crabtree, J. E., and Munakata, A. (1998) Evaluation of Helicobacter pylori vacA genotype in Japanese patients with gastric cancer. J. Clin. Pathol. 51, 299-301
70. Rudi, J., Kuck, D., Rudy, A., Sieg, A., Maiwald, M., and Stremmel, W. (2000) Helicobacter pylori vacA genotypes and cagA gene in a series of 383 H. pylori-positive patients. Z. Gastroenterol. 38, 559-564
71. Censini, S., Lange, C., Xiang, Z., Crabtree, J. E., Ghiara, P., Borodovsky, M., Rappuoli, R., and Covacci, A. (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. U. S. A 93, 14648-14653
72. Akopyants, N. S., Clifton, S. W., Kersulyte, D., Crabtree, J. E., Youree, B. E., Reece, C. A., Bukanov, N. O., Drazek, E. S., Roe, B. A., and Berg, D. E. (1998) Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol. 28, 37-53
73. Covacci, A. and Rappuoli, R. (1998) Helicobacter pylori: molecular evolution of a bacterial quasi-species. Curr. Opin. Microbiol. 1, 96-102
74. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497-1500
75. Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999) Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A 96, 14559-14564
76. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., and Hatakeyama, M. (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683-686
77. Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone, A., Papini, E., Xiang, Z., Figura, N., and . (1993) Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl. Acad. Sci. U. S. A 90, 5791-5795
78. Cover, T. L., Glupczynski, Y., Lage, A. P., Burette, A., Tummuru, M. K., Perez-Perez, G. I., and Blaser, M. J. (1995) Serologic detection of infection with cagA+ Helicobacter pylori strains. J. Clin. Microbiol. 33, 1496-1500
79. Ching, C. K., Wong, B. C., Kwok, E., Ong, L., Covacci, A., and Lam, S. K. (1996) Prevalence of CagA-bearing Helicobacter pylori strains detected by the anti-CagA assay in patients with peptic ulcer disease and in controls. Am. J. Gastroenterol. 91, 949-953
80. Kuipers, E. J., Perez-Perez, G. I., Meuwissen, S. G., and Blaser, M. J. (1995) Helicobacter pylori and atrophic gastritis: importance of the cagA status. J. Natl. Cancer Inst. 87, 1777-1780
81. Blaser, M. J. and Crabtree, J. E. (1996) CagA and the outcome of Helicobacter pylori infection. Am. J. Clin. Pathol. 106, 565-567
82. Park, S. M., Park, J., Kim, J. G., Cho, H. D., Cho, J. H., Lee, D. H., and Cha, Y. J. (1998) Infection with Helicobacter pylori expressing the cagA gene is not associated with an increased risk of developing peptic ulcer diseases in Korean patients. Scand. J. Gastroenterol. 33, 923-927
83. Maeda, S., Ogura, K., Yoshida, H., Kanai, F., Ikenoue, T., Kato, N., Shiratori, Y., and Omata, M. (1998) Major virulence factors, VacA and CagA, are commonly positive in Helicobacter pylori isolates in Japan. Gut 42, 338-343
84. Kikuchi, S., Crabtree, J. E., Forman, D., and Kurosawa, M. (1999) Association between infections with CagA-positive or -negative strains of Helicobacter pylori and risk for gastric cancer in young adults. Research Group on Prevention of Gastric Carcinoma Among Young Adults. Am. J. Gastroenterol. 94, 3455-3459
85. Shyu, R. Y., Jiang, S. Y., Lai, C. H., Hsu, C. T., Young, T. H., and Yeh, M. Y. (1998) High frequency of cytotoxin-associated gene A in Helicobacter pylori isolated from asymptomatic subjects and peptic ulcer patients in Taiwan. J. Clin. Gastroenterol. 27, 54-59
86. Lai, C. H., Kuo, C. H., Chen, Y. C., Chao, F. Y., Poon, S. K., Chang, C. S., and Wang, W. C. (2002) High prevalence of cagA- and babA2-positive Helicobacter pylori clinical isolates in Taiwan. J. Clin. Microbiol. 40, 3860-3862
87. Yang, H., Wu, S. V., Pichuantes, S., Song, M., Wang, J., Zhou, D., Xu, Z., Quan, S., Polito, A., and Walsh, J. H. (1999) High prevalence of cagA-positive strains in Helicobacter pylori-infected, healthy, young Chinese adults. J. Gastroenterol. Hepatol. 14, 476-480
88. Portal-Celhay, C. and Perez-Perez, G. I. (2006) Immune responses to Helicobacter pylori colonization: mechanisms and clinical outcomes. Clin. Sci. (Lond) 110, 305-314
89. Noach, L. A., Bosma, N. B., Jansen, J., Hoek, F. J., van Deventer, S. J., and Tytgat, G. N. (1994) Mucosal tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8 production in patients with Helicobacter pylori infection. Scand. J. Gastroenterol. 29, 425-429
90. Crabtree, J. E., Shallcross, T. M., Heatley, R. V., and Wyatt, J. I. (1991) Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori associated gastritis. Gut 32, 1473-1477
91. Crabtree, J. E., Covacci, A., Farmery, S. M., Xiang, Z., Tompkins, D. S., Perry, S., Lindley, I. J., and Rappuoli, R. (1995) Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. J. Clin. Pathol. 48, 41-45
92. Beutler, B., Jiang, Z., Georgel, P., Crozat, K., Croker, B., Rutschmann, S., Du, X., and Hoebe, K. (2006) Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 353-389
93. Backhed, F., Rokbi, B., Torstensson, E., Zhao, Y., Nilsson, C., Seguin, D., Normark, S., Buchan, A. M., and Richter-Dahlfors, A. (2003) Gastric mucosal recognition of Helicobacter pylori is independent of Toll-like receptor 4. J. Infect. Dis. 187, 829-836
94. Su, B., Ceponis, P. J., Lebel, S., Huynh, H., and Sherman, P. M. (2003) Helicobacter pylori activates Toll-like receptor 4 expression in gastrointestinal epithelial cells. Infect. Immun. 71, 3496-3502
95. Cunningham, M. D., Seachord, C., Ratcliffe, K., Bainbridge, B., Aruffo, A., and Darveau, R. P. (1996) Helicobacter pylori and Porphyromonas gingivalis lipopolysaccharides are poorly transferred to recombinant soluble CD14. Infect. Immun. 64, 3601-3608
96. Smith, M. F., Jr., Mitchell, A., Li, G., Ding, S., Fitzmaurice, A. M., Ryan, K., Crowe, S., and Goldberg, J. B. (2003) Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J. Biol. Chem. 278, 32552-32560
97. Di, T. A., Xiang, Z., Bugnoli, M., Pileri, P., Figura, N., Bayeli, P. F., Rappuoli, R., Abrignani, S., and De Magistris, M. T. (1995) Helicobacter pylori-specific CD4+ T-cell clones from peripheral blood and gastric biopsies. Infect. Immun. 63, 1102-1106
98. Tummala, S., Keates, S., and Kelly, C. P. (2004) Update on the immunologic basis of Helicobacter pylori gastritis. Curr. Opin. Gastroenterol. 20, 592-597
99. Lindholm, C., Quiding-Jarbrink, M., Lonroth, H., Hamlet, A., and Svennerholm, A. M. (1998) Local cytokine response in Helicobacter pylori-infected subjects. Infect. Immun. 66, 5964-5971
100. Mohammadi, M., Czinn, S., Redline, R., and Nedrud, J. (1996) Helicobacter-specific cell-mediated immune responses display a predominant Th1 phenotype and promote a delayed-type hypersensitivity response in the stomachs of mice. J. Immunol. 156, 4729-4738
101. Berstad, A. E., Hogasen, K., Bukholm, G., Moran, A. P., and Brandtzaeg, P. (2001) Complement activation directly induced by Helicobacter pylori. Gastroenterology 120, 1108-1116
102. Gonzalez-Valencia, G., Perez-Perez, G. I., Washburn, R. G., and Blaser, M. J. (1996) Susceptibility of Helicobacter pylori to the bactericidal activity of human serum. Helicobacter. 1, 28-33
103. Murray, C. J. and Lopez, A. D. (1997) Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 349, 1498-1504
104. Haas, G., Karaali, G., Ebermayer, K., Metzger, W. G., Lamer, S., Zimny-Arndt, U., Diescher, S., Goebel, U. B., Vogt, K., Roznowski, A. B., Wiedenmann, B. J., Meyer, T. F., Aebischer, T., and Jungblut, P. R. (2002) Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics. 2, 313-324
105. Krah, A., Miehlke, S., Pleissner, K. P., Zimny-Arndt, U., Kirsch, C., Lehn, N., Meyer, T. F., Jungblut, P. R., and Aebischer, T. (2004) Identification of candidate antigens for serologic detection of Helicobacter pylori-infected patients with gastric carcinoma. Int. J. Cancer 108, 456-463
106. Harris, P. R., Smythies, L. E., Smith, P. D., and Dubois, A. (2000) Inflammatory cytokine mRNA expression during early and persistent Helicobacter pylori infection in nonhuman primates. J. Infect. Dis. 181, 783-786
107. Kabir, S. and Daar, G. A. (1995) Serum levels of interleukin-1, interleukin-6 and tumour necrosis factor-alpha in patients with gastric carcinoma. Cancer Lett. 95, 207-212
108. Kitadai, Y., Haruma, K., Sumii, K., Yamamoto, S., Ue, T., Yokozaki, H., Yasui, W., Ohmoto, Y., Kajiyama, G., Fidler, I. J., and Tahara, E. (1998) Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am. J. Pathol. 152, 93-100
109. El-Omar, E. M., Rabkin, C. S., Gammon, M. D., Vaughan, T. L., Risch, H. A., Schoenberg, J. B., Stanford, J. L., Mayne, S. T., Goedert, J., Blot, W. J., Fraumeni, J. F., Jr., and Chow, W. H. (2003) Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124, 1193-1201
110. El-Omar, E. M., Carrington, M., Chow, W. H., McColl, K. E., Bream, J. H., Young, H. A., Herrera, J., Lissowska, J., Yuan, C. C., Rothman, N., Lanyon, G., Martin, M., Fraumeni, J. F., Jr., and Rabkin, C. S. (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404, 398-402
111. Kai, H., Kitadai, Y., Kodama, M., Cho, S., Kuroda, T., Ito, M., Tanaka, S., Ohmoto, Y., and Chayama, K. (2005) Involvement of proinflammatory cytokines IL-1beta and IL-6 in progression of human gastric carcinoma. Anticancer Res. 25, 709-713
112. Eguchi, H., Herschenhous, N., Kuzushita, N., and Moss, S. F. (2003) Helicobacter pylori increases proteasome-mediated degradation of p27(kip1) in gastric epithelial cells. Cancer Res. 63, 4739-4746
113. Meyer-ter-Vehn, T., Covacci, A., Kist, M., and Pahl, H. L. (2000) Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J. Biol. Chem. 275, 16064-16072
114. Hirata, Y., Maeda, S., Mitsuno, Y., Akanuma, M., Yamaji, Y., Ogura, K., Yoshida, H., Shiratori, Y., and Omata, M. (2001) Helicobacter pylori activates the cyclin D1 gene through mitogen-activated protein kinase pathway in gastric cancer cells. Infect. Immun. 69, 3965-3971
115. Lauren, P. (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31-49
116. Utt, M., Nilsson, I., Ljungh, A., and Wadstrom, T. (2002) Identification of novel immunogenic proteins of Helicobacter pylori by proteome technology. J. Immunol. Methods 259, 1-10
117. Kao, S. H., Su, S. N., Huang, S. W., Tsai, J. J., and Chow, L. P. (2005) Sub-proteome analysis of novel IgE-binding proteins from Bermuda grass pollen. Proteomics. 5, 3805-3813
118. Yokozaki, H. (2000) Molecular characteristics of eight gastric cancer cell lines established in Japan. Pathol. Int. 50, 767-777
119. Craanen, M. E., Blok, P., Offerhaus, G. J., Meijer, G. A., Dekker, W., Kuipers, E. J., and Meuwissen, S. G. (1999) p21(Waf1/Cip1) expression and the p53/MDM2 feedback loop in gastric carcinogenesis. J. Pathol. 189, 481-486
120. Gao, P., Zhou, G. Y., Liu, Y., Li, J. S., Zhen, J. H., and Yuan, Y. P. (2004) Alteration of cyclin D1 in gastric carcinoma and its clinicopathologic significance. World J. Gastroenterol. 10, 2936-2939
121. Yu, J., Leung, W. K., Ng, E. K., To, K. F., Ebert, M. P., Go, M. Y., Chan, W. Y., Chan, F. K., Chung, S. C., Malfertheiner, P., and Sung, J. J. (2001) Effect of Helicobacter pylori eradication on expression of cyclin D2 and p27 in gastric intestinal metaplasia. Aliment. Pharmacol. Ther. 15, 1505-1511
122. Altieri, D. C. (2004) Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm. J. Cell Biochem. 92, 656-663
123. Perez-Perez, G. I., Thiberge, J. M., Labigne, A., and Blaser, M. J. (1996) Relationship of immune response to heat-shock protein A and characteristics of Helicobacter pylori-infected patients. J. Infect. Dis. 174, 1046-1050
124. Ng, E. K., Thompson, S. A., Perez-Perez, G. I., Kansau, I., van der, E. A., Labigne, A., Sung, J. J., Chung, S. C., and Blaser, M. J. (1999) Helicobacter pylori heat shock protein A: serologic responses and genetic diversity. Clin. Diagn. Lab Immunol. 6, 377-382
125. Eamranond, P. P., Torres, J., Munoz, O., and Perez-Perez, G. I. (2004) Age-specific immune response to HspA in Helicobacter pylori-positive persons in Mexico. Clin. Diagn. Lab Immunol. 11, 983-985
126. Thirumalai, D. and Lorimer, G. H. (2001) Chaperonin-mediated protein folding. Annu. Rev. Biophys. Biomol. Struct. 30, 245-269
127. Macario, A. J., Malz, M., and Conway de, M. E. (2004) Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea. Front Biosci. 9, 1318-1332
128. Xu, Q. (2003) Infections, heat shock proteins, and atherosclerosis. Curr. Opin. Cardiol. 18, 245-252
129. Retzlaff, C., Yamamoto, Y., Hoffman, P. S., Friedman, H., and Klein, T. W. (1994) Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect. Immun. 62, 5689-5693
130. Yokota, S., Tsubaki, K., Kuriyama, T., Shimizu, H., Ibe, M., Mitsuda, T., Aihara, Y., Kosuge, K., and Nomaguchi, H. (1993) Presence in Kawasaki disease of antibodies to mycobacterial heat-shock protein HSP65 and autoantibodies to epitopes of human HSP65 cognate antigen. Clin. Immunol. Immunopathol. 67, 163-170
131. Hinode, D., Yoshioka, M., Tanabe, S., Miki, O., Masuda, K., and Nakamura, R. (1998) The GroEL-like protein from Campylobacter rectus: immunological characterization and interleukin-6 and -8 induction in human gingival fibroblast. FEMS Microbiol. Lett. 167, 1-6
132. Launois, P., N'Diaye, M. N., Cartel, J. L., Mane, I., Drowart, A., Van Vooren, J. P., Sarthou, J. L., and Huygen, K. (1995) Fibronectin-binding antigen 85 and the 10-kilodalton GroES-related heat shock protein are the predominant TH-1 response inducers in leprosy contacts. Infect. Immun. 63, 88-93
133. Marcatili, A., Cipollaro de, l. G., Galdiero, M., Folgore, A., and Petrillo, G. (1997) TNF-alpha, IL-1 alpha, IL-6 and ICAM-1 expression in human keratinocytes stimulated in vitro with Escherichia coli heat-shock proteins. Microbiology 143 ( Pt 1), 45-53
134. Galdiero, M., de l'Ero, G. C., and Marcatili, A. (1997) Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect. Immun. 65, 699-707
135. Onozaki, K., Akiyama, Y., Okano, A., Hirano, T., Kishimoto, T., Hashimoto, T., Yoshizawa, K., and Taniyama, T. (1989) Synergistic regulatory effects of interleukin 6 and interleukin 1 on the growth and differentiation of human and mouse myeloid leukemic cell lines. Cancer Res. 49, 3602-3607
136. Kitadai, Y., Takahashi, Y., Haruma, K., Naka, K., Sumii, K., Yokozaki, H., Yasui, W., Mukaida, N., Ohmoto, Y., Kajiyama, G., Fidler, I. J., and Tahara, E. (1999) Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice. Br. J. Cancer 81, 647-653
137. Beales, I. L. (2002) Effect of interlukin-1beta on proliferation of gastric epithelial cells in culture. BMC. Gastroenterol. 2, 7
138. Beales, I. L. and Calam, J. (1998) Interleukin 1 beta and tumour necrosis factor alpha inhibit acid secretion in cultured rabbit parietal cells by multiple pathways. Gut 42, 227-234
139. Peek, R. M., Jr., Wirth, H. P., Moss, S. F., Yang, M., Abdalla, A. M., Tham, K. T., Zhang, T., Tang, L. H., Modlin, I. M., and Blaser, M. J. (2000) Helicobacter pylori alters gastric epithelial cell cycle events and gastrin secretion in Mongolian gerbils. Gastroenterology 118, 48-59
140. Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L., and Isakson, P. (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. U. S. A 91, 12013-12017
141. Boolbol, S. K., Dannenberg, A. J., Chadburn, A., Martucci, C., Guo, X. J., Ramonetti, J. T., breu-Goris, M., Newmark, H. L., Lipkin, M. L.,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31231-
dc.description.abstract幽門螺旋桿菌感染是造成人類慢性活動性胃炎、十二指腸潰瘍、胃潰瘍的主要因素,並且與胃癌有很大的相關性。幽門螺旋桿菌感染胃部黏膜所引起的發炎反應被認為是造成腸胃道疾病的主因,雖然已有許多幽門螺旋桿菌的毒性因子被發表,但其對於胃部疾病的關聯性不是很確定並且通常有地理區域上的差異。由於初始感染幽門螺旋桿菌的胃部位置不同發生不同類型的慢性胃炎,其後所發展成的十二指腸潰瘍與胃癌被認定為臨床上兩種不同走向的疾病,而流行病學的研究也指出患有十二指腸潰瘍的病人將來發展為胃癌的風險相較於患有胃潰瘍、萎縮性胃炎或是伴隨腸化生現象的病人來說是很低的。
本篇論文的研究以十二指腸潰瘍與胃癌為不同走向的疾病為基礎,利用二維電泳免疫轉漬分析幽門螺旋桿菌其以甘胺酸酸性液萃取之蛋白質被胃癌及十二指腸潰瘍病人血清辨認情況。本篇論文的第一個部分其目的是要鑑定與胃癌相關的幽門螺旋桿菌抗原。利用臨床上分離出的胃癌菌株,以上述方法比較15個胃癌與15個十二指腸潰瘍血清辨認差異,找到24個胃癌血清辨認次數較多的蛋白質,其中胃癌血清辨認次數為十二指腸潰瘍血清的2倍以上的蛋白質為:threonine synthase、rod shape-determining protein、S-adenosylmethionine synthetase、peptide chain release factor 1、DNA-directed RNA polymerase a subunit、co-chaperonin GroES (包括單體及雙體)、response regulator OmpR、membrane fusion protein。在這些蛋白質中,GroES的辨認次數差異最大,並且在大量臨床檢體的篩檢下發現GroES的血清陽性率在95個胃癌檢體中為64.2%,相對高於30.9%的胃炎 (94個) 及35.5%的十二指腸潰瘍檢體 (124個),具有統計上的差異。另外,GroES的血清陽性率在胃賁門癌中比非賁門胃癌來的高 (風險比率為2.7,95%信賴區間為1.1-6.7)。為了研究GroES在幽門螺旋桿菌致病機制上所扮演的角色,我們利用反轉錄酶-聚合酶鏈鎖反應、酵素免疫吸附試驗、西方點墨法及細胞存活率試驗來分析GroES所造成的前發炎性細胞激素分泌量以及與細胞增生相關的分子表現量。我們發現GroES會刺激週邊血液單核細胞分泌IL-8、IL-6、GM-CSF、IL-1beta、TNF-alpha、cyclooxygenase-2表現量與prostaglandin E2分泌增加,對於胃上皮細胞株 (KATO-III)則會造成IL-8分泌增加、c-jun、c-fos基因表現量上升、mutated p53、cyclin D1、p21WAF1/Cip1、survivin表現增加及抑制p27Kip1之表現。結果顯示GroES是與胃癌相關的幽門螺旋桿菌新的毒性因子,可能經由引起發炎反應及促進細胞增生在胃癌發生過程中扮演重要角色。
本篇論文的第二部分其目的是要鑑定與十二指腸潰瘍相關的幽門螺旋桿菌抗原並且發展簡單又快速的檢驗平台。利用臨床上分離出的十二指腸潰瘍菌株,利用二維電泳免疫轉漬分析比較10個十二指腸潰瘍血清與10個胃癌血清辨認幽門螺旋桿菌蛋白質情況,有11個蛋白質被十二指腸潰瘍血清強烈辨認,然而之中與胃癌血清辨認次數相比有差異的蛋白質為translation elongation factor EF-G (FusA)、catalase (KatA)與urease alpha subunit (UreA)。大量臨床檢體的篩檢結果顯示3個蛋白質在十二指腸潰瘍檢體 (124個) 的血清陽性率皆高於胃癌檢體 (95個),分別是FusA:70.2% vs. 45.3%,KatA:50.8% vs. 41.1%,UreA:44.4% vs 27.4%,除KatA外皆具有統計上的差異。經統計分析後發現隨著辨認抗原的個數增加,能促進區別十二指腸潰瘍與胃癌檢體,其結果如下:辨認1個抗原勝算比為1.82 (95%信賴區間為0.79-4.21,P值為0.1607),辨認2個抗原勝算比為4.95 (95%信賴區間為2.05-12.0,P值為0.0004),辨認3個抗原勝算比為5.71 (95%信賴區間為1.86-17.6,P值為0.0024)。為落實能夠同時使用2個以上蛋白質為篩檢標記的想法,我們發展出包括FusA、KatA、UreA的蛋白質晶片能夠有效區分十二指腸潰瘍與正常人血清。此部分結果顯示:FusA、KatA與UreA為十二指腸潰瘍相關的幽門螺旋桿菌抗原,利用蛋白質晶片技術落實使用多個生物標記的概念能快速且方便地得知十二指腸潰瘍病人的抗體種類之組合。
zh_TW
dc.description.abstractHelicobacter pylori is a major cause of chronic active gastritis, duodenal ulcer, gastric ulcer and is strongly related to gastric cancer. Chronic inflammation induced by colonization of H. pylori is thought to contribute to pathogenesis in the gastroduodenal tract. Although many virulence factors of H. pylori have been reported, the association between the virulence factors and variant gastric diseases are unclear and not universal. As the distinct distribution and pattern of gastritis occurred, the developed duodenal ulcer and gastric cancer are considered as clinically divergent events, with much lower risk for progressing to gastric cancer among patients with duodenal ulcer than with gastric ulcer or other precancerous diseases such as atrophic gastritis and intestinal metaplasia.
Owing to clinical differences between gastric cancer and duodenal ulcer, we compared 2D-immunoblot profiles of acid-glycine extracts from H. pylori by probing with sera of patients with gastric cancer (n = 15) and duodenal ulcer (n = 15). In the first part of studies, we aimed to search for immunogenic proteins related to gastric cancer and therefore extracted the proteins of the H. pylori strain isolated from a gastric cancer patient. In total, 24 protein spots were identified as antigens with better recognition in gastric cancer sera than duodenal ulcer sera. The proteins showing higher frequency of recognition in gastric cancer group are threonine synthase, rod shape-determining protein, S-adenosylmethionine synthetase, peptide chain release factor 1, DNA-directed RNA polymerase a subunit, co-chaperonin GroES (monomeric and dimeric forms), response regulator OmpR and membrane fusion protein. Of these proteins, GroES was identified as a dominant gastric cancer-related antigen with a much higher seropositivity of gastric cancer samples (64.2%, n = 95) compared with 30.9% for gastritis (n = 94) and 35.5% for duodenal ulcer (n = 124). GroES seropositivity was more commonly associated with antral gastric cancer than the non-antral gastric cancer (odds ratio = 2.7; 95% confidence interval, 1.1-6.7). For functional analysis of GroES, we monitored the expression levels of pro-inflammatory cytokines, and marker proteins related to cell proliferation by using reverse transcriptase-polymerase chain reaction (RT-PCR), an enzyme-linked immunosorbent assay (ELISA), Western blotting and a cell viability assay. In peripheral blood mononuclear cells, GroES induced expression of ilterleukin (IL)-8, IL-6, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1beta, tumor necrosis factor (TNF)-alpha, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). In gastric epithelial cells (KATO-III cells), GroES up-regulated the expression of IL-8, c-jun, c-fos, mutated p53, cyclin D1, p21WAF1/Cip1 and survivin, but down-regulated the p27Kip1 level. Therefore we concluded that GroES is a novel gastric cancer-associated virulence factor and may contribute to gastric carcinogenesis via induction of inflammation and promotion of cell proliferation.
In the second part of the studies, we aimed to identify H. pylori antigens showing a high seropositivity in DU and to develop a platform for rapid and easy diagnosis for DU. Since DU and gastric cancer (GC) are considered clinical divergent gastroduodenal diseases, we compared two-dimensional immunoblots of an acid-glycine extract of an H. pylori strain from a patient with DU probed with serum samples from patients with DU (n = 10) or GC (n = 10), to identify DU-related antigens. Of the 11 proteins that were strongly recognized by serum IgG from DU patients, translation elongation factor EF-G (FusA), catalase (KatA), and urease alpha subunit (UreA) were identified as DU-related antigens, showing higher seropositivity in DU samples (n = 124) than in GC samples (n = 95) (FusA: 70.2% vs. 45.3%, KatA: 50.8% vs. 41.1%, UreA: 44.4% vs 27.4%). In addition, we found that the use of multiple antigens improved the discrimination between patients with DU and those with GC, as the odds ratios increased from 1.82 (95% CI: 0.79-4.21, P = 0.1607) for seropositivity for FusA, KatA, or UreA alone to 4.95 (95% CI: 2.05-12.0, P = 0.0004) for two of the three antigens, and to 5.71 (95% CI: 1.86-17.6, P = 0.0024) for all three antigens. Moreover, a protein chip containing the 3 DU-related antigens was developed to test the idea of using multiple biomarkers in diagnosis. We conclude that FusA, KatA, and UreA are DU-related antigens of H. pylori and the combination of these proteins on a protein array provided is a rapid and convenient method for detecting serum antibody patterns of DU patients.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:37:18Z (GMT). No. of bitstreams: 1
ntu-96-F89442023-1.pdf: 2679014 bytes, checksum: 84ecc07f652c1df40ce1cfd2ed24b69b (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents謝誌……………………………………………………………………………………………………...i
Acknowledgements………...…………………………………………………………………………..ii
論文摘要……………………………………………………………………………………………….iii
Abstract…………...…………………………………………………………………………………….v
Table of Contents………………...…………………………………..……………………………….vii
Chapter I-Overview and Rationale…………………………………………………………………..1
Part I- Helicobacter pylori…………………………………………………………………………….2
Part II- Helicobacter pylori infection and gastric diseases……………………………………………4
Part III- Virulence factors of Helicobacter pylori and gastric diseases……………………………….7
Part IV- H. pylori infection and the immune responses……………………………………………...11
Chapter II-Comparative Immunoproteomics of Identification and Characterization of Virulence Factors from Helicobacter pylori Related to Gastric Cancer……………..…...……..14
Introduction…………………………………………………………………………………………..15
Materials and Methods……………………………………………………………………………….17
Results………………………………………………………………………………………………..24
Discussion……………………………………………………………………………………………30
List of Tables
Table II-1. Primer sequences used for the amplification of target genes…………………………..34
Table II-2. Proteins of Helicobacter pylori showing higher frequency of recognition in GC group than in DU group identified by nano LC-MS/MS analysis……………………………35
Table II-3. Effect of age on GroES seropositivity among 313 H. pylori-infected patients………..36
Table II-4. Serum IgG GroES positivity in various upper gastrointestinal diseases………………37
Table II-5 Characteristics of gastric cancer analyzed by anti-GroES antibody status……………..38
List of Figures
Figure II-1. 2D-profiles of GC-related immunogenic proteins…………………………………….39
Figure II-2. Identification of GroES monomer by nano-LC-MS/MS analysis…………………….40
Figure II-3. Human IgG binding analysis of H. pylori GroES in gastric cancer sera samples…….41
Figure II-4. Characterization of native and recombinant GroES…………………………………..42
Figure II-5. Examination of the GroES status among the clinically isolated H. pylori strains……43
Figure II-6. GroES stimulates inflammatory responses in PBMC………………………………...44
Figure II-7. GroES causes potential neoplastic changes in KATO-III cells……………………….45
Figure II-8. Comparing the effects on PBMC and KATO-III cells between GroES and FlaG……46
Chapter III-Duodenal Ulcer-Related Antigens from Helicobacter pylori: Immunoproteome and Protein Microarray Approaches.………………..……..…………...…………………47
Introduction…………………………………………………………………………………………..48
Materials and Methods……………………………………………………………………………….50
Results………………………………………………………………………………………………..54
Discussion……………………………………………………………………………………………58
List of Tables
Table III-1. Frequency of seropositivity for the indicated H. pylori antigens in the DU and GC groups identified by nano-LC-MS/MS analysis……………………………………….61
Table III-2. Frequency of seroreactivity with a single recombinant antigen in patients with gastroduodenal diseases or controls and the odds ratio………………………………..62
Table III-3. Effect of an increased number of recognized antigens on the odds ratio……………..63
List of Figures
Figure III-1. 1D-immunoblotting of an H. pylori extract using serum samples………………...…64
Figure III-2. 2D-profiles of immunoreactive proteins in the H. pylori sample………………...….65
Figure III-3. The patterns of DU-related antigens on 2D-immunoblots probed with DU sera……66
Figure III-4. The patterns of DU-related antigens on 2D-immunoblots probed with GC sera…….67
Figure III-5. Immunoreactivity of the recombinant proteins………………………………………68
Figure III-6. Tree structure and sample distribution……………………………………………….69
Figure III-7. Development of a DU-related protein array for diagnosis……………………...……70
Chapter 4-Conclusion and Perspectives……………………………………………………………71
References……………………………...………………………………………………………….…..73
Vita………………………………………...…………………………………………………………..88
Appendix………………………………...…………………………………………………………….90
List of Instruments…………………………………………………………………………………91
Supplemental Table 1. Identification of the immunoreactive proteins of H. pylori showing higher frequency of recognition in GC group by nano-LC-MS/MS analysis……..92
Supplemental Table 2. Identification of the immunoreactive proteins of H. pylori showing high seropositivity in DU group by nano-LC-MS/MS analysis………………...97
dc.language.isoen
dc.subject抗原zh_TW
dc.subject發炎zh_TW
dc.subject免疫蛋白體zh_TW
dc.subject幽門螺旋桿菌zh_TW
dc.subject蛋白質晶片zh_TW
dc.subject細胞激素zh_TW
dc.subject十二指腸潰瘍zh_TW
dc.subject胃癌zh_TW
dc.title胃癌與十二指腸潰瘍相關之幽門螺旋桿菌高抗原性蛋白質之鑑定與特性分析zh_TW
dc.titleIdentification and Characterization of the Immunodominant Proteins of Helicobacter pylori Related to Gastric Cancer and Duodenal Ulceren
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee林肇堂,張文章,林俊宏,莊曜宇,吳明賢
dc.subject.keyword幽門螺旋桿菌,胃癌,十二指腸潰瘍,抗原,免疫蛋白體,蛋白質晶片,發炎,細胞激素,zh_TW
dc.subject.keywordHelicobacter pylori,gastric cancer,duodenal ulcer,antigen,immunoproteomics,protein array,inflammation,cytokine,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2007-01-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved