請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31218完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文方 | |
| dc.contributor.author | Chia-Rong Cho | en |
| dc.contributor.author | 卓佳蓉 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:36:31Z | - |
| dc.date.available | 2016-08-09 | |
| dc.date.copyright | 2011-08-09 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-01 | |
| dc.identifier.citation | [1] Baibich, M.N. et al. Giant magnetoresistance of (001 ) Fe/ (001 ) Cr magnetic superlattices. Physical Review Letters 61, 2472-2475 (1988 ).
[2] Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B 39, 4828-4830 (1989 ). [3] Awschalom, D.D., Flatte, M.E. & Samarth, N. Microelectronic devices that function by using the spin of the electron are a nascent multibillion-dollar industry–and may lead to quantum microchips. Scientific American 286, 66-73 (2002 ). [4] Fert, A. Nobel Lecture: Origin, development, and future of spintronics. Reviews of Modern Physics 80, 1517 (2008 ). [5] Thompson, S.M. The discovery, development and future of GMR: The Nobel Prize 2007. Journal of Physics D: Applied Physics 41, 093001 (2008 ). [6] Parkin, S.S.P., More, N. & Roche, K.P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Physical Review Letters 64, 2304-2307 (1990 ). [7] Parkin, S.S.P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100 ) tunnel barriers. Nature Materials 3, 862-867 (2004 ). [8] Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Materials 3, 868-871 (2004 ). [9] Yamaguchi, T. Modelling and control of a disk file head-positioning system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 215, 549-568 (2001 ). [10] Kajiwara, I., Uchiyama, T. & Arisaka, T. Vibration Control of Hard Disk Drive with Smart Structure Technology for Improving Servo Performance. Motion and Vibration Control 165-176 (2009 ). [11] Atsumi, T., Okuyama, A. & Nakagawa, S. Vibration control above the Nyquist frequency in hard disk drives. IEEE Transactions on Industrial Electronics 55, 3751-3757 (2008 ). [12] Wu, T.L. & Shen, I.Y. Position Error Predictions of a Hard Disk Drive Undergoing a Large Seeking Motion With Shock Excitations. IEEE Transactions on Magnetics 45, 5156-5161 (2009 ). [13] Zeng, Q.H. & Bogy, D.B. Numerical simulation of shock response of disk-suspension-slider air bearing systems in hard disk drives. Microsystem technologies 8, 289-296 (2002 ). [14] Bhargava, P. & Bogy, D.B. Numerical simulation of operational-shock in small form factor hard disk drives. Journal of Tribology 129, 153 (2007 ). [15] Juang, J.Y. et al. Numerical and experimental analyses of nanometer-scale flying height control of magnetic head with heating element. IEEE Transactions on Magnetics 44, 3679-3682 (2008 ). [16] Juang, J.Y. & Bogy, D.B. Air-bearing effects on actuated thermal pole-tip protrusion for hard disk drives. Journal of tribology 129, 570 (2007 ). [17] Sun, H. et al. Vibration suppression of a hard disk driver actuator arm using piezoelectric shunt damping with a topology-optimized PZT transducer. Smart Materials and Structures 18, 065010 (2009 ). [18] Felix, S., Nie, J. & Horowitz, R. Enhanced Vibration Suppression in Hard Disk Drives Using Instrumented Suspensions. IEEE IEEE Transactions on Magnetics 45, 5118-5122 (2009 ). [19] Jang, G.H. & Seo, C.H. Finite-element shock analysis of an operating hard disk drive considering the flexibility of a spinning disk-spindle, a head-suspension-actuator, and a supporting structure. IEEE Transactions on Magnetics 43, 3738-3743 (2007 ). [20] Jang, G.H., Seo, C.H. & Lee, H.S. Finite element modal analysis of an HDD considering the flexibility of spinning disk–spindle, head–suspension–actuator and supporting structure. Microsystem technologies 13, 837-847 (2007 ). [21] Bowden, F.P. & Tabor, D. The area of contact between stationary and between moving surfaces. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 169, 391-413 (1939 ). [22] Johnson, K.L. One hundred years of Hertz contact. Archive: Proceedings of the Institution of Mechanical Engineers 196, 363-378 (1982 ). [23] Gonzalez-Perez, I., Iserte, J.L. & Fuentes, A. Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact. Mechanism and Machine Theory (2011 ). [24] Wu, H., Sang, S.J. & An, Q. A new vibration model for a bearing-rotor system considering a bearing structure. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 225, 1-11 (2011 ). [25] Daidie, A., Chaib, Z. & Ghosn, A. 3D simplified finite elements analysis of load and contact angle in a slewing ball bearing. Journal of Mechanical Design 130, 082601 (2008 ). [26] Rodriguez, S.A., Alcala, J. & Martins Souza, R. Effects of elastic indenter deformation on spherical instrumented indentation tests: The reduced elastic modulus. Philosophical Magazine 91, 1-17 (2010 ). [27] Collin, J.M., Mauvoisin, G. & El Abdi, R. An experimental method to determine the contact radius changes during a spherical instrumented indentation. Mechanics of Materials 40, 401-406 (2008 ). [28] Goldsmith, W. Impact: the theory and physical behaviour of colliding solids. (Dover Publications: 2001 ). [29] Hibbit, K. Abaqus Analysis User’s Manual: Version 6.8. (Simulia: 2008 ). [30] Greenwood, J.A. & Williamson, J.B.P. Contact of nominally flat surfaces. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 295, 300 (1966 ). [31] McCool, J.I. Comparison of models for the contact of rough surfaces. Wear 107, 37-60 (1986 ). [32] Buczkowski, R. & Kleiber, M. Statistical Models of Rough Surfaces for Finite Element 3D-Contact Analysis. Archives of Computational Methods in Engineering 16, 399-424 (2009 ). [33] Achenbach, J. Wave Propagation in Elastic Solids. (North Holland: 1987 ). [34] Rao, S.S. Mechanical Vibrations. (Prentice Hall: 2010 ). [35] Kreyszig, E. Advanced Engineering Mathematics. (Wiley: 2005 ). [36] Bracewell, R. The Fourier Transform & Its Applications. (McGraw-Hill Science/Engineering/Math: 1999 ). [37] 黃育熙,壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算與理論解析,國立台灣大學機械工程研究所博士論文,97年7月。 [38] 簡偉勝,應用混合法量測壓電材料常數並探討其動態特性與溫度效應,國立台灣大學機械工程研究所碩士論文,96年7月。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31218 | - |
| dc.description.abstract | 本論文以理論分析與實驗量測探討外部衝擊對硬碟造成之擾動,並分別討論在自由、固定與阻尼邊界條件下之硬碟動態特性,其中理論分析部份,應用高斯函數分析時域訊號,探討硬碟受衝擊後之最大接觸力與接觸時間,並與赫茲接觸理論分析結果相互比較;同時也透過傅立葉轉換分析頻域訊號,探討硬碟受衝擊後之擾動幅度。在實驗量測部份,本研究依照四個步驟量測硬碟之動態特性。首先,應用紅外線熱像儀量測硬碟之全場溫度分佈,確認讀寫晶片為硬碟主要發熱源;其次,應用雷射位移計量測硬碟全場輪廓與振動,並搭配紅外線熱像儀之量測結果,規劃量測點與敲擊點;之後,應用衝擊鎚在硬碟表面施予衝擊訊號,透過光纖位移計量測擾動訊號;最後配合理論模型對衝擊訊號與擾動訊號進行時域與頻域分析,探討邊界條件、衝擊訊號、擾動訊號三者間的交互關係。研究結果顯示,硬碟受衝擊後之頻率響應,其共振頻之涵蓋範圍小於2,500 ;制振鋁箔膠帶對外部擾動之抑制能力,經實驗結果發現可降低硬碟主軸馬達之敏感度。 | zh_TW |
| dc.description.abstract | The main contribution of this thesis is to investigate the dynamic characteristics of hard disk drive (HDD) under perturbation, and to suggest suitable boundary conditions for enhancing its stability. Free, fixed and damping conditions are analyzed by using Hertzian contact theory, Gaussian function, and short-time Fourier transform. After the impulse points and measuring points are designed via infrared thermography and laser displacement measurement, impulse and response signals are provided from impact hammer and fiber-optical measurement system. To analyze the physical traits both in time and frequency domain, the analytical methods are applied to the empirical signals, and presented abundant results related to dynamic characteristics. In the analyses of time domain, the main traits of dynamic response are contact time and maximum contact force; in the analyses of frequency domain, the important features are resonant frequency and frequency spectrum. By analyzing the physical traits in different boundaries, damping condition provides prior ability of anti-vibration. Though there are some shortages in different analytical and experimental methods, the thesis still successfully establishes one kind of damping condition, and confirms its ability based on the abundant theoretical and experimental analyses. In the future work of optimization, the finite element method is a practical solution, and indicates suitable locations of damping foil. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:36:31Z (GMT). No. of bitstreams: 1 ntu-100-R97546038-1.pdf: 50086655 bytes, checksum: e747db578cfc33448280ed56a191437f (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 表目錄 IX 圖目錄 XI 符號說明 XIX 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本文內容 4 第二章 理論分析 7 2.1 赫茲接觸理論 7 2.2 連續函數與離散訊號 10 2.3 應用高斯模型分析時域訊號 11 2.3.1 衝擊訊號及其數值分析 12 2.3.2 擾動訊號及其數值分析 13 2.4 應用傅立葉轉換分析頻域訊號 14 2.4.1 快速傅立葉轉換 14 2.4.2 短時傅立葉轉換 18 第三章 實驗儀器設備、實驗架設及量測方法 29 3.1 硬碟介紹 29 3.1.1 硬碟構造功能 29 3.1.2 碟片構造功能 30 3.1.3 運作原理 31 3.2 紅外線熱像儀於硬碟溫度分佈之量測 32 3.2.1 紅外線溫度感應原理 33 3.2.2 紅外線熱像儀簡介與實驗量測架設 36 3.3 雷射位移計於硬碟全場振動之量測 38 3.3.1 雷射位移計簡介與實驗量測架設 38 3.3.2 硬碟於工作狀態時之全場振動 39 3.4 邊界條件、量測點與敲擊點規劃 41 3.4.1 制振鋁箔膠帶 41 3.4.2 命名規則 41 3.5 衝擊鎚於硬碟敲擊實驗 43 3.5.1 赫茲接觸理論模擬衝擊訊號 43 3.5.2 衝擊鎚簡介與實驗量測 44 3.6 光纖位移計量測暫態擾動 45 3.6.1 光纖位移計量測原理簡介 46 3.6.2 實驗量測架設 46 第四章 實驗結果與討論 69 4.1 內部振動分析 69 4.2 外部擾動之時域分析 71 4.2.1 自由邊界 72 4.2.2 固定邊界 74 4.2.3 阻尼邊界 75 4.3 外部擾動之頻域分析 77 第五章 結論與未來展望 159 5.1 本文成果 159 5.2 未來展望 160 參考文獻 161 附錄A Fujitsu MHZ2320BH硬碟規格 165 附錄B 傳輸介面與其他規格 167 | |
| dc.language.iso | zh-TW | |
| dc.subject | 硬碟 | zh_TW |
| dc.subject | 光纖位移計 | zh_TW |
| dc.subject | 雷射位移計 | zh_TW |
| dc.subject | 衝擊鎚 | zh_TW |
| dc.subject | 擾動 | zh_TW |
| dc.subject | 衝擊 | zh_TW |
| dc.subject | 高斯模型 | zh_TW |
| dc.subject | 赫茲接觸理論 | zh_TW |
| dc.subject | impact hammer | en |
| dc.subject | fiber-optical measurement system | en |
| dc.subject | hard disk drive | en |
| dc.subject | Hertzian contact theory | en |
| dc.subject | Gaussian function | en |
| dc.subject | impulse | en |
| dc.subject | dynamic response | en |
| dc.subject | laser displacement measurement | en |
| dc.title | 應用高斯模型探討硬碟動態特性兼論其抗振之改善 | zh_TW |
| dc.title | A Study of Dynamic Characteristics and Vibration Suppression of HDD by Using Gaussian Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馬劍清,莊嘉揚,黃育熙 | |
| dc.subject.keyword | 硬碟,赫茲接觸理論,高斯模型,衝擊,擾動,衝擊鎚,雷射位移計,光纖位移計, | zh_TW |
| dc.subject.keyword | hard disk drive,Hertzian contact theory,Gaussian function,impulse,dynamic response,impact hammer,laser displacement measurement,fiber-optical measurement system, | en |
| dc.relation.page | 173 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 48.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
