Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉佩玲(Pei-Ling Liu)
dc.contributor.authorChih-Feng Linen
dc.contributor.author林志峰zh_TW
dc.date.accessioned2021-06-13T02:30:46Z-
dc.date.available2014-08-04
dc.date.copyright2011-08-04
dc.date.issued2011
dc.date.submitted2011-07-31
dc.identifier.citationAdler, G., Brassen, S., and Jajcevic A., “EEG coherence in Alzheimer’s dementia,” J.Neural Transm., vol. 110, pp.1051–1058, 2003.
Abasolo, D., Escudero, J., Hornero, R., Gomez, C., Espino, P., “Approximate entropy and auto mutual information analysis of the electroencephalogram in Alzheimer’s disease patients,” Med. Biol. Eng. Comput., vol. 46, pp. 1019-1028, 2008.
Ako, M., Kawara, T., Uchida, S., Miyazaki, S., Nishihara, K., Mukai, J., Hirao, K., Ako, J., and Okubo, Y., “Correlation between electroencephalography and heart rate variability during sleep,” Psychiatry and Clinical Neurosciences, vol.57, pp.59-65, 2003
Bennys, K., Rondouin, G., Vergnes, C., and Touchon, J., “Diagnostic value of Quantitative EEG in Alzheimer’s disease,” Neurophysiol. Clin., vol. 31, pp.153-60, 2001.
Besthorn, C., Forstl, H., Geiger-Kabisch, C., Sattel, H., Gasser, T., Schreiter-Gasser, U.,“EEG coherence in Alzheimer disease,” Electroenceph. Clin. Neurophysiol., vol.90, pp. 242-245, 1994.
Brody, H., “Organization of the cerebral cortex.Ⅲ: A study of aging in the human cerebral cortex,” J. Comp. Neurol., vol. 102, pp. 511-556, 1955.
Buysse, D. J., Reynolds lll, C. F., Monk, T. H., Berman, S. R. and Kupfer D. J., “The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research” Psychiatry Research, vol. 28, pp. 193-213, 1988.
Carskadon M. A., A Manual for Polysomnography Technicians (PSG), Stanford University, Stanford, California, 1980.
Cichocki, A., Shishkin, S. L., Musha, T., Leonowicz, Z., Asada, T., and Kurachi, T.,“EEG Filtering Based on Blind Source Separation for Early Detection of Alzheimer’s Disease,” Clin. Neurophysiol., vol. 116, no. 3, pp. 729-737, 2005.
Clemens, Z., Fabo, D., and Halasz, P., “Overnight verbal memory retention correlates with the number of sleep spindles,” Neuroscience, vol. 132, pp.529-535, 2005.
Cooley, J. W., and Tukey, J. W., “An algorithm for the machine calculation of complex Fourier series,” Math. Comput., vol. 19, pp.297-301, 1965.
Cowell, P., E., Allen, L., S., Zalatimo, N., S., Denenberg, V., H., “A developmental study of sex and age interactions in the human corpus callosum,” Dev. Brain Res., vol. 66, pp. 187-192; 1992.
Cover, T. M., and Thomas, J. A., Elements of Information Theory, John Wiley & Sons, pp.12-42, 1991.
Cragg, B., G., “The density of synapses and neurons in normal, mentally defective, and aging human brains,” Brain, vol. 98, pp. 81-90, 1975.
Diagnostic and Statistical Manual of Mental Disorders, DSM-IV. 4th edition. Washington: American Psychiatric Association; 1994.
Duffy, F., H., Albert, M., S., and McAnulty, G., “Brain electrical activity in patients with presenile and senile dementia of the Alzheimer's type,” Ann. Neurol., vol. 16, pp. 439-448, 1984.
Duffy, F., H., McAnulty, G., B., and Albert, M., S., “The pattern of age-related differences in electrophysiological activity of healthy males and females,” Neurobiol. Aging, vol. 14, pp. 73-84, 1993.
Dunkin J. J., Leuchter A. F., Newton T. F., Cook I. A., “Reduced EEG coherence in dementia: state or trait marker?” Biol. Psychiat., vol. 35, pp.870-879, 1994.
Eckmann, J. P., and Ruelle, D., “Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems,” Physica D, vol. 56, pp.185–187, 1992.
Farge, M., “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech., vol. 24, pp.395-457, 1992.
Flexer, A., Bauer, H., Pripfl, J., and Dorffner, G., “Using ICA for removal of ocular artifacts in EEG recorded from blind subjects,” Neural Networks, vol. 18, pp.998-1005, 2005.
Forstl, H., What is Alzheimer’s disease? In J. O’Brien, D. Ames, and A. Burns (Eds), Dementia (2nd ed.), pp. 371-382, London: Arnodd, 2000.
Giaquinto, S., and Nolfe, G., “The EEG in the normal elderly: A contribution to the interpretation of aging and dementia,” Electroencephalogr. Clin. Neurophysiol., vol. 63, pp. 540-546, 1986.
Grinsted, A., Moore, J. C., and Jevrejeva S., “Application of the cross wavelet transform and wavelet coherence to geophysical time series,” Nonlinear Processes in Geophysics, vol. 11, pp.561-566, 2004.
Herholz, K., Adams, R., Kessler, J., Szelies, B., Grond, M. and Heiss, W.D., “Criteria for the diagnosis of Alzheimer’s Disease with Positron Emission Tomography,” Dementia, vol.1, pp. 156–164, 1990.
Jelic, V., Julin, P., Shigeta, M., Nordberg, A., Lannfelt, L., Winblad, B., and Wahlund, L. O., “Apolipoprotein E ε4 allele decreases functional connectivity in Alzheimer’s disease as measured by EEG coherence,” J. Neurol. Neurosurg. Psychiatry, vol. 63, pp.59–65, 1997.
Jeong, J., Chae, J. H., Kim, S. Y., and et al., “Nonlinear dynamic analysis of the EEG in patients with Alzheimer’s disease and vascular dementia,” J. Clin. Neurophysiol., vol. 18, pp.58-67, 2001.
Jeong, J., Gore, J. C., Peterson, B. S., “Mutual information analysis of the EEG in patients with Alzheimer's disease,” Clinical Neurophysiology, vol. 112, pp.827-835, 2001.
Jurysta, F., Borne, P., Migeotte, P. F., Dumontd, M., Lanquart, J. P., Degaute, J. P., Linkowski, P., “A study of the dynamic interactions between sleep EEG and heart rate variability in healthy young men,” Clinical Neurophysiology, vol. 114, pp.2146-2155, 2003.
Kemper, T., L., “The relationship of cerebral cortical changes to nuclei in the brainstem,” Nenrobiol. Aging. vol. 14, pp. 659-660, 1993.
Khosla, D., Don, M., and Kwong, B., “Spatial Mislocalization of EEG Electrodes – Effects on Accuracy of Dipole Estimation,” Clin. Neurophysiol., vol. 110. no. 2, pp. 11, 1999.
Klimesch, W., “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Research Reviews, vol. 29, pp. 169-195, 1999.
Lanquart, J. P., “Contribution to the Definition of the Power Bands Limits of Sleep EEG by Linear Prediction.” Computers and Biomedical Research, vol. 31, no. 2, pp.12, 1997.
Laissy, J. P., Patrux, B., Duchateau, C., Hannequin, D., Hugonet, P., Ait-Yahia, H., Thiebot, J., “Midsaggital MR measurements of the corpus callosum in healthy subjects and diseased patients: A prospective study,” Am. J. Neuroradial., vol. 14, pp. 145-154, 1993.
Leuba, G., Garey, L. J., “Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man,” Exp. Brain Res., vol. 77, pp. 31-38, 1989.
Leuchter, A. F., Spar, J. E., Walter, D. O., and Weiner, H. “Electroencephalographic spectra and coherence in the diagnosis of Alzheimer’s-type and multi-infarct dementia,” Arch. Gen. Psychiatry, vol. 44, pp. 993–998, 1987
Locatelli, T., Cursi, M., Liberati, D., Franceschi, M., and Comi, G., “EEG coherence in Alzheimer’s disease,” Electroenceph. Clin. Neurophysiol., vol. 106, pp.229-237, 1998.
Loewenstein D. A., Barker W. W., Chang J. Y., Apicella A., Yoshii F., Kothari P., Levin B., Duara R., “Predominant left hemisphere metabolic dysfunction in dementia,” Arch. Neurol., vol. 46, pp. 146–152, 1989.
Martin, R., Sawrie, S., Mackey, M., Faught, E., Knowlton, R., and Kuzniecky, R., “Group and individual level performance on the WMS-III auditory and visual memory subtests in patients with temporal lobe epilepsy,” Archives of Clinical Neuropsychology, vol. 15, pp. 710, 2000.
McKhann G., Drachman D., Folstein M., Katzman R., Price D., Standlan E. M., “Clinical diagnosis of Alzheimer’s disease: a report of NINCDS-ADRDA work group under auspices of Department of Health and Human Services Task Force on Alzheimer’s disease,” Neurology, vol.34, pp. 939-944, 1984.
Meier-Ruge, W., Ulrich, J., Bruhlmann, M., Meier, E., “Age-related white matter atrophy in the human brain,” Ann. NY Acad. Sci., vol. 673, pp. 260-269, 1992.
Moddemeijer, R., “On estimation of entropy and mutual information of continuous distributions,” Signal Processing, vol. 16, pp.233-248, 1989.
Morin, C. M., Hauri, P. J., Espie, C. A., Spielman, A. J., Buysse, D. J., and Bootzin, R. R. “Nonpharmacological treatment of chronic insomnia,” Sleep, vol. 22, pp. 1134-1156, 1999.
Morris, J. C., “The Clinical Dementia Rating (CDR): Current version and scoring rules,” Neurology, vol. 43, pp. 2412-2414, 1993.
Niedermeyer, E., “The Normal EEG of the Waking Adult,” Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, pp.25, 1999.
Nyback, H., Nyman, H. and Blomqvist, G. et al., “Brain metabolism in Alzheimer’s dementia: studies of 11C-deoxyglucose accumulation, CSF monoamine metabolites and neuropsychological test performance in patients and healthy subjects,” J. Neurol. Neurosurg. Psychiatry, vol.54, pp.672–678, 1991.
O’Connor, K. P., Shaw, J. C., Ongley. C. O., ”The EEG and differential diagnosis in psychogeriatrics,” Br. J. Psychiatry, vol. 135, pp.156–162, 1979.
Oppenheim, A. V., and Schafer, R. W., Discrete-Time Signal Processing, Prentice Hall,1999.
Palande, L. (2010). Brain Regions and Their Functions [Online]. Avalable: http://www.buzzle.com/articles/brain-regions-and-their-functions.html
Peters, A., “The absence of significant neuronal loss from cerebral cortex with age,” Neurobiol. Aging, vol. 14, pp. 657-658, 1993.
Polinsky, R.J., Noble, J. and Di Chiro, G., “Dominantly inherited Alzheimer’s disease: cerebral glucose metabolism,” J. Neurol. Neuro. surg. Psychiatry, vol.50, pp. 752–757, 1987.
Rechtschaffen, A., Kales, A., A Manual of Standardized Terminology: Techniques and Scoring System for Sleep Stage of Human Subjects, UCLA Brain Information Service/Brain Research Institute, Los Angeles, California, 1968.
Roschke, J., Fell, J., and Beckmann, P., “Non-linear analysis of sleep EEG data in schizophrenia: calculation of the principal Lyapunov exponent,” Psychiatry Res., vol.56, pp.257-269, 1995.
Sakkalis, V., Oikonomou, T., Pachou, E., Tollis, I., Micheloyannis, S., and Zervakis, M., “Time-significant Wavelet Coherence for the Evaluation of Schizophrenic Brain Activity using a Graph theory approach,” EMBS Annual International Conference, pp.4265-4268, New York City, USA, Aug 30-Sept 3, 2006.
Sammer, G., Blecker, C., Gebhardt, H., Bischoff, H., Stark, R., Morgen, K., and Vaitl, D., “Relationship between Regional Hemodynamic Activity and Simultaneously Recorded EEG-Theta Associated with Mental Arithmetic-Induced Workload,” Human Brain Mapping, vol. 28, pp.793-803, 2007.
Sanei, S., and Chambers J. A., EEG Signal Processing, John Wiley & Sons, Chinchester, English, 2007.
Schabus, M., Hodlmoser, K., Gruber, G., Sauter, C., Anderer, P., Klosch, G., Parapatics, S., Saletu, B., Klimesch W., and Zeitlhofer J., “Sleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilities,” European Journal of Neuroscience, vol. 23, pp. 1738-1746, 2006.
Shannon, C. E., ”A mathematical theory of communication,” Bell System Tech. J., vol. 27, pp.379-423, 623-656, 1948.
Sloan, E. P., Fenton, G. W., Kennedy, N. S. J. and MacLennon, J. M., “Neurophysiology and SPECT cerebral blood flow pattern in dementia,” Electroenceph. clin. Neurophysiol., vol. 91, pp. 163–170, 1994.
Smith, M. T., and Wegener, S. T., “Measures of Sleep: The Insomnia Severity Index, Medical Outcomes Study (MOS) Sleep Scale, Pittsburgh Sleep Diary (PSD), and Pittsburgh Sleep Quality Index (PSQI)” Arthritis & Rheumatism, vol. 49, no. 5, pp. 184-196, 2003.
Stam, C. J., and van Dijk, B. W., “Synchronization likelihood: an un-biased measure of generalized synchronization in multivariate data sets,” Physica D., vol. 163, pp.236-251, 2002.
Stam, C. J., van der Made, Y., Pijnenburg, Y. A., and Scheltens, P., “EEG synchronization in mild cognitive impairment and Alzheimer’s disease,” Acta. Neurol. Scand., vol. 108, no. 2, pp.90-96, 2003.
Stam, C. J., Montez, T., Jones, B. F., Rombouts, S. A., van der Made, Y., Pijnenburg, Y. A., et al., “Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease,” Clin. Neurophysiol., vol.116, pp.708-715, 2005.
Taki, Y., Kinomura, S., Sato, K., Goto, R., Wu, K., Kawashima, R., and Fukuda, H.,“Correlation between gray/white matter volume and cognition in healthy elderly people,” Brain and Cognition, vol. 75, pp. 170-176, 2011.
Teplan, M., “Fundamental of EEG Measurement,” Mesurement Sci. Rev., vol. 2, no. 2, pp. 11, 2002.
Thakor, N. V., and Tong, S., “Advances in Quantitative Electroencephalogram Analysis Methods,” Annual Review of Biomedical Engineering, pp.48, 2004.
Tomlinson B. E., Blessed G., Roth M., “Observations on the brains of demented old people,” J. Neurol. Sci., vol. 11, pp. 205–242, 1970.
Tononi, G., Edelman G. M., and Sporns, O., “Complexity and coherency: integrating information in the brain,” Trends in Cognitive Science, vol.2, no.12, pp. 474-484, 1998.
Torrence, C., and Compo, G. P., “A Practical Guide to Wavelet Analysis,” Bull. Am. Meteorol. Soc., vol. 79, no. 1, pp. 61-78, 1998.
Wada, Y., Nanbu, Y., Koshino, Y., Yamaguchi, N., and Hashimoto, T., “Reduced interhemispheric EEG coherence in Alzheimer disease: analysis during rest and photic stimulation,” Alzheimer Dis. Assoc. Dis., vol.12, pp.175–181, 1998.
Wechsler, D., Wechsler Memory Scale, the Third Edition, New York, Psychology Corporation, 1997.
Weis, S., Kimbacher, M., Wenger, E., Neuhold, A., “Morphometric analysis of the corpus callosum using MR: Correlation of measurements with aging in healthy individuals,” Am. J. Neuroradial., vol. 14, pp. 637-645, 1993.
White, R. F., Neuropsychology of Alzheimer’s disease. Clinical Syndromes in Adult Neuropsychology: The Practitioner’s Handbook. New York: Oxford University Press, 1992.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31118-
dc.description.abstract本篇研究中,主要針對阿茲罕默失智症和其他種類的失智症長者去和正常長者去做比較,從單一頻道的整晚睡眠腦波中發展了新的腦波特徵去做辨識。睡眠腦波根據不同頻帶被轉換成五條能量時間序列,分別對應delta、theta、alpha、sigma、beta各個頻帶,然後採用互消息法與小波相干頻譜去發展一套演算法:針對不同的能量時間序列之間去求他們的相似度,這個相似度的指標我們命名為半相位變異數(PV)。PV值在本篇研究中被用來當作辨認失智症長者腦波的特徵。

首先,在本篇研究中量測四個不同位置的腦波頻道,分別為C3-A2、C4-A1、O1-A2、O2-A1,受試者主要由7位失智症長者(包含阿茲罕默失智症和其他種類的失智症),19位年紀相仿的正常長者和5位年輕人來當作演算法中的基線。結果發現,在C3和O1頻道,各自的alpha和theta頻帶的能量時間序列的PV值,失智症長者比起正常長者皆有顯著性的增加(p<0.001),特別是對於阿茲罕默失智症長者更為顯著。除此之外,在C4頻道此兩頻帶的能量時間序列的PV值同樣對於失智症長者有顯著性的增加(p<0.01)。這些PV值似乎可以反映出神經生理與認知的退化,因此,似乎能當作辨別失智症長者的特徵。與傳統的10-20系統腦波量測比較起來,此方在於只要單一頻道量測即可進行失智症的辨識。
此外如同先前研究定義的不同頻道之間的量測方法,在依照本篇研究法後同樣也有展示出分析結果。PV值有顯著性差異的只有出現在left local posterior區域(C3-A2 & O1-A2)的兩個不同頻道之間的alpha頻帶,其中的PV值失智症長者稍微比正常長者高(p<0.05)。另外對於right local posterior區域(C4-A1 & O2-A1)的兩個頻道之間的alpha頻帶,其PV值也呈現出相同的結果。因此,對於左右兩半腦的parietal-occipital區域,其不同頻道間alpha頻帶的相似度似乎可能當作另一個去辨別失智症長者的特徵。
基於以上所得出較顯著的腦波特徵,特定頻帶之間的PV值與認知表現之間的關係也有被評估。結果顯示出PV值和MMSE分數有高度的相關性,除此之外和魏氏測驗底下的分測驗也有顯著的相關性。這些結果展現出,本篇所提出的方法似乎能有效地連結到一些臨床心理測驗。這表示對於做進一步的研究,我們所提出的方法有很好的延伸性。
最後由於在我們的資料庫中有年輕人的受試者,於是針對與年齡相關的PV值的改變同樣也被列入討論,主要想去了解年齡對於腦波相似度的影響。對於不同頻道之間的相似度量測,兩個頻道同樣頻帶之間的PV值呈現出較小的值普遍發生在年輕人的群組,然而較大的值普遍發生在失智症長者。整體來說,從年輕人到正常長者到失智症長者,他們PV值的分布趨近於正相關。對於單一頻道不同頻帶之間相似度的量測,alpha和theta頻帶能量時間序列之間的PV值也呈現出相同的結果。這些一致的趨勢可以得出結論:從腦波相似性的分析來看,對於老化和失智症的症狀,其背後的病理原因可能是相似的。
zh_TW
dc.description.abstractThis study develops new markers of the Alzheimer's disease and other types of dementia for the elderly based on the all-night EEG of a single channel. The sleep EEG is transformed into 5 power time series corresponding to the delta, theta, alpha, sigma and beta frequency bands. Then, the mutual information and wavelet coherence are adopted to develop a measurement for the similarity between the power time series of a frequency band pair, denoted as the half phase variance (PV). The PV values are used as markers of the Alzheimer's disease and other types of dementia for the elderly.
First of all, the sleep EEG from electrodes C3-A2, C4-A1, O1-A2 and O2-A1 have been recorded for 7 dementia's patients (including AD patients and non-AD type patients), 19 age-matched normal controls, and 5 normal young people as baseline in our algorithm. It is found that the PV of theta and alpha band power time series prominently increases in dementia's patients as compared with the controls in the C3 and O1 channels with p-value<0.001, especially for AD patients. In addition, it also increases significantly in dementia's patients in the C4 channel with p-value<0.01. These PV values seem to be able to reflect neurophysiological degeneration and thus may serve as a marker to identify dementias. Compared with conventional approach, this method is advantageous because only one channel measurement is required.
Furthermore, the results of cross-similarity defined as previous studies have also been shown in the study. The significant difference of PV values only appears in the band pair of alpha of the left local posterior (C3-A2 & O1-A2) that the PV values are slightly higher in dementias than in controls (p<0.05) and the right local posterior (C4-A1 & O2-A1) have shown the same results. Thus, for the bilateral parietal-occipital regions, the PV values of alpha band pair might be another maker to identify dementias.

Based on above markers, the relationships between PV of certain band pairs and cognitive performance are assessed as well. The results demonstrate that the PV values are strongly correlated with MMSE scores. In addition, the relations with the subtests of WMS scores and the PV values are also quantitative correlated. These results demonstrate our proposed method seems to be able to effectively link to well-documented neuropsychological tests. Thus, it indicates that the proposed PV possess a superior extension for further research.

Lastly, the age-related changes of PV are considered to try to figure out the age effects on the EEG similarity. For cross-similarity, the PV values of the same frequency band present the lower value commonly in young people and the higher values commonly in patients. Generally, the distributions of PV from the young, the normal elderly to dementias of above cases approach the positive relations. For the auto-similarity of C3 and C4 channels, the PV values of alpha and theta band-power time series also shows the same result. These consistent trends can be concluded that some sources of pathological reason might be similar between dementias and aging.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:30:46Z (GMT). No. of bitstreams: 1
ntu-100-R98543006-1.pdf: 5179763 bytes, checksum: 3b28097b0379fbc848e98360b88c1efc (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAcknowledgments i
中文摘要 ii
Abstract iv
Table of Contents vi
List of Figures viii
List of Tables xii
Chapter 1 Introduction 1
1.1 Research Motivation and Objective 1
1.2 Literature Review 2
1.3 Thesis Outline 5
Chapter 2 Electroencephalogram (EEG) 8
2.1 The Introduction of EEG 8
2.1.1 Brain Regions and Functions 9
2.1.2 Fundamental Principle of EEG 9
2.1.3 Classification of EEG 11
2.2 Experimental Measurement 12
2.2.1 Neuropsychology and Clinical Assessment 13
2.2.2 Subjects 17
2.2.3 EEG Recordings 19
Chapter 3 Band-Power Time Series of Sleep EEG 27
3.1 The Concept of Band-Power Time Series 27
3.2 Preprocessing 28
3.2.1 Fast Fourier Transform (FFT) 28
3.2.2 Finite Impulse Response (FIR) Filter 30
3.3 Calculation of Band-Power Time Series 30
3.3.1 The Procedure of Algorithm 31
3.3.2 Numerical Example 32
3.4 Conclusion 33
Chapter 4 Quantitative Analysis of Similarity of Sleep EEG in the Elderly 41
4.1 Mutual Information (MI) 41
4.1.1 The Theory of Mutual Information 41
4.1.2 The Advantages of MI on the Elderly EEG Analysis 44
4.2 Wavelet Transform 45
4.2.1 Mother Wavelet Functions 46
4.2.2 Continuous Wavelet Transform 48
4.2.3 Cone of Influence (COI) 49
4.2.4 Cross Wavelet Transform (XWT) and Wavelet Coherence (WTC) 50
4.2.5 The Advantages of Wavelet Transform on the Elderly EEG 51
4.3 Phase Variance Analysis Based on WTC 53
4.3.1 Mean Time-Averaged Background Spectrum 53
4.3.2 The Method of Half Phase Variance Mean (PV) 55
4.4 Quantification of Similarity of Band-Power Time Series 57
4.4.1 The Procedure of Algorithm 57
4.4.2 Numerical Example 59
4.5 Statistical analysis 60
4.6 Conclusion 61
Chapter 5 Results and Discussion 76
5.1 Clinical Characteristics of Subjects 76
5.2 Analysis Results 76
5.2.1 Characteristics of PV for Subjects 77
5.2.2 Correlation between PV and Clinical Characteristics of Subjects 82
5.3 Discussion 83
5.3.1 Auto-Similarity Analysis between Controls and Patients 83
5.3.2 Cross-Similarity Analysis between Controls and Patients 85
5.3.3 Aging Factors on the Analysis of PV 87
5.3.4 Correlations between PV and Neuropsychological Performance for the Elderly 90
Chapter 6 Conclusions and Future Works 154
6.1 Conclusions 154
6.2 Future Prospective 157
References 160
dc.language.isoen
dc.title長者認知退化與記憶表現之腦波新特徵zh_TW
dc.titleA New EEG Marker of Cognitive Decline and Memory Performance for the Elderlyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江秉穎,葉在庭
dc.subject.keyword阿茲罕默症,睡眠腦波,相似性,互消息法,小波相干頻譜,認知表現,老化,zh_TW
dc.subject.keywordSleep EEG,Similarity,Mutual Information,Wavelet Coherence,Cognitive Performance,Aging,en
dc.relation.page168
dc.rights.note有償授權
dc.date.accepted2011-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
5.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved