請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31088
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許輝吉 | |
dc.contributor.author | Hung-Wei Pan | en |
dc.contributor.author | 潘弘偉 | zh_TW |
dc.date.accessioned | 2021-06-13T02:29:09Z | - |
dc.date.available | 2009-02-02 | |
dc.date.copyright | 2007-02-02 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-26 | |
dc.identifier.citation | Aaronson, S.A. (1991). Growth factors and cancer. Science 254, 1146-1153.
Abou-Elella, A., Gramlich, T., Fritsch, C., and Gansler, T. (1996). c-myc amplification in hepatocellular carcinoma predicts unfavorable prognosis. Mod Pathol 9, 95-98. Akimitsu, N., Adachi, N., Hirai, H., Hossain, M.S., Hamamoto, H., Kobayashi, M., Aratani, Y., Koyama, H., and Sekimizu, K. (2003). Enforced cytokinesis without complete nuclear division in embryonic cells depleting the activity of DNA topoisomerase IIalpha. Genes Cells 8, 393-402. Assmann, V., Jenkinson, D., Marshall, J.F., and Hart, I.R. (1999). The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments. J Cell Sci 112 ( Pt 22), 3943-3954. Assy, N., and Minuk, G.Y. (1997). Liver regeneration: methods for monitoring and their applications. Journal of hepatology 26, 945-952. Baldwin, A.S., Jr. (1996). The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14, 649-683. Banks, D., Wu, M., Higa, L.A., Gavrilova, N., Quan, J., Ye, T., Kobayashi, R., Sun, H., and Zhang, H. (2006). L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle 5, 1719-1729. Barthelmes, H.U., Grue, P., Feineis, S., Straub, T., and Boege, F. (2000). Active DNA topoisomerase IIalpha is a component of the salt-stable centrosome core. J Biol Chem 275, 38823-38830. Bassanello, M., Vitale, A., Ciarleglio, F.A., Brolese, A., Zanus, G., D'Amico, F., Carraro, A., Cappuzzo, G., Bridda, A., Senzolo, M., et al. (2003). Adjuvant chemotherapy for transplanted hepatocellular carcinoma patients: impact on survival or HCV recurrence timing. Transplantation proceedings 35, 2991-2994. Basu, J., Bousbaa, H., Logarinho, E., Li, Z., Williams, B.C., Lopes, C., Sunkel, C.E., and Goldberg, M.L. (1999). Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 146, 13-28. Beasley, R.P., Hwang, L.Y., Lin, C.C., and Chien, C.S. (1981). Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 2, 1129-1133. Block, T.M., Mehta, A.S., Fimmel, C.J., and Jordan, R. (2003). Molecular viral oncology of hepatocellular carcinoma. Oncogene 22, 5093-5107. Brash, D.E. (2006). Roles of the transcription factor p53 in keratinocyte carcinomas. The British journal of dermatology 154 Suppl 1, 8-10. Bressac, B., Kew, M., Wands, J., and Ozturk, M. (1991). Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350, 429-431. Brunt, E.M., and Swanson, P.E. (1992). Immunoreactivity for c-erbB-2 oncopeptide in benign and malignant diseases of the liver. American journal of clinical pathology 97, S53-61. Buetow, K.H., Murray, J.C., Israel, J.L., London, W.T., Smith, M., Kew, M., Blanquet, V., Brechot, C., Redeker, A., and Govindarajah, S. (1989). Loss of heterozygosity suggests tumor suppressor gene responsible for primary hepatocellular carcinoma. Proc Natl Acad Sci U S A 86, 8852-8856. Castro, A., Vigneron, S., Bernis, C., Labbe, J.C., and Lorca, T. (2003). Xkid is degraded in a D-box, KEN-box, and A-box-independent pathway. Mol Cell Biol 23, 4126-4138. Celis, J.E. (1994). Cell biology: A Laboratory Handbook, Vol 1 (San Diego, Academic Press). Cha, C., and Dematteo, R.P. (2005). Molecular mechanisms in hepatocellular carcinoma development. Best practice & research 19, 25-37. Chan, T.A., Hwang, P.M., Hermeking, H., Kinzler, K.W., and Vogelstein, B. (2000). Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev 14, 1584-1588. Chang, M.H., Chen, D.S., Hsu, H.C., Hsu, H.Y., and Lee, C.Y. (1989). Maternal transmission of hepatitis B virus in childhood hepatocellular carcinoma. Cancer 64, 2377-2380. Chen, C.H., and Chen, D.S. (1992). [Hepatocellular carcinoma: 30 years' experience in Taiwan]. Journal of the Formosan Medical Association = Taiwan yi zhi 91 Suppl 3, S187-202. Chen, C.H., Chen, Y.Y., Chen, G.H., Yang, S.S., Tang, H.S., Lin, H.H., Lin, D.Y., Lo, S.K., Du, J.M., Chang, T.T., et al. (2004). Hepatitis B virus transmission and hepatocarcinogenesis: a 9 year retrospective cohort of 13676 relatives with hepatocellular carcinoma. Journal of hepatology 40, 653-659. Chen, C.J., You, S.L., Lin, L.H., Hsu, W.L., and Yang, Y.W. (2002a). Cancer epidemiology and control in Taiwan: a brief review. Japanese journal of clinical oncology 32 Suppl, S66-81. Chen, D.S., Sung, J.L., Sheu, J.C., Lai, M.Y., How, S.W., Hsu, H.C., Lee, C.S., and Wei, T.C. (1984). Serum alpha-fetoprotein in the early stage of human hepatocellular carcinoma. Gastroenterology 86, 1404-1409. Chen, F., Zhang, Z., Bower, J., Lu, Y., Leonard, S.S., Ding, M., Castranova, V., Piwnica-Worms, H., and Shi, X. (2002b). Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 99, 1990-1995. Cheung, W.M., Chu, A.H., Chu, P.W., and Ip, N.Y. (2001). Cloning and expression of a novel nuclear matrix-associated protein that is regulated during the retinoic acid-induced neuronal differentiation. J Biol Chem 276, 17083-17091. Chevaillier, P. (1993). Pest sequences in nuclear proteins. The International journal of biochemistry 25, 479-482. Choi, W.J., Clark, M.W., Chen, J.X., and Jong, A.Y. (1990). The CDC4 gene product is associated with the yeast nuclear skeleton. Biochemical and biophysical research communications 172, 1324-1330. Collier, J.D., Guo, K., Mathew, J., May, F.E., Bennett, M.K., Corbett, I.P., Bassendine, M.F., and Burt, A.D. (1992). c-erbB-2 oncogene expression in hepatocellular carcinoma and cholangiocarcinoma. Journal of hepatology 14, 377-380. Cortes, F., Pastor, N., Mateos, S., and Dominguez, I. (2003). Roles of DNA topoisomerases in chromosome segregation and mitosis. Mutation research 543, 59-66. Coverley, D., Laman, H., and Laskey, R.A. (2002). Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat Cell Biol 4, 523-528. D'Andrilli, G., Kumar, C., Scambia, G., and Giordano, A. (2004). Cell cycle genes in ovarian cancer: steps toward earlier diagnosis and novel therapies. Clin Cancer Res 10, 8132-8141. Dash, B.C., and El-Deiry, W.S. (2004). Cell cycle checkpoint control mechanisms that can be disrupted in cancer. Methods in molecular biology (Clifton, NJ 280, 99-161. Deshpande, A., Sicinski, P., and Hinds, P.W. (2005). Cyclins and cdks in development and cancer: a perspective. Oncogene 24, 2909-2915. Ed Harlow, D.L. (1988). Antibodies: A LABORATORY MANUAL (New York, Cold Spring Harbor Laboratory). El-Serag, H.B. (2002). Hepatocellular carcinoma: an epidemiologic view. Journal of clinical gastroenterology 35, S72-78. Elledge, S.J. (1996). Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664-1672. Fausto, N. (2000). Liver regeneration. Journal of hepatology 32, 19-31. Forsburg, S.L. (2004). Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev 68, 109-131. Fraschini, R., Beretta, A., Sironi, L., Musacchio, A., Lucchini, G., and Piatti, S. (2001). Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. Embo J 20, 6648-6659. Frouin, I., Toueille, M., Ferrari, E., Shevelev, I., and Hubscher, U. (2005). Phosphorylation of human DNA polymerase lambda by the cyclin-dependent kinase Cdk2/cyclin A complex is modulated by its association with proliferating cell nuclear antigen. Nucleic acids research 33, 5354-5361. Fujimori, M., Tokino, T., Hino, O., Kitagawa, T., Imamura, T., Okamoto, E., Mitsunobu, M., Ishikawa, T., Nakagama, H., Harada, H., et al. (1991). Allelotype study of primary hepatocellular carcinoma. Cancer Res 51, 89-93. Fujita, M. (2006). Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells. Cell division 1, 22. Ganem, D., and Prince, A.M. (2004). Hepatitis B virus infection--natural history and clinical consequences. The New England journal of medicine 350, 1118-1129. Garg, P., and Burgers, P.M. (2005). DNA polymerases that propagate the eukaryotic DNA replication fork. Critical reviews in biochemistry and molecular biology 40, 115-128. Geley, S., Kramer, E., Gieffers, C., Gannon, J., Peters, J.M., and Hunt, T. (2001). Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol 153, 137-148. Glotzer, M., Murray, A.W., and Kirschner, M.W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-138. Guan, X.Y., Fang, Y., Sham, J.S., Kwong, D.L., Zhang, Y., Liang, Q., Li, H., Zhou, H., and Trent, J.M. (2000). Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes, chromosomes & cancer 29, 110-116. Hames, R.S., Wattam, S.L., Yamano, H., Bacchieri, R., and Fry, A.M. (2001). APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. Embo J 20, 7117-7127. Han, S., Park, K., Bae, B.N., Kim, K.H., Kim, H.J., Kim, Y.D., and Kim, H.Y. (2003). Prognostic implication of cyclin E expression and its relationship with cyclin D1 and p27Kip1 expression on tissue microarrays of node negative breast cancer. Journal of surgical oncology 83, 241-247. Hartwell, L.H., and Weinert, T.A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629-634. Hermeking, H., Rago, C., Schuhmacher, M., Li, Q., Barrett, J.F., Obaya, A.J., O'Connell, B.C., Mateyak, M.K., Tam, W., Kohlhuber, F., et al. (2000). Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci U S A 97, 2229-2234. Higa, L.A., Banks, D., Wu, M., Kobayashi, R., Sun, H., and Zhang, H. (2006a). L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage. Cell Cycle 5, 1675-1680. Higa, L.A., Wu, M., Ye, T., Kobayashi, R., Sun, H., and Zhang, H. (2006b). CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 8, 1277-1283. Himeno, Y., Fukuda, Y., Hatanaka, M., and Imura, H. (1988). Expression of oncogenes in human liver disease. Liver 8, 208-212. Hsu, H.C., Cheng, W., and Lai, P.L. (1997). Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res 57, 5179-5184. Hsu, H.C., Chiou, T.J., Chen, J.Y., Lee, C.S., Lee, P.H., and Peng, S.Y. (1991). Clonality and clonal evolution of hepatocellular carcinoma with multiple nodules. Hepatology 13, 923-928. Hsu, H.C., Huang, A.M., Lai, P.L., Chien, W.M., Peng, S.Y., and Lin, S.W. (1994a). Genetic alterations at the splice junction of p53 gene in human hepatocellular carcinoma. Hepatology 19, 122-128. Hsu, H.C., Jeng, Y.M., Mao, T.L., Chu, J.S., Lai, P.L., and Peng, S.Y. (2000). Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157, 763-770. Hsu, H.C., Peng, S.Y., Lai, P.L., Sheu, J.C., Chen, D.S., Lin, L.I., Slagle, B.L., and Butel, J.S. (1994b). Allelotype and loss of heterozygosity of p53 in primary and recurrent hepatocellular carcinomas. A study of 150 patients. Cancer 73, 42-47. Hsu, H.C., Tseng, H.J., Lai, P.L., Lee, P.H., and Peng, S.Y. (1993). Expression of p53 gene in 184 unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res 53, 4691-4694. Hsu, H.C., Wu, M.Z., Chang, M.H., Su, I.J., and Chen, D.S. (1987). Childhood hepatocellular carcinoma develops exclusively in hepatitis B surface antigen carriers in three decades in Taiwan. Report of 51 cases strongly associated with rapid development of liver cirrhosis. Journal of hepatology 5, 260-267. Hsu, H.C., Wu, T.T., Wu, M.Z., Sheu, J.C., Lee, C.S., and Chen, D.S. (1988). Tumor invasiveness and prognosis in resected hepatocellular carcinoma. Clinical and pathogenetic implications. Cancer 61, 2095-2099. Hu, R.H., Lee, P.H., Yu, S.C., Dai, H.C., Sheu, J.C., Lai, M.Y., Hsu, H.C., and Chen, D.S. (1996). Surgical resection for recurrent hepatocellular carcinoma: prognosis and analysis of risk factors. Surgery 120, 23-29. Huang, L.R., and Hsu, H.C. (1995). Cloning and expression of CD24 gene in human hepatocellular carcinoma: a potential early tumor marker gene correlates with p53 mutation and tumor differentiation. Cancer Res 55, 4717-4721. Jallepalli, P.V., Waizenegger, I.C., Bunz, F., Langer, S., Speicher, M.R., Peters, J.M., Kinzler, K.W., Vogelstein, B., and Lengauer, C. (2001). Securin is required for chromosomal stability in human cells. Cell 105, 445-457. Jeng, Y.M., Peng, S.Y., Lin, C.Y., and Hsu, H.C. (2004). Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 10, 2065-2071. Jeong, S.J., Shin, H.J., Kim, S.J., Ha, G.H., Cho, B.I., Baek, K.H., Kim, C.M., and Lee, C.W. (2004). Transcriptional abnormality of the hsMAD2 mitotic checkpoint gene is a potential link to hepatocellular carcinogenesis. Cancer Res 64, 8666-8673. Johnson, A., and O'Donnell, M. (2005). Cellular DNA replicases: components and dynamics at the replication fork. Annual review of biochemistry 74, 283-315. Johnston, J.M., and Carroll, W.L. (1992). c-myc hypermutation in Burkitt's lymphoma. Leukemia & lymphoma 8, 431-439. Kasai, Y., Takeda, S., and Takagi, H. (1996). Pathogenesis of hepatocellular carcinoma: a review from the viewpoint of molecular analysis. Seminars in surgical oncology 12, 155-159. Kawate, S., Fukusato, T., Ohwada, S., Watanuki, A., and Morishita, Y. (1999). Amplification of c-myc in hepatocellular carcinoma: correlation with clinicopathologic features, proliferative activity and p53 overexpression. Oncology 57, 157-163. Ke, P.Y., and Chang, Z.F. (2004). Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-CDH1-mediated pathway. Mol Cell Biol 24, 514-526. Kelman, Z. (1997). PCNA: structure, functions and interactions. Oncogene 14, 629-640. Ko, L., Cardona, G.R., and Chin, W.W. (2000). Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. Proc Natl Acad Sci U S A 97, 6212-6217. Kobayashi, S., Hayashi, H., Itoh, Y., Asano, T., and Isono, K. (1994). Detection of minus-strand hepatitis C virus RNA in tumor tissues of hepatocellular carcinoma. Cancer 73, 48-52. Kondo, T., Kobayashi, M., Tanaka, J., Yokoyama, A., Suzuki, S., Kato, N., Onozawa, M., Chiba, K., Hashino, S., Imamura, M., et al. (2004). Rapid degradation of Cdt1 upon UV-induced DNA damage is mediated by SCFSkp2 complex. J Biol Chem 279, 27315-27319. Kops, G.J., Kim, Y., Weaver, B.A., Mao, Y., McLeod, I., Yates, J.R., 3rd, Tagaya, M., and Cleveland, D.W. (2005). ZW10 links mitotic checkpoint signaling to the structural kinetochore. J Cell Biol 169, 49-60. Kraft, C., Vodermaier, H.C., Maurer-Stroh, S., Eisenhaber, F., and Peters, J.M. (2005). The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell 18, 543-553. Kramer, E.R., Scheuringer, N., Podtelejnikov, A.V., Mann, M., and Peters, J.M. (2000). Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell 11, 1555-1569. Kurzik-Dumke, U., Neubauer, M., and Debes, A. (1996). Identification of a novel Drosophila melanogaster heat-shock gene, lethal(2)denticleless [l(2)dtl], coding for an 83-kDa protein. Gene 171, 163-170. Kusano, N., Shiraishi, K., Kubo, K., Oga, A., Okita, K., and Sasaki, K. (1999). Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features. Hepatology 29, 1858-1862. Lauer, G.M., and Walker, B.D. (2001). Hepatitis C virus infection. The New England journal of medicine 345, 41-52. Laurent-Puig, P., and Zucman-Rossi, J. (2006). Genetics of hepatocellular tumors. Oncogene 25, 3778-3786. Lee, M.H., and Yang, H.Y. (2001). Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci 58, 1907-1922. Lee, M.H., and Yang, H.Y. (2003). Regulators of G1 cyclin-dependent kinases and cancers. Cancer Metastasis Rev 22, 435-449. Li, A., and Blow, J.J. (2005). Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. Embo J 24, 395-404. Li, R., Hannon, G.J., Beach, D., and Stillman, B. (1996). Subcellular distribution of p21 and PCNA in normal and repair-deficient cells following DNA damage. Curr Biol 6, 189-199. Li, X., Zhao, Q., Liao, R., Sun, P., and Wu, X. (2003). The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 278, 30854-30858. Liang, P., and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967-971. Liu, C.L., Yu, I.S., Pan, H.W., Lin, S.W., and Hsu, H.C. (2006). L2dtl is essential for cell survival and nuclear division in early mouse embryonic development. J Biol Chem. Liu, S.H., Lin, C.Y., Peng, S.Y., Jeng, Y.M., Pan, H.W., Lai, P.L., Liu, C.L., and Hsu, H.C. (2002). Down-regulation of annexin A10 in hepatocellular carcinoma is associated with vascular invasion, early recurrence, and poor prognosis in synergy with p53 mutation. Am J Pathol 160, 1831-1837. Luo, X., Fang, G., Coldiron, M., Lin, Y., Yu, H., Kirschner, M.W., and Wagner, G. (2000). Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nature structural biology 7, 224-229. Malumbres, M., and Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. Nature reviews 1, 222-231. Masellis-Smith, A., Belch, A.R., Mant, M.J., Turley, E.A., and Pilarski, L.M. (1996). Hyaluronan-dependent motility of B cells and leukemic plasma cells in blood, but not of bone marrow plasma cells, in multiple myeloma: alternate use of receptor for hyaluronan-mediated motility (RHAMM) and CD44. Blood 87, 1891-1899. Massague, J. (2004). G1 cell-cycle control and cancer. Nature 432, 298-306. Mathewos, T., Ulrich, L., and Hans, K. (2004). Cell cycle and no end. Virchows Archiv V444, 313-323. Maxwell, C.A., Keats, J.J., Crainie, M., Sun, X., Yen, T., Shibuya, E., Hendzel, M., Chan, G., and Pilarski, L.M. (2003). RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol Biol Cell 14, 2262-2276. Mayor, T., Meraldi, P., Stierhof, Y.D., Nigg, E.A., and Fry, A.M. (1999). Protein kinases in control of the centrosome cycle. FEBS Lett 452, 92-95. Meraldi, P., Lukas, J., Fry, A.M., Bartek, J., and Nigg, E.A. (1999). Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1, 88-93. Mihaylov, I.S., Kondo, T., Jones, L., Ryzhikov, S., Tanaka, J., Zheng, J., Higa, L.A., Minamino, N., Cooley, L., and Zhang, H. (2002). Control of DNA replication and chromosome ploidy by geminin and cyclin A. Mol Cell Biol 22, 1868-1880. Moriyama, K., Nishida, E., Yonezawa, N., Sakai, H., Matsumoto, S., Iida, K., and Yahara, I. (1990). Destrin, a mammalian actin-depolymerizing protein, is closely related to cofilin. Cloning and expression of porcine brain destrin cDNA. J Biol Chem 265, 5768-5773. Murphy, M., Stinnakre, M.G., Senamaud-Beaufort, C., Winston, N.J., Sweeney, C., Kubelka, M., Carrington, M., Brechot, C., and Sobczak-Thepot, J. (1997). Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nature genetics 15, 83-86. Nagao, K., and Yanagida, M. (2002). Regulating sister chromatid separation by separase phosphorylation. Dev Cell 2, 2-4. Nagasue, N., Uchida, M., Makino, Y., Takemoto, Y., Yamanoi, A., Hayashi, T., Chang, Y.C., Kohno, H., Nakamura, T., and Yukaya, H. (1993). Incidence and factors associated with intrahepatic recurrence following resection of hepatocellular carcinoma. Gastroenterology 105, 488-494. Nalpas, B., Driss, F., Pol, S., Hamelin, B., Housset, C., Brechot, C., and Berthelot, P. (1991). Association between HCV and HBV infection in hepatocellular carcinoma and alcoholic liver disease. Journal of hepatology 12, 70-74. Neer, E.J., Schmidt, C.J., Nambudripad, R., and Smith, T.F. (1994). The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297-300. Nishitani, H., Sugimoto, N., Roukos, V., Nakanishi, Y., Saijo, M., Obuse, C., Tsurimoto, T., Nakayama, K.I., Nakayama, K., Fujita, M., et al. (2006). Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. Embo J 25, 1126-1136. Nyberg, K.A., Michelson, R.J., Putnam, C.W., and Weinert, T.A. (2002). Toward maintaining the genome: DNA damage and replication checkpoints. Annual review of genetics 36, 617-656. Ono, S. (2003). Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1: new blades for twisted filaments. Biochemistry 42, 13363-13370. Pan, H.W., Ou, Y.H., Peng, S.Y., Liu, S.H., Lai, P.L., Lee, P.H., Sheu, J.C., Chen, C.L., and Hsu, H.C. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98, 119-127. Park, M.T., and Lee, S.J. (2003). Cell cycle and cancer. Journal of biochemistry and molecular biology 36, 60-65. Paulovich, A.G., Toczyski, D.P., and Hartwell, L.H. (1997). When checkpoints fail. Cell 88, 315-321. Peng, S.Y., Chen, W.J., Lai, P.L., Jeng, Y.M., Sheu, J.C., and Hsu, H.C. (2004). High alpha-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and beta-catenin mutations. Int J Cancer 112, 44-50. Peng, S.Y., Chou, S.P., and Hsu, H.C. (1998). Association of downregulation of cyclin D1 and of overexpression of cyclin E with p53 mutation, high tumor grade and poor prognosis in hepatocellular carcinoma. Journal of hepatology 29, 281-289. Peng, S.Y., Lai, P.L., and Hsu, H.C. (1993). Amplification of the c-myc gene in human hepatocellular carcinoma: biologic significance. Journal of the Formosan Medical Association = Taiwan yi zhi 92, 866-870. Peng, S.Y., Ou, Y.H., Chen, W.J., Li, H.Y., Liu, S.H., Pan, H.W., Lai, P.L., Jeng, Y.M., Chen, D.C., and Hsu, H.C. (2005). Aberrant expressions of annexin A10 short isoform, osteopontin and alpha-fetoprotein at chromosome 4q cooperatively contribute to progression and poor prognosis of hepatocellular carcinoma. Int J Oncol 26, 1053-1061. Pfleger, C.M., and Kirschner, M.W. (2000). The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14, 655-665. Piao, Z., Kim, H., Jeon, B.K., Lee, W.J., and Park, C. (1997). Relationship between loss of heterozygosity of tumor suppressor genes and histologic differentiation in hepatocellular carcinoma. Cancer 80, 865-872. Pines, J. (1996). Cell cycle: reaching for a role for the Cks proteins. Curr Biol 6, 1399-1402. Polager, S., Kalma, Y., Berkovich, E., and Ginsberg, D. (2002). E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 21, 437-446. Poon, R.T., Fan, S.T., Lo, C.M., Ng, I.O., Liu, C.L., Lam, C.M., and Wong, J. (2001). Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years. Annals of surgery 234, 63-70. Poon, R.T., Fan, S.T., Ng, I.O., Lo, C.M., Liu, C.L., and Wong, J. (2000). Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer 89, 500-507. Portolani, N., Coniglio, A., Ghidoni, S., Giovanelli, M., Benetti, A., Tiberio, G.A., and Giulini, S.M. (2006). Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Annals of surgery 243, 229-235. Powell, J. (1998). Enhanced concatemer cloning-a modification to the SAGE (Serial Analysis of Gene Expression) technique. Nucleic acids research 26, 3445-3446. Qin, L.X., and Tang, Z.Y. (2002). The prognostic significance of clinical and pathological features in hepatocellular carcinoma. World J Gastroenterol 8, 193-199. Raemaekers, T., Ribbeck, K., Beaudouin, J., Annaert, W., Van Camp, M., Stockmans, I., Smets, N., Bouillon, R., Ellenberg, J., and Carmeliet, G. (2003). NuSAP, a novel microtubule-associated protein involved in mitotic spindle organization. J Cell Biol 162, 1017-1029. Randell, J.C., Bowers, J.L., Rodriguez, H.K., and Bell, S.P. (2006). Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 21, 29-39. Ray, R.B., Lagging, L.M., Meyer, K., and Ray, R. (1996). Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. Journal of virology 70, 4438-4443. Ray, R.B., Lagging, L.M., Meyer, K., Steele, R., and Ray, R. (1995). Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus research 37, 209-220. Ray, R.B., Steele, R., Meyer, K., and Ray, R. (1997). Transcriptional repression of p53 promoter by hepatitis C virus core protein. J Biol Chem 272, 10983-10986. Rechsteiner, M. (1989). PEST regions, proteolysis and cell cycle progression. Revis Biol Celular 20, 235-253. Rechsteiner, M. (1990). PEST sequences are signals for rapid intracellular proteolysis. Seminars in cell biology 1, 433-440. Rechsteiner, M., and Rogers, S.W. (1996). PEST sequences and regulation by proteolysis. Trends Biochem Sci 21, 267-271. Reynolds, S.H., Stowers, S.J., Patterson, R.M., Maronpot, R.R., Aaronson, S.A., and Anderson, M.W. (1987). Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Science 237, 1309-1316. Ribbeck, K., Groen, A.C., Santarella, R., Bohnsack, M.T., Raemaekers, T., Kocher, T., Gentzel, M., Gorlich, D., Wilm, M., Carmeliet, G., et al. (2006). NuSAP, a mitotic RanGTP target that stabilizes and cross-links microtubules. Mol Biol Cell 17, 2646-2660. Rocco, J.W., and Sidransky, D. (2001). p16(MTS-1/CDKN2/INK4a) in cancer progression. Experimental cell research 264, 42-55. Rocken, C., and Carl-McGrath, S. (2001). Pathology and pathogenesis of hepatocellular carcinoma. Digestive diseases (Basel, Switzerland) 19, 269-278. Roman-Gomez, J., Castillejo, J.A., Jimenez, A., Gonzalez, M.G., Moreno, F., Rodriguez Mdel, C., Barrios, M., Maldonado, J., and Torres, A. (2002). 5' CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99, 2291-2296. Sager, R. (1989). Tumor suppressor genes: the puzzle and the promise. Science 246, 1406-1412. Sandal, T. (2002). Molecular aspects of the mammalian cell cycle and cancer. The oncologist 7, 73-81. Sansam, C.L., Shepard, J.L., Lai, K., Ianari, A., Danielian, P.S., Amsterdam, A., Hopkins, N., and Lees, J.A. (2006). DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint. Genes Dev 20, 3117-3129. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470. Schraml, P., Bucher, C., Bissig, H., Nocito, A., Haas, P., Wilber, K., Seelig, S., Kononen, J., Mihatsch, M.J., Dirnhofer, S., et al. (2003). Cyclin E overexpression and amplification in human tumours. J Pathol 200, 375-382. Schwartz, D., and Rotter, V. (1998). p53-dependent cell cycle control: response to genotoxic stress. Semin Cancer Biol 8, 325-336. Scott, M., Bonnefin, P., Vieyra, D., Boisvert, F.M., Young, D., Bazett-Jones, D.P., and Riabowol, K. (2001). UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J Cell Sci 114, 3455-3462. Scully, R., Xie, A., and Nagaraju, G. (2004). Molecular functions of BRCA1 in the DNA damage response. Cancer biology & therapy 3, 521-527. Shah, S.A., Greig, P.D., Gallinger, S., Cattral, M.S., Dixon, E., Kim, R.D., Taylor, B.R., Grant, D.R., and Vollmer, C.M. (2006). Factors associated with early recurrence after resection for hepatocellular carcinoma and outcomes. Journal of the American College of Surgeons 202, 275-283. Sharp-Baker, H., and Chen, R.H. (2001). Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J Cell Biol 153, 1239-1250. Sherman, M. (1995). Hepatocellular carcinoma. The Gastroenterologist 3, 55-66. Simon, D., Knowles, B.B., and Weith, A. (1991a). Abnormalities of chromosome 1 and loss of heterozygosity on 1p in primary hepatomas. Oncogene 6, 765-770. Simon, M.I., Strathmann, M.P., and Gautam, N. (1991b). Diversity of G proteins in signal transduction. Science 252, 802-808. Simon, R., Burger, H., Brinkschmidt, C., Bocker, W., Hertle, L., and Terpe, H.J. (1998). Chromosomal aberrations associated with invasion in papillary superficial bladder cancer. J Pathol 185, 345-351. Simpson, F., Lammerts, v.B.K., Butterfield, N., Bennetts, J.S., Bowles, J., Adolphe, C., Simms, L.A., Young, J., Walsh, M.D., Leggett, B., et al. (2006). The PCNA-associated factor KIAA0101/p15(PAF) binds the potential tumor suppressor product p33ING1b. Exp Cell Res 312, 73-85. Starr, D.A., Saffery, R., Li, Z., Simpson, A.E., Choo, K.H., Yen, T.J., and Goldberg, M.L. (2000). HZwint-1, a novel human kinetochore component that interacts with HZW10. J Cell Sci 113 ( Pt 11), 1939-1950. Steeg, P.S., and Zhou, Q. (1998). Cyclins and breast cancer. Breast cancer research and treatment 52, 17-28. Steer, C.J. (1995). Liver regeneration. Faseb J 9, 1396-1400. Stewart, Z.A., Westfall, M.D., and Pietenpol, J.A. (2003). Cell-cycle dysregulation and anticancer therapy. Trends in pharmacological sciences 24, 139-145. Stier, H., Fahimi, H.D., Van Veldhoven, P.P., Mannaerts, G.P., Volkl, A., and Baumgart, E. (1998). Maturation of peroxisomes in differentiating human hepatoblastoma cells (HepG2): possible involvement of the peroxisome proliferator-activated receptor alpha (PPAR alpha). Differentiation 64, 55-66. Stork, P., Loda, M., Bosari, S., Wiley, B., Poppenhusen, K., and Wolfe, H. (1991). Detection of K-ras mutations in pancreatic and hepatic neoplasms by non-isotopic mismatched polymerase chain reaction. Oncogene 6, 857-862. Sudo, T., Ota, Y., Kotani, S., Nakao, M., Takami, Y., Takeda, S., and Saya, H. (2001). Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. Embo J 20, 6499-6508. Sung, J.L. (1997). Prevention of hepatitis B and C virus infection for prevention of cirrhosis and hepatocellular carcinoma. Journal of gastroenterology and hepatology 12, S370-376. Takayama, T., Miyanishi, K., Hayashi, T., Sato, Y., and Niitsu, Y. (2006). Colorectal cancer: genetics of development and metastasis. Journal of gastroenterology 41, 185-192. Taketa, K. (1990). Alpha-fetoprotein: reevaluation in hepatology. Hepatology 12, 1420-1432. Taylor, S.S., Scott, M.I., and Holland, A.J. (2004). The spindle checkpoint: a quality control mechanism which ensures accurate chromosome segregation. Chromosome Res 12, 599-616. Teramoto, T., Satonaka, K., Kitazawa, S., Fujimori, T., Hayashi, K., and Maeda, S. (1994). p53 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31088 | - |
dc.description.abstract | L2DTL是果蠅lethal (2) denticleless (Drosophila lethal (2) denticleless) 基因在人類的同源基因。這個研究主要是為了闡明這個基因在肝細胞癌 (Hepatocellular carcinoma; HCC)腫瘤進行中的功能及與臨床病理間的相關性。我們使用RT-PCR、免疫染色 (immunostaining)、Western blotting、以及中心粒 (centrosome)分離等方法來偵測L2DTL的mRNA表現與蛋白在細胞內的位置,並且利用RNA干擾 (RNAi) 來分析L2DTL在腫瘤細胞生長的角色。
L2DTL mRNA在277個單發性肝細胞癌 (unifocal primary HCCs ) 中有160個 (57%) 是過度表現的,而有這樣過度表現的肝細胞癌,病人年齡較輕 (≧55 歲,p<0.001)、血液中較常見高胎兒蛋白 (AFP >200 ng/mL,p<0.0001),且腫瘤較大(>5 cm,p<0.00001)、分級較高 (grade II-IV, p<0.000001)、分期較高 (stage IIIA-IV,p<0.000001),而且五年存活率較差 (p=0.000001)。為了驗證這樣的相關性,我們將病人隨意均分成兩組,學習組 (139 例),測試組 (139 例),經分析後,上述的相關性在這兩組中依然具有相同的統計意義。在多變量的分析當中,我們發現L2DTL 的過度表現與腫瘤的高分期有非常強的關係,而高分期通常是組織病理上分辨預後不良的最重要決定因子,因此,在病人的預後估計上,L2DTL 過度表現無法成為一個與腫瘤分期無關的獨立因子 (stage-independent prognosticfactor)。進一步分析,肝細胞癌的病人若發生腫瘤早期復發 (early tumor recurrence;ETR),其五年存活率不及10%,遠比那些沒有發生ETR 的病人差 (65%,p=1x10-8)。我們發現L2DTL 過度表現也與病人的ETR 有很強的相關性,而且經由多變量分析,可以知道L2DTL 的過度表現會是一個非常顯著的預測因子。此外,L2DTL 的表現和肝細胞癌病人存活率之間的關係,與p53 基因突變的有無亦有密切的關連。有p53 突變的肝細胞癌中,L2DTL 過度表現的病人其十年存活率較差;但在p53 沒有突變的肝細胞癌中,L2DTL 的過度表現與否,其十年存活率沒有差別。 由雙重免疫螢光染色 (double immunofluorescence staining) 發現L2DTL 蛋白除表現在細胞核外,也會與γ-tubulin 以及Aurora-A 共同表現在中心粒。在細胞週期的進行中,L2DTL 蛋白會一直存在於中心粒上,並且可以藉由層析法得知L2DTL 蛋白會與γ-tubulin 蛋白存在相同的層析中。L2DTL 基因會在細胞週期中的G1/S 時期,或是肝細胞再生 (liver regeneration) 時的DNA 合成時期,其表現量會增加。而L2DTL 蛋白會在細胞分裂 (mitosis) 時期經由APC/C-Cdh1 複合體(APC/C-Cdh1 complex) 的蛋白降解作用使得蛋白質量下降。而L2DTL 的蛋白表現下降也會在HepG2 與NT2 細胞誘發分化的時後發生。而經由L2DTL RNAi oligos所引起的L2DTL 表現下降,則會使得腫瘤細胞在活體與非活體的生長能力下降。經由microarray 的分析,這些經由L2DTL RNAi oligos 處理後的腫瘤細胞中會導致一些與細胞週期調節、DNA 合成、DNA 修復、染色體分隔 (chromosomesegregation) 與細胞分裂相關的基因表現下降。 總結來說,L2DTL 的過度表現與肝細胞癌的進行與轉移能力有關,而且與p53 突變有協力作用,使得有L2DTL 的過度表現的肝細胞癌惡性度更高,且預後更差。在本報告中,我們也第一次指出,L2DTL 這個核蛋白在整的細胞週期進行中,會是一個中心粒蛋白的新成員。在肝細胞癌中,L2DTL 的過度表現與較大的腫瘤與高期別,特別是具血管侵犯能力的腫瘤與較差的預後有關,而降低L2DTL 的表達確實可以抑制腫瘤細胞生長。這樣的結果增加L2DTL 成為腫瘤治療標靶的可能性。我們結論,L2DTL 在DNA 合成、修復、染色體分隔、細胞分裂與中心粒的功能都扮演重要且多面向的角色。基於它在調控細胞週期的進行有 多重重要的功能,也因為如此,干擾L2DTL 的表現會引起腫瘤細胞分裂失敗,以致生長降低更重要的是,當兩個同源染色體上的L2DTL 基因被惕除時,會使得鼠胚胎細胞無法發育導致死亡。 | zh_TW |
dc.description.abstract | L2DTL is a human ortholog of Drosophila lethal (2) denticleless, l(2)dtl. This study is to elucidate its function and clinicopathological significance in hepatocelllular carcinoma (HCC) progression. We used RT-PCR, immunostaining, Western blotting, and centrosome isolation to determine the L2DTL expression and protein localization. RNAi was used to analyze its role in tumor cell growth.
The L2DTL mRNA was overexpressed in 160 (57%) of 277 unifocal primary HCCs, and the overexpression was associated with younger patient age (≧55 years, p<0.001), high serum AFP (>200 ng/mL, p<0.0001), bigger tumor (>5 cm, p<0.00001), high-grade (grade II-IV, p<0.000001), higher-stage (stage IIIA-IV) HCC (p<0.000001), and lower 5-year survival (p=0.000001). For verification, the patients randomly divided to two groups, the learning (139 cases) and test sets (138 cases). These correlations were confirmed in both sets of patients. Multivariate analysis showed that L2DTL overexpression strongly correlated with tumor stage, which was the most crucial unfavorable histopathological prognostic factor, and hence was not a stage-independent prognostic factor. Further, HCC patients with early tumor recurrence (ETR) had a 5-year survival less than 10% as compared with those without ETR above 65%, p=1x10-8. L2DTL overexpression strongly correlated with ETR and was a significant predictor for ETR after multivariate analysis. L2DTL overexpression correlated with poor progonosis and closely associated with p53 mutation. Moreover, in the p53-mutated HCCs, a concomitant L2DTL overexpression was associated with a lower 10-year survival (p=0.00006), as compared with p53-mutated HCC without the overexpression in the subset of HCCs without p53 mutaion, there was no significant difference in ten-year survival in HCC with and without L2DTL overexpression. Using the double immunofluorescence staining, L2DTL protein located to the nucleus in interphase and centered to centrosomes, with co-localization of γ-tubulin and Aurora-A, throughout the cell cycle, and co-fractionated with γ-tubulin. L2DTL gene expression increased during G1/S phase in cell cycle, and the period of DNA sysnthesis in liver regeneration. L2DTL protein decreased in mitosis via degradation by the APC/C-Cdh1 complex. L2DTL was downregulated in the induced differentiation of HepG2 and NT2 cells. L2DTL downregulation by RNAi oligos led to reduced cancer cell growth in vivo and in vitro, in which microarray analysis disclosed dysregulation of genes involved in cell cycle regulation, DNA synthesis, DNA repair, chromosome segregation, and cell division. In conclusion, L2DTL overexpression is associated with enhanced metastatic potential of HCC, and contributes synergistically with p53 mutation toward advanced HCC with poor prognosis. In this report, we show for the first time that the nuclear L2DTL protein is also a novel component of the centrosome proteins throughout the cell cycle and participates in cell cycle progression. L2DTL overexpression in HCC is associated with bigger size tumor and high tumor stage, particular portal vein invasion, and poor prognosis, whereas the RNAi knockdown is associated with suppression oftumor cell growth. These findings raise the possibility that L2DTL may be a noveltherapeutic target. We conclude that the L2DTL plays important multi-faceted roles inDNA synthesis, DNA repair, chromosome segregation, cell division and centrosomelocalization. Base on its crucial multiple functions in the control of cell cycle progression, the L2DTL expression contributed to cancer cell growth, whereas its downregulation led to reduce tumor cell growth, chromosome segregation andcytokinesis failure. Importantly, its homozygous knockout in mice leads to very earlyembryonic lethality. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:29:09Z (GMT). No. of bitstreams: 1 ntu-96-D89444001-1.pdf: 5098963 bytes, checksum: 7ec3ea6a042eae180f94c6b1dc3b73bd (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 1. 中文摘要 -------------------------------------------------------------- 1
2. ABSTRACT ------------------------------------------------------------ 3 3. GENERAL INTRODUCTION ------------------------------------ 6 3.1 Review of Hepatocellular Carcinoma (HCC) ----------------------------- 6 3.1.1 Pathogenesis of HCC ------------------------------------------------------- 6 3.1.1.1 Chronic hepatitis and cirrhosis --------------------------------------- 8 3.1.1.2 Aberrant genetic changes of hepatocellular carcinoma --------- 9 3.1.1.3 Tumor suppressor genes and oncogenes ---------------------------- 9 3.1.2 Recurrence and Prognosis ------------------------------------------------- 10 3.1.3 Prognostic molecular markers of HCC --------------------------------- 10 3.2 Cell Cycle and Cancer --------------------------------------------------------- 11 3.2.1 The cell cycle ----------------------------------------------------------------- 11 3.2.2 Deregulation of cell cycle regulators and cancer --------------------- 12 4. THE REASONS AND SPECIFIC AIMS ABOUT THE LAUNCHING OF PRESENT STUDIES ------------------------ 14 5. SPECIFIC AIMS OF THIS STUDY ------------------------------ 15 6. MATERIALS AND METHODS ----------------------------------- 16 6.1 Patients ---------------------------------------------------------------------------- 16 6.2 Histologic study, tumor staging, early tumor recurrence (ETR), and treatment ------------------------------------------------------------------------- 16 6.3 p53 mutation and Follow-up observation ---------------------------------- 17 6.4 Statistical analysis --------------------------------------------------------------- 17 6.5 The predictions of L2DTL protein using the bioinformation tools -- 18 6.6 Differential display (DD), reverse transcription-polymerase chain reaction (RT-PCR), and definition of L2DTL overexpression -------- 18 6.7 Plasmid, transient transfection and cell lines ----------------------------- 19 6.8 Antibodies ------------------------------------------------------------------------ 20 6.9 Generation of anti-L2DTL antibodies -------------------------------------- 20 6.10 Immunoprecipitation and Western blot of nuclear and cytosolic protein fractions --------------------------------------------------------------- 20 6.11 Immunofluorescence and immunohistochemical stains --------------- 21 6.12 Cell synchrony and cell cycle distribution ------------------------------- 21 6.13 Isolation of centrosomes ----------------------------------------------------- 22 6.14 Cell differentiation ------------------------------------------------------------ 22 6.15 Mouse liver regeneration ---------------------------------------------------- 22 6.16 Yeast two-hybrid screen ------------------------------------------------------ 23 6.17 RNA interference (RNAi) and L2DTL knockdown -------------------- 23 6.18 Cell proliferation, anchorage-independent growth, and in vitro cell invasion ------------------------------------------------------------------------- 24 6.19 Tumorigenicity Assay -------------------------------------------------------- 25 6.20 RNA isolation and microarray analysis ---------------------------------- 25 7. RESULTS -------------------------------------------------------------- 27 7.1 Section 1: Overexpression of L2DTL is associated with advanced hepatocellular carcinoma and predicts early tumor recurrence (ETR) and synergism with p53 mutation toward poor prognosis -----27 7.1.1 L2DTL mRNA expression in fetal and adult tissues, and multiple cancers ------------------------------------------------------------------------27 7.1.2 L2DTL expression in relation to major clinicopathological features of HCC and validation in learning and test sets of patients ------------------------------------------------------------------------27 7.1.3 L2DTL overexpression and clinical outcomes ------------------------- 28 7.1.4 L2DTL overexpression and major histopathologic factors in relation to ETR --------------------------------------------------------------29 7.1.5 L2DTL overexpression is the most risk molecular factor in ETR and progonosis in HCC ----------------------------------------------------30 7.1.6 L2DTL expression in prediction of ETR of low-stage HCC ----- 31 7.1.7 Synergistic effects of L2DTL overexpression and p53 mutation in HCC progression and poorer prognosis -------------------------------31 7.2 Section 2: Overxpression of L2DTL, Encoding a Cell Cycle Regulated Nuclear and Centrosome Protein Involved in Cell Proliferation, Correlates with Aggressive Hepatocellular Carcinoma -----------------------------------------------------------------------33 7.2.1 The features of L2DTL protein ------------------------------------------- 33 7.2.1.1 L2DTL protein ----------------------------------------------------------- 33 7.2.1.2 The expression profile of L2DTL ------------------------------------- 33 7.2.1.3 The features of L2DTL protein --------------------------------------- 34 7.2.2 Nuclear expression of L2DTL protein in culture cells and HCC tumor cells --------------------------------------------------------------------- 36 7.2.3 L2DTL expression during cell cycle progression and Cdh1-mediated degradation -----------------------------------------------37 7.2.4 L2DTL as a novel centrosome protein throughout cell cycle ------- 38 7.2.5 L2DTL expression in tumor cell differentiation and liver regeneration ------------------------------------------------------------------- 38 7.2.6 Down-regulation of L2DTL reduced in vitro tumor cell growth ---- 39 7.2.7 Down-regulation of L2DTL reduced in vitro tumor cell invasion --- 40 7.2.8 Downregulated of L2DTL by RNAi oligos led to increase in bi- and multi-nucleated cells --------------------------------------------------- 40 7.2.9 Downregulation of L2DTL expression led to aberrant expressions of genes involved in cell cycle progression, DNA replication, chromosome segregation, and cell division ------------------------------40 7.3 Supplement results --------------------------------------------------------------- 42 7.3.1 The yeast two-hybrid screen ------------------------------------------------ 42 7.3.2 Stable Knockdown of L2DTL by siRNA reduced the anchorage-independent growth and tumor formation in the NOD/SCID Mice -------------------------------------------------------------- 43 7.3.3 Wound-healing migration assay ------------------------------------------- 43 8. DISCUSSION --------------------------------------------------------- 44 8.1 The pathological contribution of L2DTL ---------------------------------- 44 8.1.1 Correlation with aggressive HCC and lead to poor progonosis --- 44 8.1.2 L2DTL is a predictor for early tumor recurrent (ETR) ------------ 45 8.1.3 L2DTL overexpression contributes synergistically with p53 mutation toward advanced HCC --------------------------------------- 46 8.2 The biological roles of L2DTL ----------------------------------------------- 48 8.2.1 Cell proliferation and differentiation ----------------------------------- 48 8.2.2 Distribution in cell cycle --------------------------------------------------- 49 8.3 The functional roles of L2DTL in cell cycle ------------------------------- 52 8.3.1 Potential role of L2DTL in G1/S phase and DNA synthesis -------- 52 8.3.2. Response during DNA damage ------------------------------------------ 56 8.3.3 The roles involved in chromosome segregation and cell division -- 57 8.3.4 L2DTL as a novel member of centrosome proteins ------------------ 59 8.3.5 The role of cell mobility --------------------------------------------------- 60 8.4 The latest developments of L2DTL research ------------------------------ 62 9. FIGURES -------------------------------------------------------------- 65 Figure 1. Differential Display, expression of L2DTL mRNA in fetus and adult tissues ---------------------------------------------------------------- 65 Figure 2. L2DTL mRNA expression in HCCs ----------------------------------- 66 Figure 3. L2DTL mRNA expression in cell lines ------------------------------- 67 Figure 4. L2DTL mRNA expression in other liver tumors ------------------- 68 Figure 5. L2DTL expression in hepatocellular carcinoma (HCC) and cumulative survival ------------------------------------------------------ 69 Figure 6. Early tumor recurrence (ETR) and tumor stage in relation to cumulative survival ------------------------------------------------------ 70 Figure 7. L2DTL expression and p53 mutation in relation to cumulative survival ---------------------------------------------------------------------71 Figure 8. The expression profile of L2DTL/ramp from SOURCE website --------------------------------------------------------------------------------72 Figure 9. Genes with the same binary expression profile in HeLa cell as L2DTL ----------------------------------------------------------------------73 Figure 10. The motifs of L2DTL protein ----------------------------------------- 74 Figure 11. The L2DTL protein exhibits cell cycle related features ---------- 75 Figure 12. L2DTL protein expression --------------------------------------------- 76 Figure 13. L2DTL protein subcellular localization ---------------------------- 77 Figure 14. L2DTL expression in cell cycle progression ----------------------- 78 Figure 15. L2DTL protein expression in cell cycle progression and regulation -----------------------------------------------------------------79 Figure 16. Subcellular distribution of L2DTL protein (green) during the cell cycle progression --------------------------------------------------80 Figure 17. Association of L2DTL with the centrosomes across cell cycle progression --------------------------------------------------------------- 81 Figure 18. Centrosome localization of L2DTL protein (red) during the cell cycle progression --------------------------------------------------- 82 Figure 19. L2DTL expression in cell differentiation and liver regeneration -------------------------------------------------------------- 83 Figure 20. L2DTL knockdown by L2DTL RNAi caused suppression of in vitro cell growth --------------------------------------------------------- 84 Figure 21. L2DTL knockdown by L2DTL RNAi caused cell death -------- 85 Figure 22. Colony formation assay ----------------------------------------------- 86 Figure 23. Transwell assay (in vitro invasive assay) --------------------------- 87 Figure 24. L2DTL knockdown by L2DTL by RNAi oligos increased the bi- and multi-nucleated HeLa cells ---------------------------------- 88 Figure 25. Microarray analysis identified dysregulated cell cycle related genes after L2DTL knockdown -------------------------------------- 89 Figure 26. Confirmation of microarray results --------------------------------- 90 Figure 27. The yeast two-hybrid screen, PCNA and L2DTL interaction -------------------------------------------------------------------------------91 Figure 28. siRNA knockdown of L2DTL and tumor cells growth ---------- 92 Figure 29. Wound-healing migration assay ------------------------------------- 93 10. TABLES --------------------------------------------------------------- 94 Table 1. Relation of L2DTL mRNA expression to other baseline characteristics in 277 patients with resected unifocal primary Hepatocellular Carcinoma ----------------------------------------------- 94 Table 2. Relation of L2DTL mRNA expression to other baseline characteristics in 277 patients with resected unifocal primary hepatocellular carcinoma ------------------------------------------------- 95 Table 3. Univariate Cox proportional hazards regression of clinical outcomes on L2DTL overexpression and other covariates in 277 patients with resected unifocal primary hepatocellular carcinoma --------------------------------------------------------------------96 Table 4. Multivariate Cox proportional hazards regression of clinical outcomes on L2DTL overexpression and other covariates in 277 patients with resected unifocal primary hepatocellular carcinoma -------------------------------------------------------------------- 97 Table 5. L2DTL expression in relation to early tumor recurrence (ETR) in low-stage hepatocellular carcinoma --------------------------------- 98 Table 6. Synergistic Effects of L2DTL mRNA expression and p53 mutation on tumor progression in 222 patients with resected hepatocellular carcinoma ------------------------------------------------- 99 Table 7. The significant down-regulation genes after loss of L2DTL expression --------------------------------------------------------------------100 Table 8. The significant up-regulation genes after loss of L2DTL expression --------------------------------------------------------------------106 11. REFERENCES ------------------------------------------------------ 109 12. PUBLICATIONS ---------------------------------------------------- 124 | |
dc.language.iso | en | |
dc.title | L2DTL在肝細胞癌之角色 | zh_TW |
dc.title | Role of L2DTL in Hepatocellular Carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳瑞華,許金玉,唐堂,李玉梅,林淑華 | |
dc.subject.keyword | L2DTL,細胞週期,DNA合成,中心粒,腫瘤早期復發, | zh_TW |
dc.subject.keyword | L2DTL,cell cycle,DNA synthesis,centrosome,early tumor recurrence, | en |
dc.relation.page | 124 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-01-26 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 病理學研究所 | zh_TW |
顯示於系所單位: | 病理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 4.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。