請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31054完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳建春(Jiahn-Chun Wu) | |
| dc.contributor.author | Tzu-Chieh Lin | en |
| dc.contributor.author | 林子傑 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:27:25Z | - |
| dc.date.available | 2007-02-02 | |
| dc.date.copyright | 2007-02-02 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-01-26 | |
| dc.identifier.citation | 1. Altevogt, B.M., and Paul, D.L. (2004). Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24, 4313-4323.
2. Barker, R.J., Price, R.L., and Gourdie, R.G. (2002). Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions. Circulation research 90, 317-324. 3. Barres, B.A., Chun, L.L., and Corey, D.P. (1990). Ion channels in vertebrate glia. Annual review of neuroscience 13, 441-474. 4. Barth, K., Gentsch, M., Blasche, R., Pfuller, A., Parshyna, I., Koslowski, R., Barth, G., and Kasper, M. (2005). Distribution of caveolin-1 and connexin43 in normal and injured alveolar epithelial R3/1 cells. Histochemistry and cell biology 123, 239-247. 5. Beardslee, M.A., Lerner, D.L., Tadros, P.N., Laing, J.G., Beyer, E.C., Yamada, K.A., Kleber, A.G., Schuessler, R.B., and Saffitz, J.E. (2000). Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circulation research 87, 656-662. 6. Belliveau, D.J., and Naus, C.C. (1994). Cortical type 2 astrocytes are not dye coupled nor do they express the major gap junction genes found in the central nervous system. Glia 12, 24-34. 7. Butterfield, D.A., and Lauderback, C.M. (2002). Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free radical biology & medicine 32, 1050-1060. 8. Couet, J., Belanger, M.M., Roussel, E., and Drolet, M.C. (2001). Cell biology of caveolae and caveolin. Advanced drug delivery reviews 49, 223-235. 9. Coyle, J.T., and Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689-695. 10. Dringen, R., Kussmaul, L., and Hamprecht, B. (1998). Rapid clearance of tertiary butyl hydroperoxide by cultured astroglial cells via oxidation of glutathione. Glia 23, 139-145. 11. Dringen, R., Pawlowski, P.G., and Hirrlinger, J. (2005). Peroxide detoxification by brain cells. Journal of neuroscience research 79, 157-165. 12. Engelman, J.A., Zhang, X.L., Razani, B., Pestell, R.G., and Lisanti, M.P. (1999). p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. The Journal of biological chemistry 274, 32333-32341. 13. Fauconneau, B., Petegnief, V., Sanfeliu, C., Piriou, A., and Planas, A.M. (2002). Induction of heat shock proteins (HSPs) by sodium arsenite in cultured astrocytes and reduction of hydrogen peroxide-induced cell death. Journal of neurochemistry 83, 1338-1348. 14. Giepmans, B.N., Hengeveld, T., Postma, F.R., and Moolenaar, W.H. (2001). Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication. The Journal of biological chemistry 276, 8544-8549. 15. Hyslop, P.A., Zhang, Z., Pearson, D.V., and Phebus, L.A. (1995). Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H2O2 in vitro. Brain research 671, 181-186. 16. Ikezu, T., Ueda, H., Trapp, B.D., Nishiyama, K., Sha, J.F., Volonte, D., Galbiati, F., Byrd, A.L., Bassell, G., Serizawa, H., et al. (1998). Affinity-purification and characterization of caveolins from the brain: differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain research 804, 177-192. 17. Kiss, A.L., Turi, A., Mullner, N., Kovacs, E., Botos, E., and Greger, A. (2005). Oestrogen-mediated tyrosine phosphorylation of caveolin-1 and its effect on the oestrogen receptor localisation: an in vivo study. Molecular and cellular endocrinology 245, 128-137. 18. Laird, D.W., Puranam, K.L., and Revel, J.P. (1991). Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. The Biochemical journal 273(Pt 1), 67-72. 19. Lampe, P.D. (1994). Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly. The Journal of cell biology 127, 1895-1905. 20. Lau, A.F., Hatch-Pigott, V., and Crow, D.S. (1991). Evidence that heart connexin43 is a phosphoprotein. Journal of molecular and cellular cardiology 23, 659-663. 21. Lauf, U., Giepmans, B.N., Lopez, P., Braconnot, S., Chen, S.C., and Falk, M.M. (2002). Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proceedings of the National Academy of Sciences of the United States of America 99, 10446-10451. 22. Li, S., Couet, J., and Lisanti, M.P. (1996). Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. The Journal of biological chemistry 271, 29182-29190. 23. Lin, D., Zhou, J., Zelenka, P.S., and Takemoto, D.J. (2003). Protein kinase Cgamma regulation of gap junction activity through caveolin-1-containing lipid rafts. Investigative ophthalmology & visual science 44, 5259-5268. 24. Lin, H.J., Wang, X., Shaffer, K.M., Sasaki, C.Y., and Ma, W. (2004). Characterization of H2O2-induced acute apoptosis in cultured neural stem/progenitor cells. FEBS letters 570, 102-106. 25. Lin, R., Warn-Cramer, B.J., Kurata, W.E., and Lau, A.F. (2001). v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. The Journal of cell biology 154, 815-827. 26. Lisanti, M.P., Scherer, P.E., Tang, Z., and Sargiacomo, M. (1994). Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends in cell biology 4, 231-235. 27. Lye, S.J., Nicholson, B.J., Mascarenhas, M., MacKenzie, L., and Petrocelli, T. (1993). Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen:progesterone ratio. Endocrinology 132, 2380-2386. 28. Martinez, A.D., and Saez, J.C. (2000). Regulation of astrocyte gap junctions by hypoxia-reoxygenation. Brain Res Brain Res Rev 32, 250-258. 29. McCarthy, K.D., and de Vellis, J. (1980). Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. The Journal of cell biology 85, 890-902. 30. Mikalsen, S.O., and Sanner, T. (1994). Increased gap junctional intercellular communication in Syrian hamster embryo cells treated with oxidative agents. Carcinogenesis 15, 381-387. 31. Miller, R.H., Ffrench-Constant, C., and Raff, M.C. (1989). The macroglial cells of the rat optic nerve. Annual review of neuroscience 12, 517-534. 32. Nagy, J.I., and Rash, J.E. (2000). Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32, 29-44. 33. Nakase, T., and Naus, C.C. (2004). Gap junctions and neurological disorders of the central nervous system. Biochimica et biophysica acta 1662, 149-158. 34. Nedergaard, M. (1994). Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768-1771. 35. Norenberg, M.D. (1994). Astrocyte responses to CNS injury. Journal of neuropathology and experimental neurology 53, 213-220. 36. Okamoto, T., Schlegel, A., Scherer, P.E., and Lisanti, M.P. (1998). Caveolins, a family of scaffolding proteins for organizing 'preassembled signaling complexes' at the plasma membrane. The Journal of biological chemistry 273, 5419-5422. 37. Postma, F.R., Hengeveld, T., Alblas, J., Giepmans, B.N., Zondag, G.C., Jalink, K., and Moolenaar, W.H. (1998). Acute loss of cell-cell communication caused by G protein-coupled receptors: a critical role for c-Src. The Journal of cell biology 140, 1199-1209. 38. Rouach, N., Calvo, C.F., Duquennoy, H., Glowinski, J., and Giaume, C. (2004). Hydrogen peroxide increases gap junctional communication and induces astrocyte toxicity: regulation by brain macrophages. Glia 45, 28-38. 39. Rouach, N., Calvo, C.F., Glowinski, J., and Giaume, C. (2002). Brain macrophages inhibit gap junctional communication and downregulate connexin 43 expression in cultured astrocytes. The European journal of neuroscience 15, 403-407. 40. Rouach, N., Glowinski, J., and Giaume, C. (2000). Activity-dependent neuronal control of gap-junctional communication in astrocytes. The Journal of cell biology 149, 1513-1526. 41. Rybin, V.O., Xu, X., and Steinberg, S.F. (1999). Activated protein kinase C isoforms target to cardiomyocyte caveolae : stimulation of local protein phosphorylation. Circulation research 84, 980-988. 42. Saez, J.C., Berthoud, V.M., Branes, M.C., Martinez, A.D., and Beyer, E.C. (2003). Plasma membrane channels formed by connexins: their regulation and functions. Physiological reviews 83, 1359-1400. 43. Schubert, A.L., Schubert, W., Spray, D.C., and Lisanti, M.P. (2002). Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry 41, 5754-5764. 44. Shin, T., Kim, H., Jin, J.K., Moon, C., Ahn, M., Tanuma, N., and Matsumoto, Y. (2005). Expression of caveolin-1, -2, and -3 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Journal of neuroimmunology 165, 11-20. 45. Slepko, N., Patrizio, M., and Levi, G. (1999). Expression and translocation of protein kinase C isoforms in rat microglial and astroglial cultures. Journal of neuroscience research 57, 33-38. 46. Sohl, G., and Willecke, K. (2004). Gap junctions and the connexin protein family. Cardiovascular research 62, 228-232. 47. Solan, J.L., and Lampe, P.D. (2005). Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochimica et biophysica acta 1711, 154-163. 48. Tang, Z., Scherer, P.E., Okamoto, T., Song, K., Chu, C., Kohtz, D.S., Nishimoto, I., Lodish, H.F., and Lisanti, M.P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. The Journal of biological chemistry 271, 2255-2261. 49. Upham, B.L., Kang, K.S., Cho, H.Y., and Trosko, J.E. (1997). Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells. Carcinogenesis 18, 37-42. 50. Williams, T.M., and Lisanti, M.P. (2004). The caveolin proteins. Genome biology 5, 214. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31054 | - |
| dc.description.abstract | 中樞神經系統受傷或一些引起神經退化的疾病,都會造成中樞神經系統內局部的氧化壓力上升,而首當其衝受影響的就是中樞神經系統內含量最多的星狀神經膠細胞。星狀神經膠細胞間有發達的間隙接合構造,可以快速且同步地調節中樞神經系統內的微環境,以減緩氧化壓力的影響。我們利用H2O2來模擬氧化壓力的傷害,探討初級培養的星狀神經膠細胞間間隙接合功能上及分布上的變化。我們先以GFAP的免疫螢光染色確認細胞的純度,再以螢光染劑DCF-AM確定H2O2會進入細胞及造成細胞內氧化壓力的上升。我們發現,H2O2在3~20分鐘的短時間處理下,就能造成螢光追蹤劑藉由間隙接合在細胞間傳遞的面積增加16%~21%。在間隙接合的組成蛋白Cx43的磷酸化程度上,H2O2的處理會造成整體Cx43蛋白質的去磷酸化。另外,我們利用蔗糖梯密度離心的方法,將脂筏蛋白質和其他胞內的蛋白質分離,觀察到Cx43和caveolin-3會共同分布在脂筏會分布的位置,且此分布情形並不受H2O2的影響。在免疫螢光染色,我們發現脂筏凹陷蛋白Caveolin-3和間隙接合蛋白Cx43有同位染色現象,而且H2O2處理之後亦不影響此同位染色的情形。為了進一步確認磷酸激酶的作用對Cx43磷酸化狀態的影響,我們先利用PKC的抑制劑chelerythrine處理細胞,結果抑制PKC會造成間隙接合傳遞螢光追蹤劑的功能下降。但以p368-Cx43的抗體去檢測PKC在Cx43上的作用點,發現H2O2使p368-Cx43的染色有下降趨勢。而H2O2的處理也會使活化態的Src磷酸激酶減少,而以Src的抑制劑PP2處理也可以促使間隙接合的功能上升,這結果暗示H2O2的處理可能是透過抑制Src的活性來增進間隙接合的功能。綜合以上結果,我們在初級培養的星狀神經膠細胞內,觀察到H2O2的處理會造成間隙接合的傳遞功能上升,並使間隙接合組成蛋白Cx43的磷酸化程度下降。H2O2的處理並不影響Cx43在Caveolin-3組成脂筏內之分布,但卻可使活化態的Src減少,暗示H2O2並不是透過改變Cx43的分布來增進間隙接合的功能,而是藉由抑制Src磷酸激酶的活性來促進間隙接合通道的開啟。 | zh_TW |
| dc.description.abstract | In central nervous system, both injury and neurodegenerative disease could locally cause oxidative stress. Astrocytes are the most populated cells in central nervous system and are affected first by oxidative stress. Gap junctions in astrocytes could modulate the microenvironment in central nervous system and reduce harmful effect by oxidative stress. We used H2O2 to simulate oxidative stress of central nervous system injury and investigate function and distribution changes of gap junctions in primary astrocyte cultures. We used the fluorescent dye, DCF-DA, to confirm the permeability of H2O2 in astrocytes. The area of fluorescent dye permeation through gap junction increased 16%~21% 3~20 minutes after treatment of H2O2 concomitant with Cx43 dephosphorylation. Co-fractionation of Cx43 and caveolin-3 was determined by a discontinuous sucrose gradient centrifugation, and this co-fractionation was not disrupted by H2O2 treatment. By immunocytochemistry, Cx43 and caveolin-3 were colocalized at cell-cell contacts, and this colocalization was not changed by H2O2 treatment, either. Treatment of PKC inhibitor, chelerythrine, prevented H2O2-induced gap junctional intercellular communication as assessed by fluorescent dye coupling. Furthermore H2O2 also decreased immunoreactivity of p368-Cx43 in astrocytes. Besides, H2O2 caused a decrease in the levels of p-Src, the active Src kinase, and pretreatment of Src kinase inhibitor, PP2, alone, could enhance gap junctional intercellular communication. These results suggested that H2O2 may inhibit Src kinase activity to promote gap junctional intercellular communication. In conclusion, we have demonstrated that H2O2 could increase gap junctional intercellular communication and decrease the phosphorylation state of Cx43 in astrocytes and this effect may be mediated through a pathway related to Src kinase inhibition. Although Cx43 and caveolin-3 were codistributed at lipid raft, this codistribution was not affected by H2O2. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:27:25Z (GMT). No. of bitstreams: 1 ntu-96-R93446008-1.pdf: 2280849 bytes, checksum: 440fe62abc594dcbfee2a99703f4c5b8 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………Ⅰ
誌謝………………………..………………………….Ⅱ 中文摘要…………………………………….………..Ⅲ 英文摘要…………………………………………...…Ⅴ 目錄……………………………………………………1 圖目錄…………………………………………………2 序論……………………………………………………3 材料與方法…………………………….………….…..9 結果………………………………………….……….15 討論………………………………………….……….20 參考文獻…………………………………….……….25 圖及圖片說明……………………………….……….29 | |
| dc.language.iso | zh-TW | |
| dc.subject | 星狀神經膠細胞 | zh_TW |
| dc.subject | Src磷酸激酶 | zh_TW |
| dc.subject | PKC磷酸激酶 | zh_TW |
| dc.subject | 過氧化氫 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 間隙接合 | zh_TW |
| dc.subject | Astrocytes | en |
| dc.subject | Src kinase | en |
| dc.subject | PKC | en |
| dc.subject | hydrogen peroxide | en |
| dc.subject | oxidative stress | en |
| dc.subject | gap junction | en |
| dc.title | 過氧化氫對大鼠星狀神經膠細胞間隙接合之影響 | zh_TW |
| dc.title | Effects of H2O2 on gap junction in rat astrocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王淑美(Seu-Mei Wang),王懷詩(Hwai-Shi Wang) | |
| dc.subject.keyword | 星狀神經膠細胞,間隙接合,氧化壓力,過氧化氫,PKC磷酸激酶,Src磷酸激酶, | zh_TW |
| dc.subject.keyword | Astrocytes,gap junction,oxidative stress,hydrogen peroxide,PKC,Src kinase, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-01-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
