Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31047
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀乾
dc.contributor.authorJhen-Ying Panen
dc.contributor.author潘貞嫈zh_TW
dc.date.accessioned2021-06-13T02:27:03Z-
dc.date.available2009-02-02
dc.date.copyright2007-02-02
dc.date.issued2007
dc.date.submitted2007-01-26
dc.identifier.citation王博仁. 1981. 蕙蘭屬的無菌播種與器官分化. 中央研究院植物研究所專刊第四號 p22-30.
毛碧增、林蔚紅、錢秀紅、傅向東、李德葆. 1998. 影響建蘭原球莖增殖的若干因素. 浙江農業大學學報 24: 66-68.
朱建鏞、吳安娜 1996. 蔗糖、光強度以及CO2對組織培養之玫瑰花葉片型態的影響. 中華農學會報 176: 67-77.
李志仁. 1991. 報歲蘭與素心蘭之開花與種子無菌發芽之研究. 國立台灣大學園藝學研究所碩士論文.
呂依倫. 1988. 素心蘭與鳳蘭之無菌播種與器官分化. 國立台灣大學園藝學研究所碩士論文.
呂依倫、李哖. 1990. 鳳蘭之無菌發芽. 中國園藝 36: 198-209.
呂依倫、李志仁、李哖. 1992. 培養基成分對素心蘭種子無菌發芽之影響. 中國園藝 38: 161-169.
林讚標. 1977. 台灣蘭科植物,第二冊 p126-127. 魯風公司.
林正斌、王慶裕、葉茂生. 1998. 乙烯之生成與作用及其抑制因子. 科學農業. 46:181-185.
涂美智、李哖. 1988. 氮素、蔗糖濃度及光強度對蝴蝶蘭種子發芽及幼苗生長之影響. 中國園藝 34: 293-302.
徐淑芬. 2004. 乙烯對蝴蝶蘭葉片再生及出瓶期對組培苗品質之影響. 國立中興大學園藝學系碩士論文.
許文章、蔡智賢、廖成康. 1999. 報歲蘭利用根莖組織繁殖種苗之研究. 嘉義技術學院學報 67: 1-12.
陳怡靜. 2001. 蝴蝶蘭與文心蘭類瓶苗瓶內二氧化碳和乙烯濃度之日變化與光合特性之研究. 國立台灣大學園藝學研究所碩士論文.
陳怡靜、李哖. 2002. 臺灣蝴蝶蘭瓶苗內二氧化碳與乙烯濃度及有機酸含量之日韻律變化. 中國園藝 48: 157-166.
陳裕星、張莉欣. 2004. 台灣原生蕙蘭屬植物遺傳資源之分類與生育特性. 台中區農業改良場研究彙報 82: 1-60.
段金玉、謝亞紅. 1982. 在無菌條件下激素和種子處理對蘭屬十種植物種子萌發的影響. 雲南植物研究 4: 197-201.
張正. 1997. 素心蘭和報歲蘭組織培養與繁殖之研究. 國立台灣大學園藝學研究所博士論文.
張耀乾. 1989. 台灣一葉蘭之組織培養與報歲蘭根莖之器官分化. 國立台灣大學園藝學研究所碩士論文.
張莉欣. 1994. 培養基成分對素心蘭根莖生長與分化及光度對幼苗生長之影響. 國立台灣大學園藝學研究所碩士論文.
傅向東、錢秀紅、毛碧增、李德葆. 1997. 幾種理化因子對建蘭原球莖生長分化的影響. 浙江農業大學學報 23: 547-550.
廖敏君. 1992. 素心蘭和報歲蘭根莖誘導芽體和芽體生長之研究. 國立台灣大學園藝學研究所碩士論文.
廖麗蘭. 1998. 發育階段、培養基、光線及容器對火鶴花、彩色海芋與數種觀賞植物組織培養瓶內CO2和乙烯濃度之影響. 國立台灣大學園藝學研究所碩士論文.
Abeles, F.B., P.W. Morgan, and M.E. Saltveit. 1992. Ethylene in plant biology. Academic Press, San Diego, Calif., USA.
Adkins, S.W., R. Kunanuvatchaidach, S.J. Gray, and A.L. Adkins. 1993. Effect of ethylene and culture environment on rice callus proliferation. J. Expt. Bot. 44: 1829-1835.
Adkins, S.W., T. Shiraishi, and J.A. McComb. 1990. Rice callus physiology-Identification of volatile emissions and their effects on culture growth. Physiol. Plant. 78: 526-531.
Aharoni, N. and M. Lieberman. 1979. Ethylene as a regulator of senescence in tobacco leaf discs. Plant Physiol. 64: 801-804.
Aitken-Christie, J., T. Kozai, and M.A.L. Smith. 1995. Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Arigita, I., R.S. Tames, and A. Gonzalez. 2003. 1-Methylcyclopropene and ethylene as regulators of in vitro organogenesis in kiwi explants. Plant Growth Regulat. 40: 59-64.
Arigita, L., R.S. Tames, and A. Gonzalez. 2004. Ethylene biosynthesis and endogenous polyamines in relation to development of in vitro cultured kiwifruit explants. Functional Plant Biol. 31: 603-609.
Atta-aly, M.A., J. M. E. Saltveit, and G.E. Hobson. 1987. Effect of silver ions on ethylene biosynthesis by tomato fruit tissue. Plant Physiol. 83: 44-48.
Biddington, N.L. 1992. The influence of ethylene in plant tissue culture. Plant Growth Regulat. 11: 173-187.
Biondi, S., T. Diaz, I. Iglesias, G. Gamberini, and N. Bagni. 1990. Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol. Plant. 78: 474-483.
Blazkova, A., J. Ullmann, Z. Josefusova, I. Macnackova, and J. Krekule. 1989. The influence of gaseous phase on growth of plants in vitro the effect of different types of stoppers. Acta Hort. 251: 209-214.
Bollmark, M. and L. Eliasson. 1990. Ethylene accelerates the breakdown of cytokinins and thereby stimulates rooting in Norway spruce hypocotyl cuttings. Physiol. Plant. 80: 534-540.
Burg, S.P. 1962. The physiology of ethylene formation. Annu. Rev. Plant Physiol. 13: 265-302.
Burg, S.P. and E.A. Burg. 1967. Molecular requirements for the biological activity of ethylene. Plant Physiol. 42: 144-152.
Capellades, M., L. Lemeur, and P. Debergh. 1991. Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell, Tiss. Org. Cult. 25.
Chang, C. and W.C. Chang. 2000. Effect of thidiazuron on bud development of Cymbidium sinense Willd. in vitro. Plant Growth Regulat. 30: 171-175.
Chen, Y., X. Liu, and Y. Liu. 2005. In vitro plant regeneration from the immature seeds of Cymbidium faberi. Plant Cell, Tiss. Org. Cult. 81: 247-251.
Cho, U.-H. and K.J. Kasha. 1989. Ethylene production and embryogenesis from anther cultures of barley (Hordeum vulgare). Plant Cell Rpt. 8: 415-417.
Cho, U.H. and K.J. Kasha. 1992. Relationship of senescence to androgenesis in barley (Hordeum vulgare L. cv. Klages). J. Plant Physiol. 139: 299-302.
Dimasi-Theriou, K. and A.S. Economou. 1995. Ethylene enhances shoot formation in cultures of the peach rootstock GF-677 (Prunus persica× P. amygdalus). Plant Cell Rpt. 15: 87-90.
Dimasi-Theriou, K., A.S. Economou, and E.M. Sfakiotakis. 1993. Promotion of petunia (Petunia hybrida L.) regeneration in vitro by ethylene. Plant Cell, Tiss. Org. Cult. 32: 219-255.
Ebert, A., F. Taylor, and J. Blake. 1993. Changes of 6-benzylaminopurine and 2, 4-dichlorophenoyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell, Tiss. Org. Cult. 33: 157-162.
EckeⅢ, P., J.E. Faust, A. Higgins, and J. William. 2004. The ecke poinsettia manual. Ball Publishing, Batavia, Ill., USA.
Evans, J.M. and N.P. Batty. 1994. Ethylene precursors and antagonists increase embryogenesis of Hordeum vulgare L. anther culture. Plant Cell Rpt. 13: 676-678.
Fal, M.A., J.P. Majada, A. Gonzalez, and R.S. Tames. 1999. Differences between Dianthus caryophyllus L. cultivar in in vitro growth and morphogenesis are related to their ethylene production. Plant Growth Regulat. 27: 131-136.
Fernandez, S., N. Michaux-Ferriere, and M. Coumans. 1999. The embryogenic response of immature embryo cultures of durum wheat (Triticum durum Desf.): Histology and improvement by AgNO3. Plant Growth Regulat. 28: 147-155.
Figueira, A. and J. Janick. 1994. Optimizing carbon dioxide and light levels during in vitro culture of Theobroma cacao. J. Amer. Soc. Hort. Sci. 119: 865-871.
Figueira, A., A. Whipkey, and J. Janick. 1991. Increased CO2 and light promote in vitro shoot growth and development of Theobroma cacao. J. Amer. Soc. Hort. Sci. 116: 585-589.
Fonnesbech, M. 1972. Organic nutrients in the media for propagation of Cymbidium in vitro. Physiol. Plant. 27: 360-364.
Fournioux, J.C. and R. Bessis. 1993. Use of carbon dioxide enrichment to obtain adult morphology of grapevine in vitro. Plant Cell, Tiss. Org. Cult. 33: 51-57.
Fridbrog, G., M. Pedersen, L.E. Landstrom, and T. Eriksson. 1978. The effect of activated charcoal on tissue cultures: Adsorption of metabolites inhibiting morphogenesis. Physiol. Plant. 43: 104-106.
Fujiwara, K., T. Kozai, and I. Watanabe. 1988. Development of a photoautotrophic tissue culture system for shoots and/or plantlets at rooting and acclimatization stages. Acta Hort. 230: 153-158.
Gambrog, O.L., R.A. Miller, and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Expt. Cell Res. 50: 151-158.
Gavinlertvatana, P., P.E. Read, and H.F. Wilkins. 1980. Control of ethylene synthesis and action by silver nitrate and rhizobitoxine in petunia leaf sections cultured in vitro. J. Amer. Soc. Hort. Sci. 105: 304-307.
Gavinlertvatana, P., P.E. Read, H.F. Wilkins, and R. Heins. 1982. Ethylene levels in flask atmospheres of Dahlia pinnata Cav. leaf segments and callus cultured in vitro. J. Amer. Soc. Hort. Sci. 107: 3-6.
Gonzalez, A., L. Arigita, J. Majada, and R.S. Tames. 1997. Ethylene involvement in in vitro organogenesis and plant growth of Populus tremula L. Plant Growth Regulat. 22: 1-6.
Gonzalez, A., R. Rodriguez, and R.S. Tames. 1991. Ethylene and in vitro rooting of hazelnut(Corylus avellana) cotyledons. Physiol. Plant. 81: 227-233.
Goren, R., A. Altman, and I. Giladi. 1979. Role of ethylene in abscisic acid-induced callus formation in citrus bud cultures. Plant Physiol. 63: 280-282.
Hagimori, M., T. Matsumoto, and Y. Mikami. 1984. Photoautotrophic culture of undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. Plant Cell Physiol. 25: 1099-1102.
Hasegawa, A. and M. Goi. 1987. Rhizome formation in Cymbiudium goeringii Reichenbach fil. and Cymbidium kanran Makino in shoot-tip culture. J. Jpn. Soc. Hort. Sci. 56: 70-78.
Hasegawa, A., H. Ohashi, and M. Goi. 1985. Effect of BA, rhizome length, mechanical treatment and liquid shaking culture on the shoot formation from rhizome in Cymbidium faberi Rolfe. Acta Hort. 166: 25-40.
Heo, J.W., C. Kubota, and T. Koziai. 1996. Effects of CO2 concentration, PPFD and sucrose concentration on Cymbidium plantlet growth in vitro. Acta Hort. 440: 561-565.
Hew, C.S. and J.W.H. Yong. 2004. The physiology of tropical orchids in relation to the industry. World Scientific Publishing, Singapore.
Hopkins, W.G. 1999. Introduction to plant physiology. John Wiley and Snos, Inc., New York, NY, USA.
Huang, C.L. and H. Okubo. 2005a. Effect of carbon sources in vitro morphogenesis from rhizomes of Cymbidium sinense. J. Fac. Agr. Kyushu Univ. 50: 35-40.
Huang, C.L. and H. Okubo. 2005b. In vitro morphogenesis from rhizomes of Cymbidium sinense. J. Fac. Agr. Kyushu Univ. 50: 11-18.
Infante, R., E. Magnanini, and B. Righetti. 1989. The role of light and CO2 in optimizing the conditions for shoot proliferation of Actinidia deliciosa in vitro. Physiol. Plant. 77: 191-195.
Islam, M.T., D.P. Dembele, and E.R.J. Keller. 2005. Influence of explant, temperature and different culture vessels on in vitro culture for germplasm maintenance of four mint accessions. Plant Cell, Tiss Org. Cult. 81: 123-130.
Jones, Jr., J. B. 1985. Soil testing and plant analysis: Guides to the fertilization of horticultural crops. Hort. Rev. 7: 1-68.
Jackson, M.B., A.J. Abbott, A.R. Belcher, K.C. Hall, R. Butler, and J. Cameron. 1991. Ventilation in plant tissue cultures and effects of poor aeration on ethylene and cabon dioxide accumulation, oxygen depletion and explant development. Ann. Bot. 67: 229-237.
Jackson, M.B., A.R. Belcher, and P. Brain. 1994. Measuring shortcomings in tissue culture aeration and their consequences for explant development., p. 191-203. In: P.J. Lumsden, J.R. Nicholas, and W.J. Davies (eds.). Physiology, growth and development of plants in culture. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Jacobsen, J.V. and W.B. McGlasson. 1969. Ethylene production by autoclaved rubber injection caps used in biological systems. Plant Physiol. 45: 631.
Jeong, B.R., C.S. Yang, and J.C. Park. 1996. Growth of Gerbera hybrida in vitro as affected by CO2 concentration and air exchange rate of the vessel. Acta Hort. 440: 511-514.
Johansson, L. and T. Eriksson. 1984. Effects of carbon dioxide in anther cultures. Physiol. Plant. 60: 26-30.
Kadota, M. and Y. Niimi. 2004. Influences of carbon sources and their concentrations on shoot proliferation and rooting of 'Hosui' japanese pear. HortScience 39: 1681-1683.
Kanechi, M. and M. Ochi. 1998. The effects of carbon dioxide enrichment, natural ventilation, and light intensity in growth, photosynthesis, and transpiration of cauliflower plantlets cultured in vitro photoautotrophically and photomixotrophically. J. Amer. Soc. Hort. Sci. 123: 176-181.
Karhu, S.T. 1997. Sugar use in relation to shoot induction by sorbitol and cytokinin in apple. J. Amer. Soc. Hort. Sci. 122: 476-480.
Kato, T. 1986. Nitrogen metabolism and utilization in citrus. Hort. Rev. 8: 181-216.
Kepczynski, J., B.D. Makersie, and D.C.W. Brown. 1992. Requirement of ethylene for growth of callus and somatic embryogenesis in Medicago sativa L. J. Expt. Bot. 43: 1199-1202.
Kepczynski, J. and A. Nemoykina. 2006. Ethylene and in vitro rooting of rose shoots. Plant Growth Regulat. 50: 23-28.
Khalafalla, M.M. and K. Hattori. 2000. Ethylene inhibitors enhance in vitro root formation on faba bean shoots regenerated on medium containing thidiazuron. Plant Growth Regulat. 32: 59-63.
Kirdmanee, C., C. Kubota, B.R. Jeong, and T. Kozai. 1992. Photoautotrophic multiplication of Cymbidium protocorm-like bodies. Acta Hort. 319: 243-248.
Klein, B. and M. Bopp. 1971. Effent of activated charcoal in agar on the culture of lower plants. Nature 230: 474.
Knudson, L. 1946. A new nutrient solution for the germination of orchid seeds. Amer. Orchid Soc. Bull. 15: 214-217.
Kozai, T., C. Kubota, and B.R. Jeong. 1997. Enviromental control for the large-scale production of plants through in vitro techniques. Plant Cell, Tiss. Org. Cult. 51: 49-56.
Kumar, P.P., M.J. Nathan, and C.J. Goh. 1996. Involvement of ethylene on growth and plant regeneration in callus cultures of Heliconia psittacorum L.f. Plant Growth Regulat. 19: 145-151.
Kumar, P.P., D.M. Reid, and T.A. Thorpe. 1987. The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiol. Plant. 69: 244-252.
Lai, C.C., T.A. Yu, S.D. Yeh, and J.S. Yang. 1998. Enhancement of in vitro growth of papaya multishoots by aeration. Plant Cell, Tiss Org. Cult. 53: 221-225.
Lee, J.S., K.K. Shim, M.S. Yoo, J.S. Lee, and Y.J. Kim. 1986. Studies on the rhizome growth and organogenesis of Cymbidium kanran cultured in vitro. J. Korean Soc. Hort. Sci. 27: 174-180.
Linsmaier, E.M. and F. Skoog. 1965. Organic growth factor requirement of tobacco tissue cultures. Physiol. Plant. 18: 100-127.
Liu, J.-H. and D.M. Reid. 1992. Auxin and ethylene-stimulated adventitious rooting in relation to tissue sensitivity to auxin and ethylene production in sunflower hypocotyls. J. Expt. Bot. 43: 1191-1198.
Liu, T.S. and H.J. Su. 1978. Flora of Taiwan. vol. 5. Epoch Pub. Co., Taipei, Taiwan.
Ma, J.H., J.L. Yao, D. Cohen, and B. Morris. 1998. Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Rpt. 17: 211-214.
Magdalita, P.M., I.D. Godwin, R.A. Drew, and S.W. Adkins. 1997. Effect of ethylene and culture environment on development of papaya nodal cultures. Plant Cell, Tiss. Org. Cult. 49: 93-100.
Marino, G., G. Bertazza, E. Magnanini, and A.D. Altan. 1993. Comparative effects of sorbitol and sucrose as main carbon energy sources in micropropagation of apricot. Plant Cell, Tiss. Org. Cult. 34: 235-244.
Martins-Loucao, M.A. and C. Rodriguez-Barrueco. 1983. Ethylene production by carob (Ceratonia siliqua) callus cultures on varying media. Physiol. Plant. 58: 204-208.
Medsuali-Sodi, A., M. Panizza, and F. Tognoni. 1995. Quantification of ethylene losses in different container-seal systems and comparison of biotic and abiotic contributions to ethylene accumulation in cultured tissues. Physiol. Plant. 84: 472-476.
Mensuai-Sodi, A., M. Panizza, and F. Tognoni. 1995. Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro. Plant Growth Regulat. 17: 205-212.
Mohamed-Yasseen, Y., S. Barringer, R.M. Schloupt, and W.E. Splittstoesser. 1995. Activated charcoal in tissue culture: An overview. Plant Growth Regulat. Soc. Amer. 23: 206-213.
Mohiuddin, A.K.M., M.K.U. Chowdhury, Z.C. Abdullah, and S. Napis. 1997. Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell, Tiss. Org. Cult. 51: 75-78.
Moncousin, C., J.-M. Favre, and T. Gaspar. 1989. Early changes in auxin and ethylene production in vine cuttings before adventitious rooting. Plant Cell, Tiss. Org. Cult. 19: 235-242.
Morini, S. and M. Melai. 2005. Net CO2 exchange rate of in vitro plum cultures during growth evolution at different photosynthetic photon flux density. Sci. Hort. 105: 197-211.
Mosaleeyanon, K., S. Cha-um, and C. Kirdmanee. 2004. Enhanced growth and photosynthesis of rain tree (Samanea saman Merr.) plantlets in vitro under a CO2-enriched condition with decreased sucrose concentrations in the medium. Sci. Hort. 103: 51-63.
Mott, K.A. 1990. Sensing of atmospheric CO2 by plants. Plant Cell Environ. 13: 731-737.
Murashige, T. 1974. Plant propagation through tissue cultures. Annu. Rev. Plant Physiol. 25: 135-166.
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
Nayak, N.R., P.K. Chand, S.P. Rath, and S.N. Patnaik. 1998. Influence of some plant growth regluators on the growth and organogenesis of Cymbidium aloifolium (L.) Sw. seed-derived rhizomes in vitro. In Vitro Cell. Dev. Bio.-Plant 34: 185-188.
Neto, V.B.D.P. and W.C. Otoni. 2003. Carbon sources and their osmotic potential in plant tissue cluture: dose it matter? Sci. Hort. 97: 195-202.
Nissen, S.J. and E.G. Sutter. 1990. Stability of IAA and IBA in nutrient medium to seceral tissue culture procedures. HortScience 25: 800-802.
Nordstrom, A.-C. and L. Eliasson. 1993. Interaction of ethylene with indole-3-acetic acid in regulation of rooting in pea cuttings. Plant Growth Regulat. 12: 83-90.
Ogasawara, N., S. Haneishi, C. Suzuki, and H. Takagi. 1995. The growth and CO2 exchange of Cymbidium protocorm-like bidies related to sugar in the culture medium. Acta Hort. 393: 85-90.
Ozudogru, E.A., Y. Ozden-Tokatli, and A. Akcin. 2005. Effect of silver nitrate on multiple shoot formation of virginia-type peanut throuth shoot tip culture. In Vitro Cell Dev. Biol. 41: 151-156.
Panizza, M., A.M. Sodi, and F. Tognoni. 1988. 'In vitro' propagation of lavandin: Ethylene production during plant development. Acta Hort. 227: 334-339.
Peak, K.Y. and T. Kozai. 1998. Micropropagation of temperate Cymbidium via rhizome culture. HortTechnology 8: 283-288.
Peak, K.Y. and E.C. Yeung. 1991. The effects of 1-naphthaleneacetic acid and N6-benzyladenine on the growth of Cymbidium forrestii rhizomes in vitro. Plant Cell, Tiss. Org. Cult. 24: 65-71.
Peidgeon, A. 1992. The illustrated encyclopedia of orchids. Timber Press, Portland, Ore., USA.
Philosoph-Handas, S., S. Meir, and N. Aharoni. 1985. Carbohydrates stimulate ethylene production in tobacco leaf discs. Plant Physiol. 78: 139-143.
Proft, M.P.D., L.J. Maene, and P.C. Debergh. 1985. Carbon dioxide and ethylene evolution in the culture atmosphere of Magnolia cultured in vitro. Physiol. Plant. 65: 375-379.
Proskauer, J. and R. Berman. 1970. Agar culture medium modified to approximate soil conditions. Nature 227: 1161.
Qin, Y. and S. Zhang. 2005. Response of in vitro strawberry to silver nitrate(AgNO3). HortScience 40: 747-751.
Reis, L.B., V.B.P. Neto, E.A.T. Picoli, M.G.C. Costa, M.M. Rego, C.R. Carvalho, F.L. Finger, and W.C. Otoni. 2003. Axillary bud development of passionfruit as affected by ethylene precursor and inhibitors. In Vitro Cell. Dev. Biol. 39: 618-622.
Romano, A., C. Noronha, and M.A. Martins-Loucao. 1995. Role of carbohydrates in micropropagation of cork oak. Plant Cell, Tiss. Org. Cult. 40: 159-167.
Santana-Buzzy, N., A. Canto-Flick, L.G. Iglesias-Andreu, M.d.C. Montalvo-Peniche, G. Lopez-Puc, and F. Barahona-Perez. 2006. Improvement of in vitro culturing of Habanero pepper by inhibition of ethylene effects. HortScience 41: 405-409.
Serret, M.D., M.I. Trillas, J. Matas, and J.L. Araus. 1997. The effect of different closure types, light, and sucrose concentrations on carbon isotope composition and growth of Gardenia jasminoides plantlets during micropropagation and subsequent acclimation ex vitro. Plant Cell, Tiss Org. Cult. 47: 217-230.
Shimasaki, K. and S. Uemoto. 1990. Micropropagation of terrestrial Cymbidium species using rhizomes developed from seeds and pseudobulbs. Plant Cell, Tiss. Org. Cult. 22: 237-244.
Shimasaki, K. and S. Uemoto. 1991. Rhizome induction and plantlet regeneration of Cymbidium goeringii from flower bud cultures in vitro. Plant Cell, Tiss. Org. Cult. 25: 49-52.
Singh, F. and D. Prakash. 1985. Suspension culture technique for the culture of orchid embryos. Gartenbauwissenschaft 5: 236-238.
Slesak, H., A. Skoczowski, and L. Przywara. 2004. Exogenous carbohydrate utilisation by explants of Brassica napus cultured in vitro. Plant Cell, Tiss. Org. Cult. 79: 45-51.
Solarova, J. 1989. Diurnal variation in CO2 concentration in cultivation vessels resulting from plantlets photosynthetic activity. Photosynthetica 23: 100-107.
Stasinopoulos, T.C. and R.P. Hangarter. 1989. Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol. 93: 1365-1369.
Steward, F.C. and M.O. Mapes. 1971. Morphogenesis in aseptic cell cultures of Cymbidium. Bot. Gaz. 132: 65-70.
Tanaka, M., D.C.H. Yap, C.K.Y. Ng, and C.S. Hew. 1999. The physiology of Cymbidium plantlets cultured in vitro under conditions of high carbon dioxide and low photosynthetic photon flux density. J. Hort. Sci. Biotechnol. 74: 632-638.
Thorpe, T.A. and T. Murashige. 1968. Starch accumulation in shoot-forming tobacco callus cultures. Science 160: 421-422.
Tisserat, B., C. Herman, R. Silman, and R.J. Bothast. 1997. Using ultra-high carbon dioxide levels enhances plantlet growth in vitro. HortTechnology 7: 282-289.
Vacin, E. F. and F.W. Went. 1949. Some pH changes in nutrient solutions. Bot. Gaz. 110: 605-613.
Vreugdenhil, D. and W.V. Dijk. 1989. Effects of ethylene on the tuberization of potato (Solanum tuberosum) cuttings. Plant Growth Regulat. 8: 31-39.
Woltering, E.J. 1990. Beneficial effects of carbon dioxide on development of gerbera and rose plantlets grown in vitro. Sci. Hort. 44: 341-345.
Yang, S.F. 1980. Regulation of ethylene biosynthesis. HortScience 15: 238-243.
Yang, S.F. 1985. Biosynthesis and action of ethylene. HortScience 20: 41-45.
Yu, Y.-B., D.O. Adams, and S.F. Yang. 1980. Inhibition of ethylene production by 2,4-dinitrophenol and high temperature. Plant Physiol. 66: 286-290.
Zhu, C. and Z. Chen. 2005. Role of polyamines in adventitious shoot morphogenesis from cotyledons of cucumber in vitro. Plant Cell, Tiss. Org. Cult. 81: 45-53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31047-
dc.description.abstract本研究探討培養基成分、乙烯相關藥劑等不同培植條件對報歲蘭根莖生長及分化之影響,以及根莖及芽體分化發育過程,瓶內二氧化碳及乙烯濃度的消長與生長分化之關係。期望尋求最佳培養條件,提高國蘭增殖速率、瓶苗品質及出瓶後生長,並作為國蘭瓶內生理研究之基礎。
白花報歲蘭及‘金華山’報歲蘭以蔗糖、葡萄糖、果糖、葡萄糖加果糖四種碳源處理,對根莖生長無顯著影響。在培養基氮素方面,根莖生長對氮素濃度需求較芽體生長分化高,白花報歲蘭以50.6 mM氮素濃度、‘金華山’以30.0 mM 氮素濃度對於根莖生長較佳。芽體生長分化則以14.6 mM氮素處理,芽體及根部鮮重累積較高。
觀葉型報歲蘭‘瑞寶’ × ‘光華蝶’根莖培養於根莖繁殖培養基及抽芽培養基,培養第4週至第12週所誘導之根莖及芽體快速增殖,此時瓶內二氧化碳濃度持續累積。於抽芽培養基培養第14週開始,瓶內二氧化碳濃度開始降低,第22週可觀察到二氧化碳濃度於暗期上升、光期下降之日變化,培養後第30週二氧化碳濃度於光期結束時降至300 μL.L-1左右。其根莖培養於根莖繁殖培養基,隨蔗糖濃度增加(0%-6%),可促進根莖前端分化成芽體,增加芽體及根部之生長。在抽芽培養基中,提高蔗糖濃度,可增加芽體寬度、根數及鮮重,瓶內二氧化碳及乙烯濃度也隨蔗糖濃度增加而上升,但在6 %蔗糖處理培養第14週時,瓶內乙烯濃度達570 nL.L-1,部分芽體黃化使瓶苗品質下降。
於根莖繁殖培養基添加ACC會促進根莖生長、分支;添加AgNO3則抑制根莖的生長,卻促進芽體分化生長。抽芽培養基添加ACC,明顯抑制地上部,以及後續根的生長;而添加AgNO3的處理有促進芽體生長效果。而於根莖繁殖培養基及抽芽培養基添加50或100 μM AOA對根莖及芽體生長皆有抑制的效果,可能因施用濃度過高而產生毒害。不同培養容器對芽體增殖並無顯著影響,但培養於470 mL三角玻璃瓶者,其芽寬及根徑較370 mL GA-7容器高。
zh_TW
dc.description.abstractThe objective of this study was to investigate the effects of culture medium, ethylene inhibitors, and culture condition on the growth and differentiation of Cymbidium sinense rhizome. In addition, we also investigated the relationship between gas evolvement and the growth and development of rhizome. This study was expected to define the optimal cultural condition and to improve the multiplication, quality, and ex vitro growth of Cymbidium, and could be taken as the base of in vitro physiology research.
Sucrose, glucose, fructose and glucose plus fructose were tested in the rhizome propagation medium, the results indicated that the growth of rhizome of Cym. sinense var. albo-jucundissimum and Cym. sinense ‘Chin Hwa Shan’ were not significant affected by the carbohydrate source. Higher concentration of nitrogen was required for the growth and differentiation of rhizome than that of shoot. The optimal nitrogen concentrations for Cym. sinense var. albo-jucundissimum and Cym. sinense ‘Chin Hwa Shan’ rhizome growth were 50.6 mM and 30.0 mM respectively, while the highest fresh weight of shoot and root was achieved with 14.6 mM.
Rhizomes of Cym. sinense ‘Rui Bao’ × ‘Guang Hua Die’ were cultured in the rhizome propagation medium and shooting media. Multiplication and growth rates of rhizome and shoot were rapidly increased from Week 4 to Week 12, and CO2 concentration continued to accumulate in the vessel during this period. Carbon dioxide concentration in the vessel started to decrease 14 weeks after the rhizomes were cultured in the shooting medium. After Week 22, CO2 concentration decreased in the light period and increased in the dark period. This change of CO2 concentration showed the characteristics of diurnal rhythm. On the end of light period, CO2 concentration in vitro was declined to 300 μL.L-1 on Week 30. In rhizome propagation medium, increasing sucrose concentration(from 0% to 6%)promoted rhizome tip to differentiate into shoot, and increased shoot and root growth. In shooting medium, raising sucrose concentration increased shoot diameter, root number and total fresh weight, the CO2 and ethylene concentrations in vitro were also increased. Some shoots were chlorosis and ethylene concentration was reached to 570 nL.L-1 with the medium added 6% sucrose.
Supplementing ACC in the rhizome propagation medium promoted rhizome growth and branching; however, adding AgNO3 suppressed rhizome growth, but improved shoot differentiation and growth. In shooting medium, adding ACC significantly inhibited shoot and root growth, while AgNO3 increased shoot growth. Adding 50 or 100 μM AOA in both media resulted in suppressing on rhizome and shoot growth, it may be the reason that AOA concentration was too high that leaded to toxicity. On the test of cultural container, although the multiplication of shoot in 470 mL flask and 350 mL GA-7 were not statistically different, the diameter of shoot and root in flask were higher than GA-7.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:27:03Z (GMT). No. of bitstreams: 1
ntu-96-R93628124-1.pdf: 2878141 bytes, checksum: 7c1764117c64ea48765191d27706278f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents摘要(Summary)I
Summary II
前言(Introduction)1
前人研究(Literature review)2
一、蕙蘭屬之簡介 2
二、培養基成分及培養條件對溫帶性蕙蘭生長分化之影響 3
(一)無機鹽類 3
(二)生長調節劑 4
(三)活性碳 5
(四)培養方式 7
三、組織培養瓶內氣體成分對培植體生長分化之影響 7
(一)培養容器及封口物對瓶內氣體成分之影響 7
(二)組織培養期間瓶內二氧化碳及乙烯之變化 9
(三)培養條件及培養基成分對培植體光合作用能力及瓶內乙烯濃度之影響 11
(四)二氧化碳對培植體生長及分化之影響 16
(五)乙烯對培植體生長及分化之影響 16
材料與方法(Materials and Methods)22
第一部分 培養基成分對白花報歲蘭及‘金華山’報歲蘭根莖生長與分化之影響 22
一、植物材料 22
二、基本培養基及培養方式 22
三、試驗設計 23
(一)不同碳源對白花報歲蘭與‘金華山’報歲蘭根莖生長之影響 23
(二)不同氮素濃度對白花報歲與‘金華山’報歲蘭根莖生長之影響 24
(三)不同氮素濃度對白花報歲蘭與‘金華山’報歲蘭芽體生長分化之影響 24
四、植體分析 24
第二部分 培植條件對報歲蘭‘瑞寶’× ‘光華蝶’根莖生長分化之影響及瓶內氣體之變化 26
一、植物材料 26
二、基本培養基與培養方式 26
三、試驗設計 27
(一)無菌操作對不同培養容器,瓶內乙烯及二氧化碳濃度之影響 27
(二)報歲蘭根莖與芽體分化生長期間,瓶內乙烯及二氧化碳濃度之變化 28
(三)報歲蘭根莖與芽體分化生長期間,瓶內乙烯及二氧化碳濃度之日變化 28
(四)不同培養階段更換培養容器對報歲蘭芽體生長分化之影響 29
(五)蔗糖濃度對報歲蘭根莖生長分化之影響及培植期間瓶內氣體之變化 32
(六)蔗糖濃度對報歲蘭芽體生長分化之影響及培植期間瓶內氣體之變化 32
(七)培養基添加ACC、AOA及AgNO3對報歲蘭根莖生長分化之影響32
(八)培養基添加ACC、AOA及AgNO3對報歲蘭芽體生長分化之影響33
(九)液體培養添加AgNO3對報歲蘭根莖生長分化之影響 33
四、乙烯及二氧化碳分析 33
五、ACC oxidase 組織活性(in vitro)之測定 34
六、石蠟切片之製備觀察 35
結果(Results)36
第一部分 培養基成分對白花報歲蘭及‘金華山’報歲蘭根莖生長分化之影響 36
一、不同碳源對白花報歲蘭與‘金華山’報歲蘭根莖生長之影響 36
二、不同氮素濃度對白花報歲蘭與‘金華山’報歲蘭根莖生長之影響 36
三、不同氮素濃度對白花報歲蘭與‘金華山’報歲蘭芽體生長分化之影響 37
第二部分 培植條件對報歲蘭‘瑞寶’× ‘光華蝶’根莖生長分化之影響及瓶內氣體之變化 39
一、無菌操作對不同培養容器,瓶內乙烯及二氧化碳濃度之影響 39
二、報歲蘭根莖與芽體分化生長期間,瓶內乙烯及二氧化碳濃度之變化 42
三、報歲蘭根莖與芽體分化生長期間,瓶內乙烯及二氧化碳濃度之日變化 43
四、不同培養階段更換培養容器對報歲蘭芽體生長分化之影響 45
五、蔗糖濃度對報歲蘭根莖生長分化之影響及培植期間瓶內氣體之變化 46
六、蔗糖濃度對報歲蘭芽體生長分化之影響及培植期間瓶內氣體之變化 48
七、培養基添加ACC、AOA及AgNO3對報歲蘭根莖生長分化之影響 49
八、培養基添加ACC、AOA及AgNO3對報歲蘭芽體生長分化之影響 51
九、液體培養添加AgNO3對報歲蘭根莖生長分化之影響 53
討論(Discussion)102
一、不同碳源對白花報歲蘭及‘金華山’報歲蘭根莖生長分化之影響 102
二、不同氮素濃度對白花報歲蘭與‘金華山’報歲蘭根莖及芽體生長分化之影響 102
三、無菌操作對不同培養容器,瓶內乙烯及二氧化碳濃度之影響104
四、報歲蘭根莖與芽體分化生長期間,瓶內乙烯及二氧化碳濃度之變化 106
五、不同培養階段更換培養容器對報歲蘭芽體生長分化之影響 110
六、蔗糖濃度對報歲蘭根莖與芽體生長分化之影響及培植期間瓶內氣體之變化 111
七、培養基添加ACC、AOA及AgNO3對報歲蘭根莖與芽體生長分化之影響 113
八、液體培養添加AgNO3對報歲蘭根莖生長分化之影響 116
參考文獻 (Reference)118
dc.language.isozh-TW
dc.subject乙烯zh_TW
dc.subject報歲蘭zh_TW
dc.subject二氧化碳zh_TW
dc.subject培養基zh_TW
dc.subject組織培養zh_TW
dc.subjectethyleneen
dc.subjectCymbidium sinenseen
dc.subjectin vitroen
dc.subjectmediumen
dc.subjectcarbon dioixdeen
dc.title培養條件對報歲蘭根莖生長分化之影響及培植期間瓶內氣體之變化zh_TW
dc.titleRhizome Growth and Differentiation in Cymbidium sinense in Relation to In Vitro Gas Evolvementen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.coadvisor李哖
dc.contributor.oralexamcommittee林瑞松,劉麗飛
dc.subject.keyword報歲蘭,乙烯,二氧化碳,培養基,組織培養,zh_TW
dc.subject.keywordCymbidium sinense,ethylene,carbon dioixde,medium,in vitro,en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2007-01-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved