請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31035
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顧記華(Jih-hwa Guh) | |
dc.contributor.author | Ssu-Chia Lin | en |
dc.contributor.author | 林思嘉 | zh_TW |
dc.date.accessioned | 2021-06-13T02:26:27Z | - |
dc.date.available | 2007-02-01 | |
dc.date.copyright | 2007-02-01 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-29 | |
dc.identifier.citation | 1. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E et al. Cancer statistics, 2004. CA Cancer J.Clin. 2004; 54:8-29.
2. Potosky AL, Feuer EJ, Levin DL. Impact of screening on incidence and mortality of prostate cancer in the United States. Epidemiol.Rev. 2001; 23:181-186. 3. Caine M, Perlberg S, Meretyk S. A placebo-controlled double-blind study of the effect of phenoxybenzamine in benign prostatic obstruction. Br.J.Urol. 1978; 50:551-554. 4. Kobayashi S, Tang R, Shapiro E, Lepor H. Characterization and localization of prostatic alpha 1 adrenoceptors using radioligand receptor binding on slide-mounted tissue section. J.Urol. 1993; 150:2002-2006. 5. Djavan B, Marberger M. A meta-analysis on the efficacy and tolerability of alpha1-adrenoceptor antagonists in patients with lower urinary tract symptoms suggestive of benign prostatic obstruction. Eur.Urol. 1999; 36:1-13. 6. Tahmatzopoulos A, Rowland RG, Kyprianou N. The role of alpha-blockers in the management of prostate cancer. Expert.Opin.Pharmacother. 2004; 5:1279-1285. 7. Akduman B, Crawford ED. Terazosin, doxazosin, and prazosin: current clinical experience. Urology 2001; 58:49-54. 8. Na YJ, Guo YL, Gu FL. Clinical comparison of selective and non-selective alpha 1A-adrenoceptor antagonists for bladder outlet obstruction associated with benign prostatic hyperplasia: studies on tamsulosin and terazosin in Chinese patients. The Chinese Tamsulosin Study Group. J.Med. 1998; 29:289-304. 9. Kyprianou N, Litvak JP, Borkowski A, Alexander R, Jacobs SC. Induction of prostate apoptosis by doxazosin in benign prostatic hyperplasia. J.Urol. 1998; 159:1810-1815. 10. Chon JK, Borkowski A, Partin AW, Isaacs JT, Jacobs SC, Kyprianou N. Alpha 1-adrenoceptor antagonists terazosin and doxazosin induce prostate apoptosis without affecting cell proliferation in patients with benign prostatic hyperplasia. J.Urol. 1999; 161:2002-2008. 11. Webber MM, Bello D, Quader S. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part I. Cell markers and immortalized nontumorigenic cell lines. Prostate 1996; 29:386-394. 12. Webber MM, Bello D, Quader S. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part 3. Oncogenes, suppressor genes, and applications. Prostate 1997; 30:136-142. 13. Webber MM, Bello D, Quader S. Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines. Prostate 1997; 30:58-64. 14. Fleming MT, Morris MJ, Heller G, Scher HI. Post-therapy changes in PSA as an outcome measure in prostate cancer clinical trials. Nat.Clin.Pract.Oncol. 2006; 3:658-667. 15. Walden PD, Globina Y, Nieder A. Induction of anoikis by doxazosin in prostate cancer cells is associated with activation of caspase-3 and a reduction of focal adhesion kinase. Urol.Res. 2004; 32:261-265. 16. Eiras S, Fernandez P, Pineiro R, Iglesias MJ, Gonzalez-Juanatey JR, Lago F. Doxazosin induces activation of GADD153 and cleavage of focal adhesion kinase in cardiomyocytes en route to apoptosis. Cardiovasc.Res. 2006; 71:118-128. 17. Garrison JB, Kyprianou N. Doxazosin induces apoptosis of benign and malignant prostate cells via a death receptor-mediated pathway. Cancer Res. 2006; 66:464-472. 18. Pan SL, Guh JH, Huang YW, Chern JW, Chou JY, Teng CM. Identification of apoptotic and antiangiogenic activities of terazosin in human prostate cancer and endothelial cells. J.Urol. 2003; 169:724-729. 19. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol.Med. 2006; 12:440-450. 20. Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol.Sci. 2003; 24:139-145. 21. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem.Sci. 2005; 30:630-641. 22. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem.Sci. 2005; 30:630-641. 23. Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 1998; 12:2131-2143. 24. Toyoshima-Morimoto F, Taniguchi E, Shinya N, Iwamatsu A, Nishida E. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 2001; 410:215-220. 25. Takizawa CG, Weis K, Morgan DO. Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta. Proc.Natl.Acad.Sci.U.S.A 1999; 96:7938-7943. 26. Lolli G, Johnson LN. CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 2005; 4:572-577. 27. Liu F, Rothblum-Oviatt C, Ryan CE, Piwnica-Worms H. Overproduction of human Myt1 kinase induces a G2 cell cycle delay by interfering with the intracellular trafficking of Cdc2-cyclin B1 complexes. Mol.Cell Biol. 1999; 19:5113-5123. 28. Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 1998; 12:2131-2143. 29. Booher RN, Holman PS, Fattaey A. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J.Biol.Chem. 1997; 272:22300-22306. 30. Parker LL, Piwnica-Worms H. Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 1992; 257:1955-1957. 31. Strausfeld U, Labbe JC, Fesquet D, Cavadore JC, Picard A, Sadhu K et al. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 1991; 351:242-245. 32. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem.Sci. 2005; 30:630-641. 33. Sulston JE. Caenorhabditis elegans: the cell lineage and beyond (Nobel lecture). Chembiochem. 2003; 4:688-696. 34. Okada H, Mak TW. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat.Rev.Cancer 2004; 4:592-603. 35. MacFarlane M, Williams AC. Apoptosis and disease: a life or death decision. EMBO Rep. 2004; 5:674-678. 36. Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat.Rev.Mol.Cell Biol. 2001; 2:63-67. 37. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004; 14:20-28. 38. Tsujimoto Y. Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci.Rep. 2002; 22:47-58. 39. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287:664-666. 40. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004; 18:3066-3077. 41. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 2000; 14:2060-2071. 42. Singh R, Pervin S, Chaudhuri G. Caspase-8-mediated BID cleavage and release of mitochondrial cytochrome c during Nomega-hydroxy-L-arginine-induced apoptosis in MDA-MB-468 cells. Antagonistic effects of L-ornithine. J.Biol.Chem. 2002; 277:37630-37636. 43. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol.Cell 2002; 9:459-470. 44. Stennicke HR, Ryan CA, Salvesen GS. Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem.Sci. 2002; 27:94-101. 45. Rao RV, Peel A, Logvinova A, del RG, Hermel E, Yokota T et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 2002; 514:122-128. 46. Rao RV, Hermel E, Castro-Obregon S, del RG, Ellerby LM, Ellerby HM et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J.Biol.Chem. 2001; 276:33869-33874. 47. Mourtada M, Elliott J, Smith SA, Morgan NG. Effects of imidazoline binding site ligands on the growth and viability of clonal pancreatic beta-cells. Naunyn Schmiedebergs Arch.Pharmacol. 2000; 361:146-154. 48. Forray C, Bard JA, Wetzel JM, Chiu G, Shapiro E, Tang R et al. The alpha 1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human alpha 1c subtype. Mol.Pharmacol. 1994; 45:703-708. 49. Swanson PE, Carroll SB, Zhang XF, Mackey MA. Spontaneous premature chromosome condensation, micronucleus formation, and non-apoptotic cell death in heated HeLa S3 cells. Ultrastructural observations. Am.J.Pathol. 1995; 146:963-971. 50. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004; 23:2825-2837. 51. Castedo M, Perfettini JL, Roumier T, Yakushijin K, Horne D, Medema R et al. The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 2004; 23:4353-4361. 52. Yoshikawa R, Kusunoki M, Yanagi H, Noda M, Furuyama JI, Yamamura T et al. Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells: a novel target mechanism concept for pharmacokinetic modulating chemotherapy. Cancer Res. 2001; 61:1029-1037. 53. Davis FM, Tsao TY, Fowler SK, Rao PN. Monoclonal antibodies to mitotic cells. Proc.Natl.Acad.Sci.U.S.A 1983; 80:2926-2930. 54. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem.Sci. 2005; 30:630-641. 55. Parker LL, Piwnica-Worms H. Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 1992; 257:1955-1957. 56. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 1997; 277:1501-1505. 57. Graves PR, Lovly CM, Uy GL, Piwnica-Worms H. Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 2001; 20:1839-1851. 58. Roshak AK, Capper EA, Imburgia C, Fornwald J, Scott G, Marshall LA. The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal. 2000; 12:405-411. 59. Toyoshima-Morimoto F, Taniguchi E, Nishida E. Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep. 2002; 3:341-348. 60. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat.Rev.Cancer 2003; 3:155-168. 61. Margolis SS, Walsh S, Weiser DC, Yoshida M, Shenolikar S, Kornbluth S. PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. EMBO J. 2003; 22:5734-5745. 62. Xiao D, Johnson CS, Trump DL, Singh SV. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells. Mol.Cancer Ther. 2004; 3:567-575. 63. Lolli G, Johnson LN. CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 2005; 4:572-577. 64. Zinkel S, Gross A, Yang E. BCL2 family in DNA damage and cell cycle control. Cell Death.Differ. 2006; 13:1351-1359. 65. Fujise K, Zhang D, Liu J, Yeh ET. Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen. J.Biol.Chem. 2000; 275:39458-39465. 66. Jamil S, Sobouti R, Hojabrpour P, Raj M, Kast J, Duronio V. A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth by interaction with Cdk1. Biochem.J. 2005; 387:659-667. 67. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80:293-299. 68. Zhan Q, Bieszczad CK, Bae I, Fornace AJ, Jr., Craig RW. Induction of BCL2 family member MCL1 as an early response to DNA damage. Oncogene 1997; 14:1031-1039. 69. Zhivotovsky B, Orrenius S. Caspase-2 function in response to DNA damage. Biochem.Biophys.Res.Commun. 2005; 331:859-867. 70. Paroni G, Henderson C, Schneider C, Brancolini C. Caspase-2 can trigger cytochrome C release and apoptosis from the nucleus. J.Biol.Chem. 2002; 277:15147-15161. 71. Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM. Overexpression of the anti-apoptotic caspase-2 short isoform in macrophage-derived foam cells of human atherosclerotic plaques. Am.J.Pathol. 2003; 162:731-736. 72. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J.Biol.Chem. 2002; 277:29803-29809. 73. Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol.Sci. 2003; 24:139-145. 74. Donzelli M, Draetta GF. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 2003; 4:671-677. 75. Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol.Sci. 2003; 24:139-145. 76. Donzelli M, Draetta GF. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 2003; 4:671-677. 77. Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001; 411:102-107. 78. Donzelli M, Draetta GF. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 2003; 4:671-677. 79. Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann.N.Y.Acad.Sci. 2003; 1010:186-194. 80. Bartlett JD, Luethy JD, Carlson SG, Sollott SJ, Holbrook NJ. Calcium ionophore A23187 induces expression of the growth arrest and DNA damage inducible CCAAT/enhancer-binding protein (C/EBP)-related gene, gadd153. Ca2+ increases transcriptional activity and mRNA stability. J.Biol.Chem. 1992; 267:20465-20470. 81. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J.Biol.Chem. 2002; 277:13430-13437. 82. Robertson JD, Gogvadze V, Kropotov A, Vakifahmetoglu H, Zhivotovsky B, Orrenius S. Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep. 2004; 5:643-648. 83. Kim R, Emi M, Tanabe K. Role of mitochondria as the gardens of cell death. Cancer Chemother.Pharmacol. 2006; 57:545-553. 84. Samraj AK, Sohn D, Schulze-Osthoff K, Schmitz I. Loss of Caspase-9 Reveals Its Essential Role for Caspase-2 Activation and Mitochondrial Membrane Depolarization. Mol.Biol.Cell 2006. 85. Zhu J, Xiong L, Yu B, Wu J. Apoptosis induced by a new member of saponin family is mediated through caspase-8-dependent cleavage of Bcl-2. Mol.Pharmacol. 2005; 68:1831-1838. 86. Liang Y, Nylander KD, Yan C, Schor NF. Role of caspase 3-dependent Bcl-2 cleavage in potentiation of apoptosis by Bcl-2. Mol.Pharmacol. 2002; 61:142-149. 87. Condorelli F, Salomoni P, Cotteret S, Cesi V, Srinivasula SM, Alnemri ES et al. Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol.Cell Biol. 2001; 21:3025-3036. 88. Rodriguez J, Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 1999; 13:3179-3184. 89. Taatjes DJ, Fenick DJ, Gaudiano G, Koch TH. A redox pathway leading to the alkylation of nucleic acids by doxorubicin and related anthracyclines: application to the design of antitumor drugs for resistant cancer. Curr.Pharm.Des 1998; 4:203-218. 90. Baldwin EL, Osheroff N. Etoposide, topoisomerase II and cancer. Curr.Med.Chem.Anticancer Agents 2005; 5:363-372. 91. Slichenmyer WJ, Rowinsky EK, Donehower RC, Kaufmann SH. The current status of camptothecin analogues as antitumor agents. J.Natl.Cancer Inst. 1993; 85:271-291. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31035 | - |
dc.description.abstract | Quinazoline-based α1-adrenoceptor antagonists, such as doxazosin and terazosin, have been demonstrated to display anticancer effect in prostate cancer cell lines via a α1-adrenoceptor-independent pathway. In this study, the data showed that several clinically used α1-adrenoceptor antagonists exhibited varied efficacies on the inhibition of PC-3 proliferation by sulforhodamine B (SRB) assay with rank order of prazosin (IC50 = 11.1 μM) > doxazosin (20.6 μM) > phentolamine (58.3 μM) > terazosin (62.6 μM) > tamsulosin (> 100 μM). Similar results were also obtained in other two human prostate cancer cell lines including DU145 and LNCaP. The SRB assay showed that prazosin could display additive effect in combination with doxorubicin, but not camptothecin, mitoxantrone, etoposide, taxol or vincristine. Since prazosin showed the most effective effect, the anticancer mechanism was investigated in this study. By FACScan flow cytometric analysis, the data showed that prazosin induced G2/M arrest and a subsequent increase of hypodiploid phase (apoptosis) of the cell cycle in a time- and concentration-dependent manner. However, the sustained elevation of cyclin A1 and the absence of MPM2 expression suggested that prazosin induced G2- other than mitotic arrest in PC-3 cells. Moreover, prazosin induced an increase of phosphorylation at Ser216 of Cdc25C and a decrease of dephosphorylation at Tyr15 of Cdk1 concomitant with the cytoplasmic sequestration of Cdc25C, suggesting that prazosin induced the inactivation of Cdk1 activity. By comet assay, a short term (one hour) treatment of prazosin was able to cause DNA damage. It could also induce the cleavage of anti-apoptosis members of Bcl-2 family, such as Bcl-2 and Mcl-1, and the activation of caspase cascades. In animal study, the orally administered prazosin (3 and 10 mg/kg) could partly inhibit the PC-3 tumor growth of 50.4 and 64.7%, respectively. Taken together, it is suggested that prazosin is an effective anti-tumor agent both in in vitro and in vivo tests. It induces DNA damage and G2 arrest of the cell cycle and the subsequent apoptosis through an inactivation of Cdk1 activity, the cleavage of anti-apoptosis members of Bcl-2 family and the activation of caspase cascades. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:26:27Z (GMT). No. of bitstreams: 1 ntu-96-R93423025-1.pdf: 2140400 bytes, checksum: 3cafe5f980f3aadb06fa88f38d6ec767 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 縮寫表•••••••••••••••••••••••• Ⅰ
中文摘要••••••••••••••••••••••• Ⅲ 英文摘要••••••••••••••••••••••• Ⅴ 研究動機•••••••••••••••••••••••1 文獻回顧•••••••••••••••••••••••3 實驗材料••••••••••••••••••••••• 14 實驗方法••••••••••••••••••••••• 15 1.細胞培養•••••••••••••••••••••• 15 2.細胞計數•••••••••••••••••••••• 15 3.SRB assay••••••••••••••••••••• 15 4.TUNEL assay•••••••••••••••••••••16 5.流式細胞儀•••••••••••••••••••••16 6.蛋白質萃取與定量••••••••••••••••••17 7.西方墨點法•••••••••••••••••••••18 8.Comet assay•••••••••••••••••••• 21 9.活體藥效評估•••••••••••••••••••• 21 10.資料分析••••••••••••••••••••• 22 實驗結果••••••••••••••••••••••••23 討論••••••••••••••••••••••••••30 結論••••••••••••••••••••••••• 42 圖表••••••••••••••••••••••••• 43 參考文獻•••••••••••••••••••••••66 | |
dc.language.iso | zh-TW | |
dc.title | 探討α1-交感神經受體阻斷劑在人類前列腺癌細胞的抗癌作用機轉 -體內及體外試驗 | zh_TW |
dc.title | Investigation of Anticancer Mechanism of alpha1-Adrenoceptor antagonist in Human Prostate Cancer -In vitro and in vivo Studies | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 闕士傑(shih chieh chueh) | |
dc.contributor.oralexamcommittee | 潘秀玲,黃聰龍,蕭哲志 | |
dc.subject.keyword | 交感神經受體阻斷劑,細胞凋亡,前列腺癌,基因體受損,細胞週期停滯, | zh_TW |
dc.subject.keyword | prazosin,apoptosis,prostate cancer,DNA damage,G2 arrest, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-01-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。