Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30999
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡務亮(Wuh-Liang Hwu)
dc.contributor.authorMei-Hui Leeen
dc.contributor.author李美慧zh_TW
dc.date.accessioned2021-06-13T02:24:40Z-
dc.date.available2007-02-02
dc.date.copyright2007-02-02
dc.date.issued2007
dc.date.submitted2007-01-30
dc.identifier.citation1.Available at http://www.expertreview.org
2.Mc Grath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes.Cell 1984; 37: 179-83
3.Barton SC, Surami MAH, Norris ML. Role of paternal and maternal genomes in mouse development. Nature 1984; 311: 374-6.
4.Sakatani T, Kaneda A, Iacobuzio-Donahue CA, et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 2005; 25: 307: 1976-8.
5.Szabo PE, Mann JR. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev 1995; 9: 1857-68.
6.馬特瑞德利:23對染色體。主編:彭之琬。翻譯:蔡承志、許優優。台北:商周出版。2000:270-84。
7.陳嘉芬:分子生物學。台北:藝軒圖書出版社。2004:271-3。
8.Available at http://www.otago.ac.nz/IGC
9.Ledbetter DH, Engel E. Uniparental disomy in humans: development of an imprinting map and its implications for prenatal diagnosis. Hum Mol Genet 1995; 4: 1757-64.
10.Kotzot D, Schmitt S, Bernasconi F, Robinson WP, Lurie IW, Ilyina H, Mehes K, Hamel BC, Otten BJ, Hergersberg M. Uniparental disomy 7 in Silver-Russell syndrome and primordial growth retardation. Hum Mol Genet 1995; 4: 583-7.
11.Eggermann T, Wollmann HA, Kuner R, Eggermann K, Enders H, Kaiser P, Ranke MB. Molecular studies in 37 Silver-Russell syndrome patients: frequency and etiology of uniparental disomy. Hum Genet 1997; 100: 415-9.
12.Preece MA, Price SM, Davies V, Clough L, Stanier P, Trembath RC, Moore GE. Maternal uniparental disomy 7 in Silver-Russell syndrome. J Med Genet 1997; 34: 6-9.
13.Henry I, Puech A, Riesewijk A, Ahnine L, Mannens M, Beldjord C, Bitoun P, Tournade MF, Landrieu P, Junien C. Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwith syndrome: a post-fertilization event. Eur J Hum Genet 1993; 1: 19-29.
14.Henry I, Bonaiti-Pellie C, Chehensse V, Beldjord C, Schwartz C, Utermann G, Junien C. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 1991; 351: 665-7.
15.Slatter RE, Elliott M, Welham K, Carrera M, Schofield PN, Barton DE, Maher ER. Mosaic uniparental disomy in Beckwith-Wiedemann syndrome. J Med Genet 1994; 31: 749-53.
16.Healey S, Powell F, Battersby M, Chenevix-Trench G, McGill J. Distinct phenotype in maternal uniparental disomy of chromosome 14. Am J Med Genet 1994; 51: 147-9.
17.Sanlaville D, Aubry MC, Dumez Y, Nolen MC, Amiel J, Pinson MP, Lyonnet S, Munnich A, Vekemans M, Morichon-Delvallez N. Maternal uniparental heterodisomy of chromosome 14: chromosomal mechanism and clinical follow up. J Med Genet 2000; 37: 525-8.
18.Cotter PD, Kaffe S, McCurdy LD, Jhaveri M, Willner JP, Hirschhorn K. Paternal uniparental disomy for chromosome 14: a case report and review. Am J Med Genet 1997; 70: 74-9.
19.Malcolm S ,Clayton-Smith J, Nichols M, Robb S, Webb T, Armour JA, Jeffreys AJ, Pembrey ME. Uniparental paternal disomy in Angelman’s syndrome. Lancet 1991; 337: 6947.
20.Nicholls R D, Pai GS, Gottlieb W, Cantu ES Paternal uniparental disomy of chromosome 15 in a child with Angelman syndrome. Ann Neurol 1992;32: 512-8.
21.Nicholls R D, Knoll JH, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature 1989;342: 281-5.
22.Robinson W P, Bottani A, Xie YG, Balakrishman J, Binkert F, Machler M, Prader A, Schinzel A. Molecular, cytogenetic, and clinical investigations of Prader-Willi syndrome patients. Am J Hum Genet 1991;49: 1219-34.
23.Available at http://www.modimes.org/
24.Barker D J. The fetal and infant origins of disease. Eur J Epidemiol 1995; 25 :    457–63.
25.Seminar in Fetal &Neonatal Medicine (2004) 9, 371-378
26.Moore GE, Abu-Amero S, Wakeling E, Hitchins M, Monk D, Stanier P, Preece M The search for the gene for Silver-Russell syndrome. Acta Paediatr Suppl 1999; 88:42-8.
27.Eggerman T, Eggermann K, Mergenthaler S, Kuner R, Kaiser P, Ranke MB, Wollmann HA. Paternally inherited deletion of CSH1 in a patient with Silver-Russell syndrome. J Med Genet 1998; 35: 784-6.
28.Duncan PA, Hall JG; Shapiro LR, Vibert BK. Three-generation dominant transmission of the Silver-Russell syndrome. Am J Med Genet 1990; 35: 245-50.
29.Al-Fifi S, Teebi AS, Shevell M. Autosomal dominant Russell-Silver syndrome. (Letter) Am J Med Genet 1996; 61: 96-7.
30.Ounap K, Reimand T, Magi ML, Bartsch O. Two sisters with a Silver-Russell phenotype. Am J Med Genet 2004; 131: 301.
31.Silver HK, Kiyasu W, George J, Deamer WC. Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics 1953; 12: 368-76.
32.Russell A. A syndrome of intra-uterine-dwarfism recognizable at birth with cranio-facial dysostosis, disproportionate short arms, and other anomalies (5 examples). Proc. Roy. Soc. Med. 1954; 47: 1040-44.
33.Patton MA. Russell-Silver syndrome. J. Med. Genet. 1988; 25: 557-60.
34.Chitayat D, Friedman JM, Anderson L, Dimmick JE. Hepatocellular carcinoma in a child with familial Russell-Silver syndrome. Am. J. Med. Genet. 1988; 31: 909-14,.
35.Donnai D, Thompson E, Allanson J, Baraitser M. Severe Silver-Russell syndrome. J. Med. Genet. 1989; 26: 447-51.
36.Price SM, Stanhope R, Garrett C, Preece MA, Trembath RC. The spectrum of Silver-Russell syndrome: a clinical and molecular genetic study and new diagnostic criteria. J Med Genet 1999; 36: 837-42.
37.Anderson J, Viskochil D, O'Gorman M, Gonzales C. Gastrointestinal complications of Russell-Silver syndrome: a pilot study. Am. J. Med. Genet. 2002; 113: 15-9.
38.Rimoin DL. The Silver syndrome in twins. Birth Defects Orig. Art. Ser. V 1969; 2: 183-7.
39.Nyhan WL, Sakati NO: Silver syndrome: Silver-Russell syndrome, Russell-Silver syndrome. In: Genetic and Malformation Syndromes in Clinical Medicine. Chicago: Year Book Med. Publ. 1976: 298-300.
40.Samn M, Lewis K, Blumberg B. Monozygotic twins discordant for the Russell-Silver syndrome. Am. J. Med. Genet. 1990; 37: 543-5.
41.Bailey W, Popovich B, Jones KL. Monozygotic twins discordant for the Russell-Silver syndrome. Am. J. Med. Genet. 1995; 58: 101-5.
42.Fuleihan DS, Der Kaloustian VM, Najjar SS. The Russell-Silver syndrome: report of three siblings. J. Pediat. 1971; 78: 654-7.
43.Gareis FJ, Smith DW, Summitt RL. The Russell-Silver syndrome without asymmetry. J. Pediat. 1971; 79: 775-81.
44.Teebi AS. Autosomal recessive Silver-Russell syndrome. Clin. Dysmorph. 1992; 1: 151-156.
45.Silver HK, Kiyasu W, George J, Deamer WC. Syndrome of congenital hemihypertrophy, shortness of stature and elevated urinary gonadotropins. Pediatrics 1953; 12: 368.
46.Perkins RM, Hoang-Xuan MA. The Russell-Silver Syndrome: a case report and brief review of the literature. Pediatric Dermatology 2002;19:546.
47.Cole RB, Levin SE. Congenital heart disease associated with the Russell-Silver syndrome. S Afr Med J 1973; 47: 989.
48.Bruckheimer E, Abrahamov A. Russell-Silver syndrome and Wilms tumor. J Pediatr 1993; 122: 165.
49.Van Haelst MM, Eussen HJ, Visscher F, de Ruijter JL, Drop SL, Lindhout D, Wouters CH, Govaerts LC. Silver-Russell phenotype in a patient with pure trisomy 1q32.1-q42.1: further delineation of the pure 1q trisomy syndrome. (Letter) J Med Genet 2002; 39: 582-5.
50.Eggerding FA, Schonberg SA, Chehab FF, Norton ME, Cox VA, Epstein CJ. Uniparental isodisomy for paternal 7p and maternal 7q in a child with growth retardation. Am. J. Hum. Genet. 1994; 55: 253-65.
51.Monk D, Bentley L, Hitchins M, Myler RA, Clayton-Smith J, Ismail S, Price SM, Preece MA, Stanier P, Moore GE. Chromosome 7p disruptions in Silver Russell syndrome: delineating an imprinted candidate gene region. Hum. Genet. 2002; 111: 376-87.
52.Monk D, Wakeling EL, Proud V, Hitchins M, Abu-Amero SN, Stanier P, Preece MA, Moore GE. Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome. Am. J. Hum. Genet. 2000; 66: 36-46.
53.Nakabayashi K, Fernandez BA, Teshima I, Shuman C, Proud VK, Curry CJ, Chitayat D, Grebe T, Ming J, Oshimura M, Meguro M, Mitsuya K, Deb-Rinker P, Herbrick J, Weksberg R, Scherer SW. Molecular genetics studies of human chromosome 7 in Russell-Silver syndrome. Genomics 2002; 79: 186-196.
54.Hannula K, Lipsanen-Nyman M, Kontiokari T, Kere J. A narrow segment of maternal uniparental disomy of chromosome 7q31-qter in Silver-Russell syndrome delimits a candidate gene region. Am J Hum Genet 2001; 68: 247-53.
55.Ramirez-Duenas ML, Medina C, Ocampo-Campos R, Rivera H Severe Silver-Russell syndrome and translocation (17;20) (q25;q13). Clin Genet 1992; 41: 51-3
56.Midro AT, Debek K, Sawicka A, Marcinkiewicz D, Rogowska MSecond observation of Silver-Russell syndrome in a carrier of a reciprocal translocation with one breakpoint at site 17q25. Clin Genet 1993; 44: 53-5.
57.Yoshihashi H, Maeyama K, Kosaki R, Ogata T, Tsukahara M, Goto Y, Hata J, Matsuo N, Smith RJ, Kosaki K Imprinting of human GRB10 and its mutations in two patients with Russell-Silver syndrome. Am J Hum Genet 2000; 67: 476-82.
58.Joyce CA, Sharp A, Walker JM, Bullman H, Temple IK. Duplication of 7p12.1-p13, including GRB10 and IGFBP1, in a mother and daughter with features of Silver-Russell syndrome. Hum Genet 1999; 105: 273-80.
59.Wakeling EL, Hitchins MP, Abu-Amero SN, Stanier P, Moore GE, Preece MA. Biallelic expression of IGFBP1 and IGFBP3, two candidate genes for the Silver-Russell syndrome. J Med Genet 2000; 37: 65-67.
60.Available at http://www.dsi.univ-paris5.fr/genatlas/
61.Ooi J. Yajnik V, Immanuel D, Gordon M, Moskow JJ, Buchberg AM, Margolis B. The cloning of Grb10 reveals a new family of SH2 domain proteins. Oncogene 1995; 10: 1621-30.
62.Hitchins MP, Stanier P, Preece MA, Moore GE. Silver–Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions. J Med Genet 2001; 38:810-9.
63.Miyoshi N, Kuroiwa Y, Kohda T, Shitara H, Yonekawa H, Kawabe T, Hasegawa H, Barton SC, Surani MA, Kaneko-Ishino T, Ishino F. Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc Nat Acad Sci 1998; 95: 1102-7.
64.Hitchins MP, Monk D, Bell GM, Ali Z, Preece MA, Stanier P, Moore GE. Maternal repression of the human GRB10 gene in the developing central nervous system; evaluation of the role for GRB10 in Silver-Russell syndrome. Europ J Hum Genet 2001; 9: 82-90.
65.McCann JA, Zheng H, Islam A, Goodyer CG, Polychronakos C. Evidence against GRB10 as the gene responsible for Silver-Russell syndrome. Biochem Biophys Res Commun 2001; 286: 943-48.
66.Hannula K, Kere J, Pirinen S, Holmberg C, Lipsanen-Nyman M. Do patients with maternal uniparental disomy for chromosome 7 have a distinct mild Silver-Russell phenotype? (Letter) J Med Genet 2001; 38: 273-8.
67.Vines G.(1997).Where did you get your brains? New Scientist,3 May 1997: 34-9; Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nature Genetics 1998; 20: 163-9.
68.Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002; 417: 945-8.
69.Smith GC, Stenhouse EJ, Crossley JA, Aitken DA, Cameron AD, Connor JM. Early-pregnancy origins of low birth weight. Nature 2002; 417: 916.
70.Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2: 21-32.
71.Feinberg AP. Cancer epigenetics takes center stage. Proc Natl Acad Sci U S A. 2001; 98(2): 392-4.
72.Tilghman SM. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 1999; 96: 185-93.
73.Leibovitch MP, Nguyen VC, Gross MS, Solhonne B, Leibovitch SA, Bernheim A. The human ASM (adult skeletal muscle) gene: expression and chromosomal assignment to 11p15. Biochem. Biophys. Res. Commun. 1991; 180: 1241-50.
74.Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature 1991; 351: 153-5.
75.Zhang Y, Tycko B. Monoallelic expression of the human H19 gene. Nature Genet 1992; 1: 40-4.
76.Zemel S, Bartolomei MS, Tilghman SM. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nature Genet 1992; 2: 61-65.
77.Rachmilewitz J, Goshen R, Ariel I, Schneider T, de Groot N, Hochberg A. Parental imprinting of the human H19 gene. FEBS Lett. 1992; 309: 25-2.
78.Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP. Relaxation of imprinted genes in human cancer. Nature 1993; 362: 747-9.
79.Jinno Y, Ikeda Y, Yun K, Maw M, Masuzaki H, Fukuda H, Inuzuka K, Fujishita A, Ohtani Y, Okimoto T, Ishimaru T, Niikawa N. Establishment of functional imprinting of the H19 gene in human developing placentae. Nature Genet 1995; 10: 318-24.
80.Han DK, Khaing ZZ, Pollock RA, Haudenschild CC, Liau G. H19, a marker of developmental transition, is reexpressed in human atherosclerotic plaques and is regulated by the insulin family of growth factors in cultured rabbit smooth muscle cells. J Clin Invest 1996; 97: 1276-85.
81.Pfeifer K, Leighton PA, Tilghman SM. The structural H19 gene is required for transgene imprinting. Proc Nat Acad Sci 1996; 93: 13876-83.
82.Ariel I, Ayesh S, Perlman EJ, Pizov G, Tanos V, Schneider T, Erdmann VA, Podeh D, Komitowski D, Quasem AS, de Groot N, Hochberg A. The product of the imprinted H19 gene is an oncofetal RNA. Molec Path 1997; 50: 34-44.
83.Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 1998; 12: 3693-702.
84.Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000; 405: 482-5.
85.Cattanach BM, Barr JA, Evans EP, Burtenshaw M, Beechey CV, Leff SE, Brannan CI, Copeland NG, Jenkins NA, Jones J. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nature Genet 1992; 2: 270-4.
86.Reed ML, Leff SE. Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nature Genet 1994; 6: 163-7.
87.Sun Y, Nicholls RD, Butler MG, Saitoh S, Hainline BE, Palmer CG. Breakage in the SNRPN locus in a balanced 46, XY, t(15;19) Prader-Willi syndrome patient. Hum Molec Gene 1996; 5: 517-24.
88.Kuslich CD, Kobori JA, Mohapatra G, Gregorio-King C, Donlon TA. Prader-Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet 1999; 64: 70-6.
89.Jiang Y, Tsai TF, Bressler J, Beaudet AL.Imprinting in Angelman and Prader-Willi syndromes. Current Opinion in Genetics and Development 1998; 8: 334-42.
90.Available at http://www.genes-at-taiwan.com.tw/genehelp/database/disease/Angelman_new2.htm
91.Available at http://www.inglife.com.tw/ohayo/medical/doctor_times/doctor_writings/n_dr_writings_1_xv.asp?DocID=7404&AuthorID=
92.Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J: Molecular Cell Biology, 4rd ed. New York, New York; Freeman and Company, 2000: 852-853.
93.民國82年9月第三十二卷第三期,版權為台北榮民總醫院臨床醫學月刊社。
94.Hurowitz EH, Melnyk JM, Chen YJ, Kouros-Mehr H, Simon MI, Shizuya H. Genomic characterization of the human heterotrimeric G protein alpha, beta, and gamma subunit genes. DNA Res. 2000; 7: 111-20.
95.Eggermann T, Schonherr N, Meyer E, Obermann C, Mavany M, Eggermann K, Ranke MB, Wollmann HA. Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain. (Letter) J. Med. Genet. 2006; 43: 615-6.
96.Li CC, Chodirker BN, Dawson AJ, Chudley AE. Severe hemihypotrophy in a female infant with mosaic Turner syndrome: a variant of Russell-Silver syndrome? Clin. Dysmorph. 2004; 13: 95-8.
97.Bliek J, Terhal P van den, Bogaard MJ, Maas S, Hamel B, Salieb-Beugelaar G, Simon M, Letteboer T, van der Smagt J, Kroes H, Mannens M. Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but also isolated asymmetry or an SRS-like phenotype. Am. J. Hum. Genet. 2006; 78: 604-14.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30999-
dc.description.abstract羅素–西弗氏症(Russell–Silver syndrome; RSS)是一種十分罕見的遺傳疾病,病患於出生前,具有子宮內生長遲緩(intrauterine growth retardation; IUGR)的現象,因此,被認為與出生後的語言障礙(delayed speech)、發育遲緩(developmental delay)與第五根手指彎斜向內(clinodactyly)有關。病童主要臨床表徵包括面部形狀不正常(dysmorphic facial)與身體不對稱(asymmetry)。目前,導致RSS的病因仍不明瞭,但近來研究顯示可能與部分基因的甲基化程度有關。本實驗針對二十七位具有RSS類似臨床表徵的研究對象,進行人類印記基因(imprinting genes)甲基化程度的檢測,並嘗試與RSS進行相關性分析。
在以Hpa II/ Pst I PCR方法對十七位正常人所進行'基因甲基化程度測定'的前置實驗中,測得MEST、UBE3A、SNRPN、GRB10、H19、IGF2與NESP55等七個人類印記基因的甲基化指標正常參考值(平均值 ± 二個標準差),分別為0.09 ± 0.16,0.11 ± 0.18,0.25 ± 0.40,0.59 ± 0.26,0.58 ± 0.48,0.77 ± 0.36與0.82 ± 0.24 (UBE3A、SNRPN兩個基因作為對照組)。以此參考值為標準,在二十七位RSS研究對象中,發現有十三位(48%)在GRB10基因的甲基化程度上明顯偏離正常值,其中,九位為基因高度甲基化(hypermethylation),四位為基因低度甲基化(hypomethylation)。而在MEST、H19、IGF2與NESP55基因上,則分別有四位(15%)、一位(4%)、四位(15%)與四位(15%)的甲基化程度明顯偏離正常值,其中,一位H19、四位IGF2與四位NESP55研究對象皆為基因低度甲基化,而四位MEST研究對象皆為基因高度甲基化。在對照組UBE3A基因,所有二十七位研究對象的甲基化測定值皆落於正常參考值範圍內。就異常甲基化基因數目而言,在二十七位RSS研究對象中,分別有一位(男性)、六位(五男一女)、十位(七男三女)各有四個、二個及一個基因偏離甲基化正常值,然而有十位(七男三女)研究對象在五個檢測的基因中都未發現任何異常。
在RSS研究對象臨床表徵檢視方面,本次評估除了包括子宮內生長遲緩(IUGR)、生長遲滯(failure to thrive; FTT)、典型臉部特徵(不對稱倒三角形臉型)(typical face;TFA)、身體不對稱(包括四肢)、第五手指彎斜向內(clinodactyly;CLIN)之外,還包括生殖器異常(genital abormality;GAB)、餵食困難(feeding difficulty;FDIF)、語言學習延遲(delayed speech;DSP)、咖啡斑(Café’au lait spot;CLA)、發育遲緩(developmental delay;DDE)與其他項異常表徵(others anomaly;OAM)。
在具有臨床表徵資料的十九位病患中,有十七位除了RSS臨床診斷表徵之要項外還伴隨有其他方面的異常表徵,其次最多的臨床表徵依序為,十七位具生長遲滯,十六位具有子宮內生長遲緩,十四位具有典型臉部特徵,十五位具有身體不對稱(包括四肢),十四位具第五根手指彎斜向內,各有九位具餵食困難與發育遲緩,四位有生殖器異常,四位具有語言學習延遲,但所有研究對象皆不具咖啡斑。
檢視六位(編號2、5、8、9、16、26)具有全部或部份臨床資料的研究對象,其在五個基因檢測中均無異常甲基化表現,可發現有67% (4/6)有子宮內生長遲緩,83% (5/6)有生長遲滯,典型臉部特徵佔50% (3/6),身體不對稱(包括四肢)佔100% (6/6),第五手指彎斜向內佔80% (4/5),餵食困難佔100% (1/1),發育遲緩佔100% (2/2)與其他異常佔100% (4/4)。除了咖啡斑、語言學習延遲與生殖器異常之外(因為無臨床資料),幾乎所有臨床病徵皆存在於這六位病患,由此顯示,除受檢測印記基因外,應仍有其它基因參與RSS症狀的表現。再例如編號2 號,其五個基因皆正常,但所得的性狀表現總分卻高達8分,更可暗示存在某些未列於本次研究的檢測基因。
GRB10轉譯adapter protein,因此GRB10的異常甲基化將直接影響tyrosine kinases的細胞表面接受體的形狀與功能,造成分子訊息傳遞異常,另一方面也影響到細胞分裂、胚胎細胞的複製、繁殖與凋零。在GRB10高度甲基化且具有臨床資料的六位研究對象中,全部都具有子宮內生長遲緩現象,但儘管如此,研究對象中也有許多人的GRB10雖有正常的甲基化表現,但也具有子宮內生長遲緩的性狀。因此在本研究中,GRB10高度甲基化與生長遲滯、典型臉部特徵、身體不對稱(包括四肢)、第五手指彎斜向內、生殖器異常、餵食困難、語言學習延遲、咖啡斑、發育遲緩等性狀皆無直接相關聯性。
綜合以上結果顯示,基因甲基化的程度可能與RSS的病因有關但尚無法証實,且與RSS臨床表徵相關的基因應該不只本研究中所涉及之基因。
zh_TW
dc.description.abstractRussell-Silver syndrome (RSS) is a rare genetic disorder characterized by growth delays before birth (intrauterine growth retardation; IUGR) and is associated with postnatal delayed speech, developmental delay and clinodactyly. Affected children exhibit unusual characteristic facial features and may have asymmetry or overgrowth of one side of the body. The aetiology of RSS is still unclear but it has been correlated with the degrees of gene methylation. To get more insights into the roles of gene methylation in RSS, we measure and analyze the degrees of methylations in a number of human imprinting genes for 27 patients with suspected RSS.
The level of DNA methylation is determined by Hpa II/ PstⅠPCR. We first examined the methylation levels of MEST, UBE3A, SNRPN, GRB10, H19, IGF2 and NESP55 for 17 normal controls in order to set up the normal reference ranges. The normal methylation indices (mean±2 SD) for the 7 genes mentioned above were estimated as 0.09±0.16, 0.11±0.18, 0.25±0.40, 0.59±0.26, 0.58±0.48, 0.77±0.36 and 0.82±0.24, respectively. Among the 27 RSS patients, there were 13 patients (48%) with aberrant methylation levels in GRB10 (9 hypermethylations and 4 hypomethylations), and 4 patients (15%), one patients (4%), 4 patients (15%), 4 patients (15%) with aberrant methylation levels in MEST, H19, IGF2 and NESP55, separately. All of the one patient aberrant in H19, 4 patients aberrant in IGF2,and 4 patients aberrant in NESP55 were hypomethylated, while all 4 patients aberrant in MEST were hypermethylated. In addition, all the 27 RSS patients had normal methylation levels in UBE3A. As a whole, there were 1 male patient with aberrant methylation levels in 4 genes, 6 patients (5 males and 1 female) with aberrant levels in 2 genes, 10 patients (7 males and 3 females) with aberrant levels in 1 genes and 10 patients (7 males and 3 females) without any aberration in all of the 6 genes (not inclusive of SNRPN).
The clinical findings complied with a very broad definition of RSS inclusive of IUGR, FTT (Failure to Thrive), typical face, asymmetry and clinodactyly. Notable additional findings include genital abnormalities, feeding difficulties, delayed speech, caf’e au lait spots, developmental delay and other anomaly. In 19 examined patients (not inclusive of the other 8 patients on account of unavailable clinical data), other anomaly were seen in 17 patients, FTT in 17, IUGR in 15, typical face in 14, asymmetry in 15, clinodactyly in 14, feeding difficulty in 9, developmental delay in 9, genital abnormality in 4, and delayed speech in 4. None of the patients had Café au lait spots.
Among the 6 patients (no. 2, 5, 8, 9, 16, 26) who have no abberant methylation in any examined genes but with clinical data, there are 67% (4/6) with IUGR, 83% (5/6) with FTT, 50% (3/6) with typical face, 100% (6/6) with Asymmetry, 80% (4/5) with clinodactyly, 100% (1/1) with feed difficulty, 0% (0/1) with delay speech, 100% (2/2) with developmental delay, and 100% (4/4) with other anomaly. This finding suggests that there are other genes involved in RSS. For example, patient no. 2 has 8 scores, but all the 6 genes are normal.
GRB10 known to interact with a number of receptor tyrosine kinases and signalling molecules belongs to a small family of adapter proteins in cytoplasma. GRB10 involves in signal transduction in developing embryos and regulates cell proliferation and apoptosis. Although 6 patients (exclude 3 patients without clinical syndrome data) with high methylation in GRB10 are all with IUGR, we can not jump to the conclusion that GRB10 is directly related to IUGR because there are patients with normal GRB10 who also have IUGR. Statistically, GRB10 hypermethylation are not related to FTT, TFA, ASY, CLIN, GAB, FDIF, DSP, CLA, DDE.
In sum, our study indicated that the level of methylation in GRB10 might be related to RSS, but current data still don’t have enough power to prove it. There should be other genes not studied in the current study that are involved in the etiology of RSS.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:24:40Z (GMT). No. of bitstreams: 1
ntu-96-P93448008-1.pdf: 910079 bytes, checksum: 44a3c0e21c0c976e1ae3a8f83cbb4356 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要及關鍵詞………………………………………………I
Abstract and key words……………………………………III
第一章 導論………………………………………………… 1
第一節 基因體印記(genomic imprinting)……………… 1
第二節 DNA甲基化(methylation)與基因表現…………… 4
第三節 與人類印記有關的基因…………………………….5
第四節 人類與基因印記有關的遺傳疾病………………….5
第五節 研究緣由及目的…………………………………….6

第二章 文獻探討………………………………………………7
第一節 RSS與印記基因之關聯性......................7
第二節 臨床表徵..................................7
第三節 臨床診斷…………………………………………..8
第四節 致病病因---染色體與基因綜觀…………………10
1. 第一對染色體…………………………………………10
1.1三倍體……………………………………………10
2. 第七對染色體…………………………………………11
2.1細胞遺傳…………………………………………11
2.2分子遺傳.……………………………………….12
2.2.1 GRB10 (MEG1)……………………………….13
2.2.2 MEST………………………………………….14
3. 第十一對染色體………………………………………15
3.1 IGF2…………………………………………….15
3.2 H19....................................16
4. 第十五對染色體………………………………………18
4.1 SNRPN……………………………………………18
4.2 UBE3A..................................19
5. 第二十對染色體……………………………………. 20
5.1 GNAS1(NESP55) ……………………………….20
第五節RSS三種遺傳模式…………………………………….21
第三章 研究材料與實驗方法……………………………….23
第一節 實驗材料………………………………………..23
第二節 實驗方法………………………………………..24
1. Genomic DNA萃取…………………………………….24
2. 限制酵素處理Genomic DNA………………………….25
3. 聚合酵素連鎖反應……………………………………26
4. 洋菜膠體之配製………………………………………26
5. 電泳條件及PCR產物分析…………………………….27
6. 結果判讀………………………………………………27
7. 量化PCR產物甲基化比值.......................27
8. 統計方法………………………………………………28
第四章 結果………………………………………………….29
第一節 實驗方法之建立 …………………………………29
第二節 實驗結果 …………………………………………31
1.實驗組在七個基因甲基化表現……………………….31
2. RSS族群臨床表徵資料分析………………………….31
3. RSS臨床表徵與基因檢測值的相關性……………….32
4. RSS家族資料分析…………………………………….32
第五章 討論………………………………………………….34
1.七個基因正常參考值的建立………………………….34
2. RSS族群七個基因甲基化檢測值的推論…………….34
3. RSS族群臨床表徵資料收集………………………….35
4. RSS臨床表徵與基因檢測值的相關性探討………….35
5. RSS家族資料分析…………………………………….37
第六章 總結………………………………………………….38
參考文獻……………………………………………………..39
附件一…………………………………………………………60
附件二…………………………………………………………61
圖目錄
圖一、羅素–西弗氏症(Russell–Silver syndrome; RSS)病患的(A)臉部特徵:寬額、下巴小、臉小呈倒三角形、寬且細的嘴型、低耳位;(B)手部特徵:第五手指彎斜、併指、第三與第四根手指頭具天鵝頸狀變形(swan-neck deformities)……………………....……..45

圖二、染色體母源單親二體症(A) heterodisomy:子代同一對染色體與母親的同一對染色體相同;(B) isodisomy:子代同一對染色體皆來自母親同一條染色體……………………………...…………..46
圖三、Hpa II / Pst I (H/P)-cotreated和Pst I (P)-treated處理小胖威利症(PWS)及正常人(N)之MCAD 8R/8L PCR放大產物……...…….47
圖四、不同 PCR cycles數檢測PCR產物是否具有過飽和現象.…….48
圖五、Hpa II / Pst I (H/P)-cotreated、Pst I (P)-treated及Msp I/ Pst I (M/P)-cotreated分別處理小胖威利症(PWS)及正常人(N)之SNRPN基因的PCR放大產物比較………………..……...……..49
圖六、Hpa II / Pst I (H/P)-cotreated及Pst I (P)-treated分別處理小胖威利症(PWS)及正常人(N)之(A) SNRPN及(B)UBE3A基因的PCR放大產物比較…………………………………...................……..50
表目錄
表一、與遺傳印記(genetic imprinting)有關的人類基因…….…………51
表二、人類與基因印記有關的遺傳疾病……………..……...…………54
表三、羅素–西弗氏症(Russell–Silver syndrome; RSS)的分子遺傳學檢測 ……...........................................................................................55
表四、七個檢測印記基因所在的染色體位置、引子序列及PCR產物大小.....................................................................................................56
表五、成對t-test檢定二次實驗之穩定性與再現性……………………57
表六、七個人類印記基因在(A)十七位正常個案與(B)二十七位病患中甲基化程度的表現………………………………………..…………58
表七、RSS研究對象的異常臨床表徵與各基因甲基化檢定結果(紅色和綠色粗體字表示基因甲基化異常)…………….….……………..59
dc.language.isozh-TW
dc.subject身體不對稱zh_TW
dc.subjectGRB10基因zh_TW
dc.subject子宮內生長遲緩zh_TW
dc.subject羅素–西弗氏症zh_TW
dc.subject甲基化zh_TW
dc.subjectasymmetryen
dc.subjectRussell-Silver syndromeen
dc.subjectMethylationen
dc.subjectGRB10en
dc.subjectintrauterine growth retardationen
dc.title羅素–西弗氏症與人類印記基因甲基化的關聯性研究zh_TW
dc.titleThe roles of methylation of human imprinting genes in Russell–Silver syndrome (RSS)en
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊偉勛,蔡文友
dc.subject.keyword羅素–西弗氏症,甲基化,GRB10基因,子宮內生長遲緩,身體不對稱,zh_TW
dc.subject.keywordRussell-Silver syndrome,Methylation,GRB10,intrauterine growth retardation,asymmetry,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2007-01-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
888.75 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved