Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30989
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋延齡(Yen-Ling Song)
dc.contributor.authorApolinario V. Yamboten
dc.contributor.author楊擘zh_TW
dc.date.accessioned2021-06-13T02:24:12Z-
dc.date.available2008-02-02
dc.date.copyright2007-02-02
dc.date.issued2007
dc.date.submitted2007-01-30
dc.identifier.citationBryant MS, Lee RP, Lester RJ &. Whittington RJ (1999) Anti-immunoglobulin antisera used in an ELISA to detect antibodies in barramundi Lates calcarifer to Cryptocaryon irritans. Dis Aquat Org 36(1):21-28.
Buchmann K (1999) Immune mechanisms in fish skin against maonogeneans- a model. Folia Parasitol 46:1-9.
Buchmann K, Bresciani J (1998) Microenvironment of Gyrodactylus derjavini on rainbow trout Onchorhyncus mykiss: association between mucous cell density in skin and site selection. Parasitol Res 84:17-24.
Bunkley-Williams L, Williams Jr EH (1994) Diseases caused by Trichodina spheroidesis and Cryptocaryon irritans (Ciliophora) in wild coral reef fishes. J Aquat Anim Health 6:360-361.
Burgess PJ, Matthews RA (1994) A standardized method for the in vivo maintenance of Cryptocaryon irritans (Ciliophora) using the grey mullet Chelon labrosus as an experimental host. J Parasitol 80(2):288-292.
Burgess PJ, Matthews RA (1995) Crytpocaryon irritans (Ciliophora): acquired protective immunity in the thick-lipped mullet, Chelon labrosus. Fish Shellfish Immunol 5:459-468.
Burkart MA, Clark TG, Dickerson HW (1990) Immunization of channel catfish, Ictalurus punctatus Rafinisque, against Ichthyophthirius multifiliis (Fouquet): Killed versus live vaccines. J Fish Dis 13:445-4543.
Bryant MS, Lee RP, Lester RJG, Whittington RJ (1999) Anti-immunoglobulin antisera used in an ELISA to detect antibodies in barramundi Lates calcarifer to Cryptocaryon irritans. Dis Aquat Org 36:21-28.
Bunkley-Williams L, Williams Jr EH (1994) Diseases caused by Trichodina spheroidesis and Cryptocaryon irritans (Ciliophora) in wild coral reef fishes. J Aquat Anim Health 6:360-361.
Cain KD, Jones DR, Raison RL (2000) Characterisation of mucosal and systemic immune responses in rainbow trout (Onchorhyncus mykiss) using surface plasmon resonance. Fish Shellfish Immunol 10:651-666.
Chao CB, Chung HY (1994) Study on Cryptocaryon irritans infection on captive grouper (Epinephelus spp.), life cycle and pathogenicity. Rep Fis Dis Res 14:31-40. (in Chinese, with Chinese and English summary)
Cheung PJ, Nigrelli RF, Ruggieri GD (1979) Studies on Cryptocaryoniasis in marine fish: effect of temperature and salinity on the reproductive cycle of Cryptocaryon irritans Brown, 1951. J Fish Dis 2:93-97.
Chi SC, Hu WW, Lo BJ (1999) Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). J Fish Dis 22:173-182.
Clark TG, Dickerson H.W (1997) Antibody-mediated effects on parasite behavior: evidence of a novel mechanism of immunity against a parasitic protist. Parasitol Today 13:477-480.
Clark TG, Dickerson HW, Findly RC (1988) Immune response of channel catfish to ciliary antigens of Ichthyophthirius multifiliis. Dev Comp Immunol 12:581-594.
Clark TG, Dickerson HW, Lin TL (1987) In vitro response of Ichthyophthirius multifiliis to sera from immune channel catfish. J Fish Biol 31:203-208.
Clark TG, Lin TL, Dickerson HW (1995) Surface immobilization antigens of Ichthyophthirius multifiliis: their role in protective immunity. Annu Rev Fish Dis 5:113-131.
Clark TG, Lin TL, Dickerson HW (1996) Surface antigen cross-linking triggers forced exit of a protozoan parasite from its host. Proc Natl Acad Sci 93:6825-6829.
Clark TG, McGraw RA, Dickerson HW (1992) Developmental expression of surface antigen genes in the parasitic ciliate Ichthyophthirius multifiliis. Proc Natl Acad Sci 89:6363-6367.
Colorni A (1985) Aspects of the biology of Cryptocaryon irritans, and hyposalinity as a control measure in cultured gilt-head sea bream Sparus aurata. Dis Aquat Org 1:19-22.
Colorni A (1987) Biology of Cryptocaryon irritans and strategies for its control. Aquaculture 67: 236-237.
Colorni A, Burgess PJ (1997) Cryptocaryon irritans Brown 1951, the cause of white spot disease in marine fish: an update. Aquar Sci Conserv 1: 217-238.
Colorni A, Diamant A (1993) Ultrastructural features of Cryptocaryon irritans, a ciliate parasite of marine fish. Europ J Protistol 29:425-434.
Cross ML, Matthews RA (1992) Ichthyophthiriasis in carp, Cyprinus carpio L.: fate of parasites in immunized fish. J Fish Dis 15:497-505.
Cross ML, Matthews RA (1993a) Ichthyophthirius multifiliis Fouquet (Ciliophora): the location of sites immunogenic to the host Cyprinus carpio (L.). Fish Shellfish Immunol 3:13-24.
Cross ML, Matthews RA (1993b) Localized leucocyte response to Ichthyophthirius multifiliis establishment in immune carp Cyprinus carpio L. Vet Immunol Immunopathol 38:341-358.
Dalgaard M, Buchmann K, Li A (2002) Immunization of rainbow trout fry with Ichthyophthirius multifiliis sonicate: protection of host and immunological changes. Bull Eur Ass Fish Pathol 22:288-297.
Diamant A, Issar G, Colorni A, Paperna I (1991) A pathogenic Cryptocaryon-like ciliate from the Mediterranean Sea. Bull Eur Ass Fish Pathol 11:122-124.
Dickerson HW, Clark TG (1996) Immune response of fishes to ciliates. Ann Rev Fish Dis 6:107-120.
Dickerson HW, Clark TG (1998) Ichthyophthirius multifiliis: a model of cutaneous infection and immunity in fishes. Immunol Rev 166:377-384.
Dickerson HW, Clark TG, Findly RC (1989) Ichthyophthirius multifiliis has membrane-associated immobilization antigens. J Protozool 36:159-164.
Dickerson HW, Dawe DL (1995) Ichthyophthirius multifiliis and Cryptocaryon irritans (Phylum Ciliophora). In Woo, P.T.K. (ed.) Fish Diseases and Disorders, Vol. 1, Protozoan and Metazoan Infections. CAB International 5:181-227.
Diggles BJ, Adlard RD (1997) Intraspecific variation in Cryptocaryon irritans. J Eukaryot Microbiol 44:25-32.
Diggles BJ, Lester RJG (1996a) Infections of Cryptocaryon irritans on wild fish from southeast Queensland, Australia. Dis Aquat Org 25:159-167.
Diggles BJ, Lester RJG (1996b) Influence of temperature and host species on the development of Cryptocaryon irritans. J Parasitol 82(1):45-51.
Diggles BJ, Lester RJG (1996c) Variation in the development of two isolates of Cryptocaryon irritans. J Parasitol 82(3):384-388.
Ekless LM, Matthews RA (1993) Ichthyophthirius multifiliis: axenic isolation and short-term maintenance in selected monophasic media. J Fish Dis 16:437-447.
Elbadri GAA, De Ley P, Waeyenberge L, Vierstraete A, Moens M, Vanfleteren J (2002) Intraspecific variation in Radopholus similis isolates assessed with restriction fragment length polymorphism and DNA sequencing of the internal transcribed spacer region of the ribosomal RNA cistron. Int J Parasitol 32:199-205.
Esteve-Gassent MD, Nielsen ME, Amaro C (2003) The kinetics of antibody production in mucus and serum of European eel (Anguilla anguilla) after vaccination against Vibrio vulnificus: development of a new method for antibody quantification in skin mucus. Fish Shellfish Immunol 15:51-61.
Everett KDE, Knight JR, Dickerson HW (2002) Comparing tolerance of Ichthyophthirius multifiliis and Tetrahymena thermophila for new cryopreservation methods. J Parasitol 88:41-46.
Freshney RI (2000) Culture of animal cells: a manual of basic technique, 4th edn. Wiley-Liss, New York.
Gaertig J, Gao Y, Tishgarten T, Clark TG, Dickerson HW (1999) Surface display of parasite antigen in the ciliate Tetrahymena thermophila. Nat Biotechnol 17:462-465.
Gleeson DJ, McCallum, HI, Owens IPF (2000) Differences in initial and acquired resistance to Ichthyophthirius multifiliis between populations of rainbowfish. J Fish Biol 57:466-475.
Hatten F, Frederiksen A, Hordvik I, Endersen C (2001) Presence of IgM in cutaneous mucus, but not in gut mucus of Atlantic salmon, Salmo salar. Serum IgM is rapidly degraded when added to gut mucus. Fish Shellfish Immunol 11:257-268.
He J, Yin Z, Xu G, Gong Z, Lam TJ, Sin YM (1997) Protection of goldfish against Ichthyophthirius multifiliis by immunization with a recombinant vaccine. Aquaculture 158:1-10.
Herbert DR, Lee JJ, Lee NA, Nolan TJ, Schad GA, Abraham D (2000) Role of IL-5 in innate and adaptive immunity to larval Strongyloides stercoralis in mice. J Immunol 165:4544-4551.
Hicks SJ, Theodoropoulos G, Carrington SD, Corfield AP (2000) The role of mucins in host-parasite interactions. Part I- protozoan parasites. Parasitol Today 16:476-481.
Hines RS, Spira DT (1974) Ichthyophthiriasis in the mirror carp Cyprinus carpio (L.) V. Acquired immunity. J Fish Biol 6:373-378.
Hirazawa N, Oshima S, Hara T, Mitsuboshi T, Hata K (2001a) Antiparasitic effect of medium-chain fatty acids against the ciliate Cryptocaryon irritans infestation in the red sea bream Pagrus major. Aquaculture 198:219-228.
Hirazawa N, Oshima S, Hata K (2001b) In vitro assessment of the antiparasitic effect of caprylic acid against several fish parasites. Aquaculture 200:251-258.
Houghton G, Matthews RA 1993 Ichthyophthirius multifiliis (Fouquet): survival within immune juvenile carp, Cyprinus carpio L. Fish Shellfish Immunol. 3:157-166.
Jee BY, Kim KH, Park SI, Kim YC (2000) A new strain of Cryptocaryon irritans from the cultured olive flounder Paralichthys olivaceus. Dis Aquat Org 43:211-215.
Kumar S, Tamura K, Jakobsen IB, and Nei M (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, Arizona, USA.
LaFrentz BR, LaPatra SE, Jones GR, Congleton JL, Sun B, Cain, KD (2002) Characterisation of serum and mucosal antibody responses and relative per cent survival in rainbow trout, Onchorhyncus mykiss (Walbaum), following immunization and challenge with Flavobacterium psychrophilum. J Fish Dis 25:703-713.
Lobb CJ (1987) Secretory immunity induced in channel catfish, Ictalurus punctatus, following bath immunization. Dev Comp Immunol 11:727-738.
Lobb CJ, Clem LW (1981) The metabolic relationships of the immunoglobulins in fish serum, cutaneous mucus, and bile. J Immunol 127:1525-1529.
Lin TL, Dickerson HW (1992) Purification and partial characterization of immobilization antigens from Ichthyophthirius multifiliis. J Protozool 39:457-463.
Lin Y, Cheng G, Wang X, Clark TG (2002) The use of synthetic genes for the expression of ciliate proteins in heterologous systems. Gene 288:85-94
Maki JL, Dickerson HW (2003) Systemic and cutaneous mucus antibody responses of channel catfish immunized against the protozoan parasite Ichthyophthirius multifiliis. Clin Diagn Lab Immunol 10:876-881.
Matthews BF, Matthews RA, Burgess PJ (1993) Cryptocaryon irritans Brown, 1951 (Ichthyophthiriidae): the ultrastructure of the somatic cortex throughout the life cycle. J Fish Dis 16:339-349.
Meeusen ENT, Balic (2000) Do eosinophils have a role in the killing of helminth parasites? Parasitol Today 16:95-101.
Nielsen CV, Buchmann K (2000) Prolonged cultivation of Ichthyophthirius multifiliis using an EPC cell line as substrate. Dis Aquat Org 42:215-219.
Noe JG, Dickerson HW (1995) Sustained growth of Ichthyophthirius multifiliis at low temperature in the laboratory. J Parasitol 81:1022-1024.
Noga EJ (1987) Propagation in cell culture of the dinoflagellate Amyloodinium, an ectoparasite of marine fishes. Science 236:1302-1304.
Noga EJ, Bower CE (1987) Propagation of the marine dinoflagellate Amyloodinium ocellatum under germ-free conditions. J Parasitol 73(5):924-928.
Padigel UM, Lee JJ, Nolan TJ, Schad GA, Abraham D (2006) Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect Immun 74:3232-3238.
Rasheed VM (1989) Diseases of cultured brown-spotted grouper Epinephelus tauvina and silvery jack porgy Acanthopagrus cuvieri in Kuwait. J Aquat Anim Health 1:102-107.
Rigos G, Pavlidis M, Divinach P (2001) Host susceptibility to Cryptocaryon sp. infection of Mediterranean marine broodfish held under intensive culture conditions: a case report. Bull Eur Ass Fish Pathol 21:33-36.
Sigh J, Buchmann K (2001) Comparison of immobilization assays and enzyme-linked immunosorbent assays for detection of rainbow trout antibody-titres against Ichthyophthirius multifiliis Fouquet, 1876. J Fish Dis 24:49-51.
Sigh J, Buchmann K (2002) Comparative analysis of cross-reactivity between Ichthyophthirius and Tetrahymena. Bull Eur Ass Fish Pathol 22:37-44.
Sin YM, Ling KH, Lam TJ (1996) Cell-mediated response of goldfish, Carassius auratus (L.), to Ichthyophthirius multifiliis. J Fish Dis 19:1-7.
Swofford DL (1998) PAUP: phylogenetic analysis using parsimony, version 4.0b1. Sinauer and Associates Inc., Sunderland, Massachusetts.
Tavares-Dias, M (2006a) A morphological and cytochemical study of erythrocytes, thrombocytes and leukocytes in four freshwater teleosts. J Fish Biol 68:1822-1833.
Tavares-Dias, M (2006b) Cytochemical method for staining fish basophils. J Fish Biol 69:312-317.
Tavares-Dias M, Barcellos JFM (2005) Peripheral blood cells of the armored catfish Hoplosternum littorale Hancock, 1828: a morphological and cytochemical study. Braz J Morphol Sci 22:215-220.
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680.
Thompson RCA, Lymbery AJ (1990) Intraspecific variation in parasites- What is a strain?. Parasitol Today 6:345-348.
Uzmann JR, Hayduk SH (1963) In vitro culture of the flagellate protozoan Hexamita salmonis. Science 140:290-291.
Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506-513.
Wang R, Belosevic M (1994) Cultivation of Trypanosoma danilewskyi (Laveran & Mesnil, 1904) in serum-free medium and assessment of the course or infection in goldfish, Carassius auratus (L.). J Fish Dis 17:47-56.
Wang X, Clark TG, Noe J, Dickerson HW (2002) Immunisation of channel catfish, Ictalurus punctatus, with Ichthyophthirius multifiliis immobilization antigens elicits serotype-specific protection. Fish Shellfish Immunol 13:337-350.
Wang X, Dickerson HW (2002) Surface immobilization antigen of the parasitic ciliate Ichthyophthirius multifiliis elicits protective immunity in channel catfish (Ictalurus punctatus). Clin Diagn Lab Immunol 9:176-181.
Woo PTK (1979) Trypanoplasma salmositica: Experimental infections in rainbow trout, Salmo gairdneri. Exper Parasitol 47:36-48.
Woo PTK, Li S (1990) In vitro attenuation of Cryptobia salmositica and its use as a live vaccine against cryptobiosis in Onchorhyncus mykiss. J Parasitol 76(5):752-755.
Wright ADG, Colorni A (2002) Taxonomic re-assignment of Cryptocaryon irritans, a marine fish parasite. Europ J Protistol 37:375-378.
Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Heredity 92:371-373.
Xu CH, Clark TG, Leff AA, Dickerson HW (1995) Analysis of the soluble and membrane-bound immobilization antigens of Ichthyophthirius multifiliis. J Euk Microbiol 42:558-564.
Xu DH, Klesius PH (2002) Antibody mediated immune response against Ichthyophthirius multifiliis using excised skin from channel catfish, Ictalurus punctatus (Rafinesque), immune to Ichthyophthirius. J Fish Dis 25:299-306.
Xu DH, Klesius PH (2003) Protective effect of cutaneous antibody produced by channel catfish, Ictalurus punctatus (Rafinesque), immune to Ichthyophthirius multifiliis Fouquet on cohabited non-immune fish. J Fish Dis 26:287-291.
Xu DH, Klesius PH, Shelby RA (2002) Cutaneous antibodies in excised skin from channel catfish, Ictalurus punctatus (Rafinesque), immune to Ichthyophthirius multifiliis. J Fish Dis 25:45-52.
Xu DH, Klesius PH, Shelby RA (2003) A modified enzyme-linked immunosorbent assay for detection of cutaneous antibody against Ichthyophthirius multifiliis. Bull Eur Ass Fish Pathol 23:228-234.
Xu DH, Klesius PH, Shelby RA (2004) Immune responses and host protection of channel catfish, Ictalurus punctatus (Rafinesque), against Ichthyophthirius multifiliis after immunization with live theronts and sonicated trophonts. J Fish Dis 27:135-141.
Yano T (1992) Assays of hemolytic complement activity. In: Stolen JS, Fletcher TC, Anderson DP, Kaattari SL, Rowley AF (eds) Techniques in fish immunology. SOS Publications, Fair Haven, NJ, p 131-141.
Yoshinaga T, Dickerson HW (1994) Laboratory propagation of Cryptocaryon irritans on saltwater-adapted Poecilia hybrid, the black molly. J Aquat Anim Health 6:197-201.
Yoshinaga T, Nakazoe J (1997) Acquired protection and production of immobilization antibody against Cryptocaryon irritans (Ciliophora, Hymenostomatida) in mummichog (Fundulus heteroclitus). Fish Pathol 32:229-230.
Zar JH (1999) Biostatistical Analysis, 4th ed. Prentice-Hall, Inc., New Jersey.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30989-
dc.description.abstract中文摘要
海水白點蟲 (Cryptocaryon irritans),是造成海水魚類白點病的原生動物寄生蟲。本研究描述海水白點蟲發育學及分子生物學的特徵,以及其體外培養技術。此外亦評估點帶石斑魚 (Epinephelus coioides) 對抗海水白點蟲產生的體液性和細胞性免疫反應;以及測定經免疫過的魚,是否被賦予保護作用。
在台灣的海水白點蟲各分離株中,分析其發育學特徵,以及包含部分 18 S、完整的第一內轉錄間隔區 (internal transcribed spacer) 和部分 5.8 S 的核醣體 DNA 序列。發現台灣海水白點蟲分離株在聚集、附著和感染部位等發育學特徵上並不一致。澎湖和美國的海水白點蟲分離株核酸序列相同;馬來西亞和以色列分離株核酸序列也相同。成偶比對中,台灣海水白點蟲分離株的變異百分率,比基因資料庫中所列出的序列,顯示出有更高度的變異。親緣關係樹可區分出海水變異株和低鹽度變異株兩類群。在水源有限的半淡鹹水池,或者海水箱網養殖上,採用操作鹽度來控制海水白點蟲病有施行上的困難,因此發展新的防治策略有其需要。
進行了三次體外 (in vitro) 培養海水白點蟲的實驗。纖毛幼蟲 (theront) 能附著在 tryptic soy agar (TSA, 3% NaCl) 固體培養基上,之後長大成為營養體 (trophont);纖毛幼蟲亦可在加強養份的液體培養基中轉型成營養體。所有離體試驗中所培養出的營養體體形大小,都落在記載中魚體 (in vivo) 發育寄生蟲的大小範圍內。這些結果顯示體外培養具有潛在的可行性。然而從營養體轉型成孢囊體 (tomonts),仍需找到啟動轉型的必要因子。
將福馬林固定的纖毛幼蟲腹腔注射石斑幼魚進行疫苗效果測試,二次試驗分別在免疫後25 天和 17 天進行,將活的孢囊投入魚缸進行感染。第一次試驗中接受高劑量疫苗 (100 μg/fish) 的魚在感染後 22 天內沒有死亡,接受低劑量疫苗 (10 μg/fish) 的魚累積死亡率為 40%,而對照組(注射 PBS) 則 90% 死亡。第二次試驗中,感染 5 天或 7 天後,疫苗免疫過的石斑魚產生的營養體和孢囊體的數量,分別都顯著地比注射 PBS者少;感染後 9 天內,疫苗(高劑量)免疫過的魚累積死亡率為 37.5%,對照組則 100% 死亡。之前曝露接觸海水白點蟲過的石斑幼魚和成魚,再感染後 3 週,用 ELISA 測定其黏液抗體力價,比之前沒曝露過海水白點蟲的魚來得高。而且第三次曝露感染比起第一次曝露感染,所產生的孢囊體顯著較小。這些結果指出免疫過的石斑魚被賦予了保護性,對海水白點蟲纖毛幼蟲的附著、入侵和發育,石斑魚的皮膚可能扮演防止及限制的主要角色。
先天 (innate) 和後天 (adaptive) 免疫中的細胞性免疫在寄生蟲的排除上,扮演不可或缺的角色。周邊血液中嗜酸性球族群減少、白血球滲入感染區域、表皮層黏液細胞增生,以及分泌抗體的 B 細胞出現在表皮層,都指出協同體液性免疫,細胞性免疫作用的活化;並進一步地解釋,賦予在免疫過的石斑魚對抗原生動物海水白點蟲的保護作用的機制。
海水白點蟲的多變異性,使得收集不同分離株成為免疫研究的必要工作。海水白點蟲的體外培養可能有希望提供長期、穩定的產量,以供應疫苗發展。魚體防禦體表寄生蟲感染,黏液中專一性抗體顯示極其重要,細胞性免疫亦是必要的。
zh_TW
dc.description.abstractAbstract
This study described the developmental and molecular characteristics of Cryptocaryon irritans, a protozoan parasite causing the white spot disease in marine fishes, and its in vitro culture. In addition, the paper also assessed the humoral and cellular immune responses of the grouper Epinephelus coioides immunized against C. irritans and determined whether protection is conferred on immunized fish.
Developmental characteristics and sequences of the ribosomal DNA regions such as part of 18 S, entire first internal transcribed spacer, and part of 5.8 S of various Taiwan isolates of C. irritans were determined. The parasite showed variation in its developmental characteristics such as aggregation, adherence, and site of infection. Isolates from Pingtung and the USA had identical nucleotide sequences while the isolate from Malaysia was identical to Israel. Percentage variation among Taiwan isolates, when the sequences were compared pairwise, showed a higher degree of variation than those whose sequences were listed in the GenBank. The phylogenetic tree distinguished the seawater species of C. irritans from the low salinity variant. Salinity manipulation to check cryptocaryoniasis in brackishwater ponds with limited water source and marine cage sites is not feasible hence there is a need to develop new strategies for its control and prevention.
Three experiments were carried out for the in vitro culture of C. irritans. Attachment of theront parasites and subsequent enlargement into trophonts were realized in tryptic soy agar (TSA, 3% NaCl). Transformation of theronts into trophonts in an enriched liquid was also realized. Results showed that the in vitro culture of C. irritans is potentially feasible as evidenced by the enlargement of the trophonts within the recorded in vivo size range using either a solid media as attachment substrate or a liquid media without attachment. There is a need, however, to determine the essential factors that will trigger the transformation of the trophonts into viable tomonts.
Vaccine-immunization was carried out by intraperitoneal injection of formalin-killed theronts into the grouper fingerling. At 25-day and 17-day post-immunization, live tomonts were seeded into the tanks to challenge the fish in the first replicate and second replicate, respectively. In the first replicate, no mortality was monitored on fish that received high dose vaccine (100 μg/fish) while 40% and 90% cumulative mortalities were recorded in low dose group (10 μg/fish) and control group (PBS-injected), respectively, at 22-day post challenge. In the second replicate, significantly fewer trophonts and tomonts in the vaccine-immunized group than the PBS-injected fish were observed at 5-day post-challenge and 7-day post challenge, respectively. Cumulative mortalities of 37.5% and 100% were observed in the vaccine-immunized group (high dose) and the control group at 9-day post challenge. Antibody titers in the mucus detected by ELISA were significantly higher in C. irritans–exposed grouper fingerlings and large grouper at 3-wk post infection compared to fish that had no previous exposure. In addition, significantly smaller tomonts were produced after three successive exposures of the same fish than those produced in fish after single exposure. Results suggest that protective immunity was conferred on the immunized grouper. The skin of immunized grouper may have played a major role in preventing or limiting the adhesion, invasion, and development of C. irritans theronts.
The cellular responses in the innate and adaptive immunity play a vital role in the elimination of the parasite. The down-modulation of eosinophil population in the peripheral blood, infiltration of leukocytes in the infected site, proliferation of mucus cells in the epidermal layer, and presence of antibody-secreting B cells in the epidermal layer all point to the activation of the cellular immunity in coperation with humoral immunity. All of this further explains the mechanisms of protection conferred in immunized grouper against the protozoan parasite C. irritans.
The existence of diverse C. irritans necessitates the collection of different isolates for immune studies. The possible in vitro culture showed promise and may provide a long term and a stable supply of C. irritans for vaccine development. Cellular immunity is necessary in the defense of fish and the specific antibodies in the mucus are extremely important against a parasitic infection.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:24:12Z (GMT). No. of bitstreams: 1
ntu-96-D89225006-1.pdf: 1663240 bytes, checksum: a08dff07bd65fc2b08af3482a8bf6472 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents Page
Acknowledgement i
Contents iii
List of Tables v
List of Figures vi
Abstract vii
In English vii
In Chinese ix
Overall Introduction 1
Objectives 12
Significance of the study 12
Chapter 1 - Characterization of Cryptocaryon irritans14
Introduction 14
Materials and Methods 14
Results 18
Discussion 22
Chapter 2 - In vitro culture of Cryptocaryon irritans 28
Introduction 28
Materials and Methods 28
Results 34
Discussion 36
Chapter 3 – Humoral immune responses against Cryptocaryon irritans 42
Introduction 42
Materials and Methods 42
Results 49
Discussion 51
Chapter 4 – Cellular immune responses against Cryptocaryon irritans 57
Introduction 57
Materials and Methods 57
Results 60
Discussion 61
Overall Conclusion 66
Literature Cited 68
Tables 78
Figures 85
Appendix - Published papers in ISI journals 104
dc.language.isoen
dc.subjectDNA 序列zh_TW
dc.subject海水白點蟲zh_TW
dc.subject寄生性原生動物zh_TW
dc.subject點帶石斑魚zh_TW
dc.subject免疫防制zh_TW
dc.subject細胞性免疫zh_TW
dc.subjectimmunocontrolen
dc.subjectCryptocaryon irritansen
dc.subjectprotozoan parasiteen
dc.subjectEpinephelus coioidesen
dc.subjectDNA sequenceen
dc.subjectcellular immune responseen
dc.title海水魚寄生性白點病原蟲(Cryptocaryon irritans)之研究及免疫控制zh_TW
dc.titleA Study of Cryptocaryon irritans, a Protozoan Parasite of Marine Fishes, and its Immunocontrolen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee蘇霩靄(Kua-Eyre Su),李國誥(Kuo-Kao Lee),林翰佑(Han-Duo Lin),齊肖琪(Shau-Chi Chi),施秀惠(Hsiu-Hui Shih),張繼堯(Chi-Yao Chang)
dc.subject.keyword海水白點蟲,寄生性原生動物,點帶石斑魚,免疫防制,細胞性免疫,DNA 序列,zh_TW
dc.subject.keywordCryptocaryon irritans,protozoan parasite,Epinephelus coioides,immunocontrol,cellular immune response,DNA sequence,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2007-01-30
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved