請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30979
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 戴昌鳳 | |
dc.contributor.author | Cheng-Mao Chang | en |
dc.contributor.author | 張誠茂 | zh_TW |
dc.date.accessioned | 2021-06-13T02:23:44Z | - |
dc.date.available | 2007-02-01 | |
dc.date.copyright | 2007-02-01 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-30 | |
dc.identifier.citation | Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptation in aquatic organisms. Aquat. Toxicol. 24: 21-62
Bailly X, Vinogradov S (2005) The sulfide binding function of annelid hemoglobins: relic of an old biosystem? J. Inorg. Biochem. 99: 142-150 Bartholomew TC, Powell GM, Dodgson KS, Curtis CG (1980) Oxidation of Sodium Sulfide by Rat-Liver, Lungs and Kidney. Biochemical Pharmacology 29: 2431-2437 Biasi AMD, Bianchi CN, Aliani S, Cocito S, Peirano A, Dando PR, Morri C (2004) Epibenthic communities in a marine shallow area with hydrothermal vents (Milos island, Aegean sea). Chem. Ecol. 20 (supplement 1): S89-S105 Bourgeois RP, Felder DL (2001) Postexposure metabolic effects of sulfide and evidence of sulfide-base ATP production in callianassid ghost shrimp(Crustacea: Decapoda: Thalassinidea). J. Exp. Mar. Biol. Ecol. 263: 105-121 Butterworth KG, Grieshaber MK, Taylor AC (2004) Behavioural and physiological responses of the Norway lobster, Nephrops norvegicus(Crustacea: Decapoda), to sulfide exposure. Mar. Biol. 144: 1087-1095 Cardigos F, Colaco A, Dando PR, Avila SP, Sarradin PM, Tempera F, Conceicao P, Pascoal A, Santos RS (2005) Shallow water hydrothermal vent field fluids and communities of the D. Joao de Castro Seamount (Azores). Chemical Geology 224: 153-168 Chen CTA, Zeng ZG, Kuo FW, Yang TYF, Wang BJ, Tu YY (2005) Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chemical Geology 224: 69-81 Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14: 454-458 Colaço A, Dehairs F, Desbruyères D (2002) Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-sea Res. 49: 359-412 Dorman DC, Moulin FJM, McManus BE, Mahle KC, James RA, Struve MF (2002) Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol. Sci. 65: 18-25 Dover CLV (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, New Jersy Fahey RC, Newton GL, Dorian R, Kosower EM (1981) Analysis of biological thiols: Quantitative determination of thiols at the picomole level based upon derivatization with monobromobimanes and separation by cation-exchange chromatography Anal. Biochem. 111: 357-365 Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphid oxidation enzymes in animals from sulphid-rich habitats. Nature 293: 291-293 Gamenick I, Abbiati M, Giere O (1998) Field distribution and sulphide tolerance of Capitella capitata (annelida: polychaeta) around shallow water hydrothermal vents off Milos (Aegean Sea). A new sibling species? Mar. Biol. 130: 447-453 Goffredi SK, Barry JP (2002) Species-specific variation in sulfide physiology between closely relatived Vesicomyid clams. Mar. Ecol. Prog. Ser. 225: 227-238 Gopakumar G, Kuttyamma VJ (1996) Effect of hydrogen sulfide on two species of penaeid prawns Penaeus indicus (H. Milne Edwards) and Metapenaeus dobsoni (Miers). Bull. Environ. Contam. Toxicol. 57: 824-828 Grieshaber MK, Völkel S (1998) Animal adaptation for tolerance and exploration of poisonous sulfide. Annu. Rev. Physiol. 60: 33-53 Gru C, Sarradin PM, Legoff H, Narcon S, Caprais JC, Lallier FH (1998) Determination of reduced sulfur compounds by high-performance liquid chromatography in hydrothermal seawater and body fluids from Riftia pachyptila. Analyst 123: 1289-1293 Hagerman L, Vismann B (1993) Anaerobic Metabolism, Hypoxia and Hydrogen-Sulfide in the Brackish-Water Isopod Saduria Entomon (L). Ophelia 38: 1-11 Hagerman L, Vismann B (1999) Effects of thiosulfate on haemocyanin oxygen affinity in the isopod Saduria entomon (L.) and the brown shrimp Crangon crangon (L.). J. Comp. Physiol. B. 169: 549-554 Hahlbeck E, Arndt C, Schiedek D (2000) Sulphide detoxification in Hediste diversicolor and Marenzelleria viridis, two dominant polychaete worms within the shallow coastal waters of the southern Baltic Sea. Comp. Biochem. Phys. B 125: 457-471 Hauschild K, Grieshaber MK (1997) Oxygen consumption and sulfide detoxification in the lugworm Arenicola marina at different ambient oxygen partial pressures and sulfide concentrations. J. Comp. Physiol. B. 167: 378-388 Hauschild K, Weber WM, Clauss W, Grieshaber MK (1999) Excretion of thiosulphate, the main detoxification product of sulphide, by the lugworm Arenicola marina L. Journal Of Experimental Biology 202: 855-866 Huang IH (2005) The analysis of fault systems in the Southernmost Part of Okinawa Trough and Northern Taiwan Institute of Applied Geosciences, National Taiwan Ocean University Ingvorsen K, Jorgensen BB (1979) Combined measurement of oxygen and sulfide in water samples. Limnol. Oceanogr. 24: 390-393 Ivanov MV, Karavaiko GI (2004) Geological Microbiology. Microbiology 73: 493-508 Jahn A, Gamenick I, Theede H (1996) Physical adaptation of Cyprideis torosa (Crustacea, Ostracoda) to hydrogen sulphide. Mar. Ecol. Prog. Ser. 142: 215-223 Jahn A, Janas U, Theede H, Szaniawska A (1997) Significant of body size in sulphide detoxification in the Baltic clam Macoma balthica (Bivalvia, Tellinidae) in the Gulf of Gdańsk. Mar. Ecol. Prog. Ser. 154: 175-183 Jannasch HW (1985) Geomicrobiology of deep-sea hydrothermal vent. Science 229: 717-725 Jeng MS, Clark PF, Ng PKL (2004a) The first zoea, megalopa, and first crab stage of the hydrothermal vent crab Xenograpsus testudinatus (decapoda: brachyura: grapsoidea) and the systematic implications for the varunidae. J. Crustac. Biol. 24: 188-212 Jeng MS, Ng NK, Ng PKL (2004b) Hydrothermal vent crabs feast on sea 'snow'. Nature 432: 969 John A, Theede H (1997) Different degree of tolerance to hydrogen sulphide in populations of Macoma balthica (Bivalvia, Tellinidae). Mar. Ecol. Prog. Ser. 154: 185-196 Johns AR, Taylor AC, Atkinson RJA, Grieshaber MK (1997) Sulphide metabolism in thalassinidean crustacea. J. Mar. Biol. Assoc. U.K. 77: 127-144 Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL (1988) Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep-sea res. 35: 1988 Joyner JL, Peyer SM, Lee RW (2003) Possible roles of sulfur-containing amino acids in a chemoautotrophic bacterium-mollusc symbiosis. Biol. Bull. 205: 331-338 Julian D, April KL, Patel S, Stein JR, Wohlgemuth SE (2005) Mitochondrial depolarization following hygdrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invetebrate. J. Exp. Biol. 208: 4109-4122 Julian D, Wieting SL, Seto SL, Bogan MR, Arp AJ (1999) Thiosulfate elimination and permeability in a sulfide-adapted marine invertebrate. Physiological And Biochemical Zoology 72: 416-425 Kamenev GM, Fadeev VI, Selin NI, Tarasov VG, Malakhov VV (1993) Composition and distribution of macro- and meibenthos around sublittoral hydrothermal vents in the Bay of Plenty, New Zealand. New Zealand Journal of Marine and Freshwater Research 27: 407-418 Kang J-C, Matsuda O (1994) Combined effects of hypoxia and hydrogen sulfide on early developmental stages of white shrimp Metapenaeus monoceros. J. Fac. Appl. Biol. Sci. 33: 21-27 Knezovich JP, Steichen DJ, Jelinski JA, Anderson SL (1996) Sulfide tolerance of four marine species used to evaluate sediment and pore-water toxicity. Bull. Environ. Contam. Toxicol. 57: 450-457 Kuo FW (2001) Preliminary investigation of the hydrothermal activities off Kueishan island. Institute of Marine Geology and Chemistry, National Sun Yat Sen university, Master thesis Laudien J, Schiedek D, Brey T, Portner HO, Arntz WE (2002) Survivorship of juvenile surf clams Donax serra (Bivalvia, Donacidae) exposed to severe hypoxia and hydrogen sulphide. J. Exp. Mar. Biol. Ecol. 271: 9-23 Lawrence NS, Davis J, Compton RG (2000) Analytical strategies for the detection of sulfide: a review. Talanta 52: 771-784 Le Bris N, Sarradin PM, Caprais JC (2003) Contrasted sulphide chemistries in the environment of 13 degrees N EPR vent fauna. Deep-Sea Res. 50: 737-747 Libes SM (1992) An introduction to marine biogeochemistry. John Wiley & Sons, United States of America Martin JW, Haney TA (2005) Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zoological Journal Of The Linnean Society 145: 445-522 Masatsune T, Hiroshi T, Hiroyuki S (1993) Occurrence of Xenograpsus novaeinsularis Takeda et Kurata (Crustacea: Decapoda: Brachyura) in the Tokara and Iwo Islands. Nat. Envir. Sci. Res. 6: 59-64 Newton GL, Doria R, Fahey RC (1981) Analysis of biological thiols: Derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Anal. Biochem. 114: 383-387 Ng NK, Huang JF, Ho PH (2000) Description of a new species of hydrothermal crab, Xenograpsus testudinatus (Crustacea: Decapoda: Branchyura: Grapsdae) from Taiwan. Natl. Taiwan Mus. Spec. Pub. Ser. 10: 191-199 Nicholls P, Kim JK (1982) Sulfide as an inhibitorand donor for the cytochrome c oxidase system. Can. J. Biochem. 60: 613-623 Oeschger R, Vetter RD (1992) Sulfide detoxification and tolerance in Halicryptus spinulosus (Priapulida): a multiple strategy. Mar. Ecol. Prog. Ser. 86: 167-179 Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press Ltd., Oxford Powell MA, Somero GN (1985) Sulfide oxidation occurs in the animal tissue of the cutless clam, Solemya reidi. Biol. Bull. 169: 164-181 Powell MA, Somero GN (1986) Adaptations to sulfide by hydrothermal vent animals: Sites and mechanisms of detoxification and metabolism. Biol. Bull. 171: 274-290 Rau GH, Hedges JI (1979) Carbon-13 depletion in a hydrothermal vent mussel: suggention of a chemosynthetic food source. Science 203: 648-649 Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar. Ecol. Prog. Ser. 231: 121-138 Sandberg-Kilpi E, Vismann B, Hagerman L (1999) Tolerance of the Baltic amphipod Monoporeia affinis to hypoxia, anoxia and hydrogen sulfide. Ophelia 50: 61-68 Sanders NK, Childress JJ (1992) Specific effects of thiosulphate and L-lactate on hemocyanin-O2 affinity in a branchyuran hydrothermal vent crab Mar. Biol. 113: 175-180 Takeda M, Kurata Y (1977) Crabs of the Ogasawara Islands. Bull. Natn. Sci. Mus. 3: 91-111 Tarasov VG (2006) Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific Advances in Marine Biology, Vol 50, pp 267-421 Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI (2005) Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chemical Geology 224: 5-39 Tarasov VG, Gebruk AV, Shulkin VM, Kamenev GM, Fadeev VI, Kosmynin VN, Malakhov VV, Starynin DA, Obzhirov AI (1999) Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, PApua New Guinea) Cont. Shelf Res. 19: 79-116 Thiermann F, Vismann B, Giere O (2000) Sulphide tolerance of the marine nematode Oncholaimus campylocercoides-a result of internal sulphur formation? Mar. Ecol. Prog. Ser. 193: 251-259 Ubuka T (2002) Assay methods and biological roles of labile sulfur in animal tissue. J. Chromatogr., Biomed. Appl. 781: 227-249 Vetter RD, Wells ME, Kurtsman AL, Somero GN (1987) Sulfide detoxification by the hydrothermal vent crab Bythograea thermydron and other decapod crustaceans. Physiol. zool. 60: 121-137 Vismann B (1990) Sulfide detoxification and tolerance in Nereis (Hediste) diversicolor and Nereis (Neanthes) virens (Annelida: Polychaeta). Mar. Ecol. Prog. Ser. 59: 229-238 Vismann B (1991) Physiology of sulfide detoxification in the isopod Saduria (Mesidotea) entomon. Mar. Ecol. Prog. Ser. 76: 283-293 Vismann B (1996) Sulfide species and total sulfide toxicity in the shrimp Crangon crangon. J. Exp. Mar. Biol. Ecol. 204: 141-154 Völkel S (1995) Sulfide tolerance and detoxificantion in Arenicola marina and Sipunculus nudus. Amer. Zool. 35: 145-153 Völkel S, Grieshaber MK (1992) Mechanisms of sulphide tolerance in the peanut worm, Sipunculus nudus (Sipunculidae) and in the lugworm, Arenicola marina (Polychaeta). J. Comp. Physiol. B. 162: 469-477 Yang TF, Lan TF, Lee HF, Fu CC, Chuang PC, Lo CH, Chen CH, Chen CTA, Lee CS (2005) Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal 39: 469-480 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30979 | - |
dc.description.abstract | 本研究針對龜山島附近的淺海熱泉生物進行研究,自2005年8月起至2006年8月,一共完成8次的潛水調查與採樣,目前共紀錄包含4門6種大型底棲生物,包括兩種刺胞動物(Cnidaria):圓管星珊瑚Tubastraea aurea及一種未鑑定的海葵;兩種軟體動物(Mollusca):一種小型螺類Nassarius sp.及一種石鼈;環節動物(Annelida)一種:龍介蟲科(Serpulidae)的管蟲,與節肢動物(Athropod)一種:硫磺怪方蟹(Xenograpsus testudinatus)。其中硫磺怪方蟹數量十分龐大,並且主要在噴口中心區域活動,其牠物種均只出現在週圍區域。
硫化氫對水生生物來說是一種劇毒,它能滲入水族體內,阻抑電子傳遞鏈中細胞色素-c的正常功能,造成細胞死亡。由龜山島海域的水樣分析顯示,熱泉噴口中心區的海水硫化氫濃度高達2405.5 µM。將硫磺怪方蟹暴露在1000 µM及2000 µM的硫化氫中,半致死時間(LT50)分別為136及102小時,證實了怪方蟹對硫化氫具有很高的耐受度。分析暴露後的怪方蟹體內,發現大量的硫代硫酸根(S2O32-)累積在各部位的組織之中,藉著氧化作用,將硫化氫轉化為不具毒性的硫代硫酸根,再逐漸排出體外,可以克服硫化氫的毒性。淺海熱泉中硫化氫的毒性,不但排除了棲地中可能出現的競爭者與掠食者,也殺死潮水團中的浮游動物,讓浮游動物掉落,成為此處源源不絕的食物來源,硫磺怪方蟹慿著對硫化氫毒性的適應,得以在龜山島淺海熱泉區建立龐大的族群,成為最優勢的物種。 | zh_TW |
dc.description.abstract | The study aims to investigate the marine macro fauna associated with the shallow-water hydrothermal vents off Kueishan Island. Six species representing 4 phyla were recorded, including a hexacoral Tubastraea aurea, an unidentified sea anemone, two species of mollusks (a snail Nassarius sp., an unidentified chiton), one serpulid polychaete, and the vent crab Xenograpsus testudinatus. The crab is the dominant species and often swarms in enormous populations at venting areas, while other species occur at the peripheral areas of the hydrothermal vents.
Sulfide is highly toxic to aquatic animals due to the inhibition of cytochrome-c oxidase, a critical enzyme for mitochondrial respiration. Seawater samples collected near the vents showed the highest concentration of sulfide as 2405.5 µM. The median lethal time(LT50)of X. testudinatus exposed to 1000 µM and 2000 µM of sulfide were 136 h and 102 h, respectively. Elevated levels of thiosulfate(S2O3-2)in the tissues of the crabs after exposure of sulfide showed that oxidation of sulfide to non-toxic thiosulfate is possibly the major detoxification mechanism. This mechanism enables X. testudinatus to tolerate to the high sulfide concentration in the environment. The hydrothermal fluid not only provides abundant food supply for the crabs by killing zooplankton and descent as ‘marine snow’ to the bottom, but also precludes the possible competitors and predators. The special adaptation of X. testudinatus to the toxicity of sulfide enables them to colonize successfully and become dominate in the shallow-water hydrothermal vent ecosystem off Kueishan Island. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:23:44Z (GMT). No. of bitstreams: 1 ntu-96-R92241214-1.pdf: 2458620 bytes, checksum: 877179a3f46e15b27e492938a7b2eaee (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目 錄
中文摘要………………………………………………………………………i 英文摘要………………………………………………………………………ii 1. Introduction………………………………………………………1 1.1. Production of sulfide in nature………………………….1 1.2. Effects of sulfide on aquatic animals…………………………………………………………………2 1.3. Hydrothermal vent crabs……………………………………………………………………3 2. Materials and methods………………………………………….4 2. 1. Study area.………………………………………………………………………….4 2.2. The animal………………………………………………………………….4 2.3. Experiments……………………………………………………………7 3. Results…………………………………………………………………12 3. 1. Description of the shallow vent areas……………………………………………………………………13 3.2. Background sulfide concentrations……………………….14 3.3. Tolerance experiments……………………………………………………………16 3.4. Sulfide metabolism in the crab…………………………………………………………………….17 4. Discussion…………………………………………………………21 4. 1. Distrubution of Xemograpsus testudinatus………………………………………………………….21 4.2. Species richness in hydrothermal vents……………………………………………………………………21 4.3. Sulfide tolerance………………………………………………………………22 4.4. Detoxification……………………………………………………….25 5. Conclusion…………………………………………………………29 Reference………………………………………………………………30 Appendix 1. Thiols …………………………………………………34 Appendix 2. Standard curve…………………………………………………………………..36 Appendix 3. Statistics…………………………………………………………….39 Appendix 4. Pictures……………………………………………………………….44 | |
dc.language.iso | en | |
dc.title | 硫磺怪方蟹對硫化氫的耐受度與解毒機制 | zh_TW |
dc.title | Sulfide tolerance and detoxification of the vent crab, Xenograpsus testudinatus | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 鄭明修 | |
dc.contributor.oralexamcommittee | 陳天任,陳孟仙,劉烘昌 | |
dc.subject.keyword | 硫磺怪方蟹,龜山島,淺海熱泉,硫化氫解毒,硫代硫酸根, | zh_TW |
dc.subject.keyword | Xenograpsus testudinatus,Kueishan Island,shallow-water hydrothermal vents,sulfide detoxification,thiosulfate, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-01-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。