Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬
dc.contributor.authorNai-Yuan Shihen
dc.contributor.author施乃元zh_TW
dc.date.accessioned2021-06-13T02:23:24Z-
dc.date.available2007-02-01
dc.date.copyright2007-02-01
dc.date.issued2007
dc.date.submitted2007-01-30
dc.identifier.citation[1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-
Difference Time-Domain Method, 3rd ed., Norwood, MA: Artech House, 2005.
[2] J. Jin, The Finite Element Method in Electromagnetics, 2nd ed., New York:
Wiley, 2002.
[3] J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for
Electromagnetics, New York: IEEE Press, 1998.
[4] R. F. Harrington, Field Computation by Moment Methods, New York: Macmillan,
1968.
[5] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods
in Fluid Dynamics, New York: Springer-Verlag, 1988.
[6] L. N. Trefethen, Spectral Methods in MATLAB, Philadelphia: SIAM, 2000.
[7] B. A. Finlayson and L. E. Scriven, “The method of weighted residuals—a review,”
Appl. Mech. Rev., vol. 19, pp. 735–748, 1966.
[8] J. C. Slater, “Electronic energy bands in metal,” Phys. Rev., vol. 45, pp. 794–
801, 1934.
[9] L. V. Kantorovic, “On a new method of approximate solution of partial differential
equations,” Dokl. Akad. Nauk SSSR, vol. 4, pp. 532–536, 1934.
[10] R. A. Frazer, W. P. Jones, and S. W. Skan, “Approximation to Functions and
to the Solution of Differentia1 Equations,” R&M 1799, Aeronautical Research
Council, London, 1937.
[11] C. Lanczos, “Trigonometric interpolation of empirical and analytical functions,”
J. Math. Phys., vol. 17, pp. 123–199, 1938.
[12] C. W. Clenshaw, “The numerical solution of linear differential equations in
Chebyshev series,” Proc. Cambridge Philos. Soc., vol. 53, pp. 134–149, 1957.
[13] C. W. Clenshaw and H. J. Norton, “The solution of nonlinear ordinary differential
equations in Chebyshev series,” Comput. J., vol. 6, pp. 88–92, 1963.
[14] K.Wright, “Chebyshev collocation methods for ordinary differential equations,”
Comput. J., vol. 6, pp. 358–365, 1964.
[15] J. V. Villadsen and W. E. Stewart, “Solution of boundary value problems by
orthogonal collocation,” Chem. Eng. Sci., vol. 22, pp. 1483–1501, 1967.
[16] H.-O. Kreiss and J. Oliger, “Comparison of accurate methods for the integration
of hyperbolic equations,” Tellus, vol. 24, pp. 199–215, 1972.
[17] S. A. Orszag, “Comparison of pseudospectral and spectral approximations,”
Stud. Appl. Math., vol. 51, pp. 253–259, 1972.
[18] G.-X. Fan, Q. H. Liu, and J. S. Hesthaven, “Multidomain pseudospectral timedomain
method for simulation of scattering from buried objects,” IEEE Trans.
Geosci. Remote Sensing, vol. 40, pp. 1366–1373, 2002.
[19] Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational
electromagnetics,” IEEE Antennas Wireless Propag. Lett., vol. 1, pp.
131–134, 2002.
[20] G. Zhao and Q. H. Liu, “The 3-D multidomain pseudospectral time-domain algorithm
for inhomogeneous conductive media,” IEEE Trans. Antennas Propag.,
vol. 52, pp. 742–749, 2004.
[21] Y. Shi, L. Li, and C. H. Liang, “Multidomain pseudospectral time-domain algorithm
based on super-time-stepping method,” IEE Proc.- Microw. Antennas
Propag., vol. 153, pp. 55–60, 2006.
[22] Y. Shi, L. Li, and C. H. Liang, “Two dimensional multidomain pseudospectral
time-domain algorithm based on alternating-direction implicit method, ” IEEE
Trans. Antennas Propag., vol. 54, pp. 1207–1214, 2006.
[23] L. Carleson, “On convergence and growth of partial sums of Fourier series,”
Acta Math., vol. 116, pp. 135–157, 1966.
[24] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, 1965.
[25] C. Temperton, “Self-sorting mixed-radix fast Fourier transforms,” J. Comput.
Phys., vol. 52, pp. 1–23, 1983.
[26] R. Peyret, “Introduction to Spectral Methods,” von Karman Institute Lecture
Series, 1986-04, Rhode–Saint Genese, Belgium, 1986.
[27] A. Brandt, S. R. Fulton, and G. D. Taylor, “Improved spectral multigrid methods
for periodic elliptic problems,” J. Comput. Phys., vol. 58, 96–112, 1985.
[28] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory
and Applications, Philadelphia: SIAM-CBMS, 1977.
[29] L. Fox and I. B. Parker, Chebyshev Polynomials in Numerical Analysis, London:
Oxford Univ. Press, 1968.
[30] T. J. Rivlin, The Chebyshev Polynomials, New York: John Wiley & Sons, 1974.
[31] D. Gottlieb, M. Y. Hussaini, and S. A. Orszag, “Theory and Applications of
Spectral Methods,” in Spectral Methods for Partial Differential Equations, ed.
by R. G. Voigt, D. Gottlieb, M. Y. Hussaini, Philadelphia: SIAM-CBMS, pp.
1–54, 1984.
[32] A. Solomonoff and E. Turkel, “Global Collocation Methods for Approximation
and the Solution of Partial Differential Equations,” ICASE Rep. No. 86-60,
NASA Langley Research Center, Hampton, VA, 1986.
[33] T. Ikegami, “Reflectivity of mode at facet and oscillation mode in doubleheterostructure
injection laser,” IEEE J. Quantum Electron., vol. 8, pp. 470-
476, 1972.
[34] Q. Liu and W. C. Chew, “Analysis of discontinuities in planar dielectric waveguides:
an eigenmode propagation method,” IEEE Trans. Microwave Theory
Tech., vol. 39, pp. 422-429, 1991.
[35] P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson,
“Semiconductor laser facet reflectivities using free-space radiation modes,” IEE
Proc.-J, vol. 140, pp. 49-55, 1993.
[36] Y.-P. Chiou and H.-C. Chang, “Analysis of optical waveguide discontinuities
using the Pad´e approximants,” IEEE Photon. Technol. Lett., vol. 9, pp. 964-
966, 1997.
[37] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating
diffraction,” J. Opt. Soc. Am., vol. 71, pp. 811–818, 1981.
[38] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of grating
diffraction—E-mode polarization and losses,” J. Opt. Soc. Am., vol. 73, pp.
451–455, 1983.
[39] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation
for stable and efficient implementation of the rigorous coupled-wave analysis of
binary gratings,” J. Opt. Soc. Am. A, vol. 12, pp. 1068–1086, 1995.
[40] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupledwave
method for TM polarization,” J. Opt. Soc. Am. A, vol. 13, pp. 779–784,
1996.
[41] S. Peng and G. M. Morris, “Efficient implementation of rigorous coupled-wave
analysis for surface relief gratings,” J. Opt. Soc. Am. A, vol. 12, pp. 1087–1096,
1995.
[42] J. Adams, K. Parulski, and K. Spaulding, “Color processing in digital cameras,”
IEEE Micro, vol. 18, pp. 20–30, 1998.
[43] P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18- μm complementary
metal oxide semiconductor technology,” J. Opt. Soc. Am. A, vol. 20,
pp. 2293–2306, 2003.
[44] C.-H. Lee, “Finite-Difference Time-Domain Modeling of Three-Dimensional
Metallic Photonic Crystals and Surface Plasmon Phenomena,” master’s thesis,
June 2005.
[45] W. K. Pratt, Digital Image Processing, 3rd ed., New York: Wiley, 2001.
[46] M. A. Ordal, L. L Long, R. J. Bell, R. R. Bell, R. W.Alexander, Jr., and C.
A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd,
Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt., vol. 22, pp.
1099–1119, 1983.
[47] H. L. Royden, Real Analysis, New York: McMillan, 1968.
[48] W. Rudin, Real and Complex Analysis, New York: McGraw-Hill, 1966.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30972-
dc.description.abstract傳統的頻域演算法或多或少存在有收斂性和效率方面的問題;
為了克服這些困擾, 本篇論文提出一種稱為多區域假譜頻域法的替代方案。
其優越的 '譜準度' 特性大大降低了對於離散化密度的要求,
而多區域法能夠良好地接合不同的材料。透過一些實際範例的實作,
這種方法用於光電結構模擬與設計的實用性及潛力得到了驗證。
zh_TW
dc.description.abstractConventional frequency-domain algorithms suffer more or less from
convergence and efficiency problems; to overcome these headaches,
an alternative called the multidomain pseudospectral frequency-domain
method is presented in this thesis. The superior 'spectral
accuracy' greatly reduces the requirement for discretization density for
smooth functions, and the multidomain approach patches distinct
materials together properly. Via implementation of some practical
examples, the utility and potential of the method for modeling and design
of photonic structures are verified.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:23:24Z (GMT). No. of bitstreams: 1
ntu-96-R92941036-1.pdf: 2112219 bytes, checksum: b35c1caaad69150efdee356a277290e9 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1 Introduction 7
2 Theory 13
2.1 The Fourier System [5] . . . . . . . . . . . . . . . . . . . . . . ..14
2.1.1 The Continuous Fourier Expansion . . . . . . . . . . . . . . . . . . . . 14
2.1.2 The Discrete Fourier Expansion . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Differentiation . . . . . . . . . . . . . . 25
2.2 Orthogonal Polynomials in (−1, 1) [5] . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Sturm-Liouville Problems . . . . . . . . . . . . . . . . . . . ..29
2.2.2 Orthogonal Systems of Polynomials . . . . . 30
2.2.3 Gauss-Type Quadratures and Discrete Polynomial Transforms 32
2.3 Chebyshev Polynomials [5] . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Basic Formulas . . . . . . . . . . . . . . . . . . . . .36
2.3.2 Differentiation . . . . . . . . . . . . . . 39
2.4 The Multidomain Pseudospectral Frequency-domain (PSFD) Method 42
2.4.1 Source-free Wave Equations . . . . . . . . . . . . . . . . . . . . 42
2.4.2 The Multidomain Approach . . . . . . . . . . . . . . . . . . . . 44
3 Numerical Examples and Results 49
3.1 Laser Facet . . . . . . . . . . . . .. . . . . . . . . .50
3.2 Convergence for Grating Modeling . . . . . . . . . . . . . . . . . . . . .56
3.3 Metallic Gratings as Color Filters . . . . . . . . . . . . . . . . . . . ... 61
3.4 Rectangular Channel Waveguide End . . . . . . . . . . . . . . . . . .. . .. . . 94
4 Conclusion 99
A Hilbert and Banach Spaces 100
B Functions of Bounded Variation and the Riemann(-Stieltjes) Integral
104
C The Lebesgue Integral and Lp-spaces 107
References 111
dc.language.isoen
dc.title多區域假譜頻域法及其在光電結構模擬上之應用zh_TW
dc.titleThe Multidomain Pseudospectral Frequency-domain Method and Its Application in Modeling of Photonic Structuresen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉,王子建
dc.subject.keyword假譜,頻域,多區域,光柵,色光濾波器,zh_TW
dc.subject.keywordpseudospectral,frequency-domain,multidomain,grating,color filter,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2007-01-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved