請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30969
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馬鴻文(Hwong-Wen Ma) | |
dc.contributor.author | Yen-Chuan Chen | en |
dc.contributor.author | 陳彥全 | zh_TW |
dc.date.accessioned | 2021-06-13T02:23:16Z | - |
dc.date.available | 2008-02-01 | |
dc.date.copyright | 2007-02-01 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-30 | |
dc.identifier.citation | Andelman, J.B., 1990. Total exposure to volatile organic chemicals in portable water. Lewis Publishers, Boca Raton, Florida.
Beven, K; Binley, A, 1992. The future of distributed models-model calibration and uncertainty prediction. Hydrological Processes, 6, 279-298. Boesten, J.J.T.I., 1991. Sensitivity analysis of a mathematical model for pesticide leaching to groundwater. Pesticide Science, 31, 375-388. Bonvicini, S.; Leonelli, P.; Spadoni, G., 1998. Risk analysis of hazardous materials transportation: evaluating uncertainty by means of fuzzy logic. Journal of Hazardous Materials, 62, 59-74. Brand, K.P.; Small, M.J., 1995. Updating uncertainty in an integrated risk assessment: conceptual framework and methods. Risk Analysis, 15, 719-731. Brown, C.D.; Baer, U.; Gunther, P.; Trevisan, M.; Walker, A., 1996. Ring test with the models LEACHP, PRZM-2 and VARLEACH: variability between model users in prediction of pesticide leaching using a standard data set. Pesticide Science, 47, 249-258. Buck, J.W.; Whelan, G.; Droppo, J.G.; Strenge, K. L.; Castleton, K. J.; McDonald, J. P.; Sato, C.; Streile, G. P., 1995. Multimedia Environmental Pollutant Assessment System (MEPAS) Application Guidance, Guidelines for Evaluating MEPAS Input Parameters for version 3.1, PNL-10395, Pacific Northwest Laboratory, Richland, WA. Budnitz, R.J.; Apostolakis, G.; Boore, D.M.; Cluff, L.S.; Coppersmith, K.J.; Cornell, C.A.; Morris, P.A., 1998. Use of technical expert panels: Applications to probabilistic seismic hazard analysis. Risk Analysis, 18(4), 463-469. California EPA, 1993. CalTOX: A multimedia total exposure model for hazardous- waste sites, Sacramento, CA. Cohen, Y.; Ryan, P.A., 1985. Multimedia modeling of environmental transport: Trichloroethylene test case. Environmental Science and Technology, 9, 412-417. Cohen, Y.; Tsai, W.; Chetty, S.L.; Mayer, G.J., 1990. Dynamic partitioning of organic chemicals in regional environments: A multimedia screening-level approach. Environmental Science and Technology, 24, 1540-1558. Cox, D.C.; Baybutt, P., 1981. Methods for uncertainty analysis: A comparative survey. Risk Analysis, 1(4), 251-258. Cullen, A.C., 1995. The sensitivity of probability risk assessment results to alternative model structures: A case study of municipal waste incineration. Journal of the Air & Waste Management Association, 45, 538-546. Cullen, A.C.; Frey, H.C., 1999. Probabilistic Techniques in Exposure Assessment. Plenum Press, New York and London. Del Re, A.A.M.; Trevisan, M., 1995. Selection criteria of xenobiotic leaching models in soil. Eur. J. Argon., 1995, 465-472. Dilks, D.W.; Canale, R.P.; Meier, P.G., 1992. Development of Bayesian Monte Carlo techniques for water quality model uncertainty. Ecological Modeling, 62, 149-162. Droppo, J.A.; Whelan, G.; Buck, J.W.; Strenge, D.L., 1989. Supplemental Mathematical Formulations: The Multimedia Environmental Pollutant Assessment System (MEPAS), Pacific Northwest Laboratory, Richland, Washington. Dubus, I.G.; Brown, C.D.; Beulke, S., 2003. Sources of uncertainty in pesticide fate modelling. The Science of the Total Environment, 317, 53-72. Evans, J.S.; Graham, J.D.; Gray, G.M.; Sielken Jr., R.L., 1994. A distributional approach to characterizing low-dose cancer risk. Risk Analysis, 14, 24-34. Fayerwearther, W.E.; Collins, J.J.; Schnatter, R.; Hearne, F.T.; Menning, R.A.; Reyner, D.P., 1999. Quantifying uncertainty in a risk assessment using uncertainty data. Risk Analysis, 19(6), 1077-1090. Finkel, A.M., 1990. Confronting Uncertainty in Risk Management: A Guide for Decision-Makers.Center for Risk Management, Resources for the Future, Washington, DC. Frey, H.C.; Patil, R., 2002. Identification and review of sensitivity analysis methods. Risk Analysis, 22, 553-577. Garen, D.; Woodward, D.; Geter, F., 1999. A user agency’s view of hydrologic, soil erosion and water quality modelling. Catena, 1999, 277-289. Guyonnet, D., Côme, B., Perochet, P. and Parriaux, A., 1999. Comparing two methods for addressing uncertainty in risk assessments. Journal of Environmental Engineering, 125(7), 660-665. Hammonds, J.S.; Hoffman, F.O.; Bartell, S.M., 1994. An Introductory Guide to Uncertainty Analysis in Environmental and Health Risk Analysis, Oak Ridge National Laboratory, Tennnessee, USA. Helton, J.C., 1993. Uncertainty and sensitivity techniques for use in performance assessment for radioactive waste disposal. Reliability Engineering and System Safety, 42, 327-367. Helton, J.C., 2004. Sampling-based methods for uncertainty and sensitivity analysis. Presentation at the fourth international conference on sensitivity analysis of modeling output, March 8-11, Santa Fe, New Mexico, USA. Helton, J.C.; Davis, F.J., 2002. Illustration of sampling-based methods for uncertainty and sensitivity analysis, Risk Analysis, 22,591-622. Helton, J.C.; Davis, F.J., 2003. Latin Hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering and System Safety, 81(1), 23-69. Hertwich, E.G.; Mckone, T.E.; Pease, W.S., 2000. A systematic uncertainty analysis of an evaluate fate and exposure model. Risk Analysis, 20(4), 439-454. Hoffman, F.O.; Hammonds, J.S., 1994. Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Analysis, 14, 707-712. Iman, R.L.; Helton, J.C., 1988. An ivestigation of uncertainty and sensitivity analysis techniques for computer models. Risk Analysis, 8(1), 71-90. Kao, M.; Tsan, M.; Yeh, W., 1991. Health and obesity of Taiwan citizens, Chinese Nutrition Journal, 22, 143-171 (in Chinese). Klir, G.J.; Wierman, M.J., 1999. Uncertainty-Based Information, Physica-Verlag, New York, NY. Laniak, G.F.; Droppo, J.G.; Faillance, E.R.; Gnanapragasam, E.K.; Mills, W.B.; Strenge, D.L.; Whelan, G.; Yu, C., 1997. An overview of a multimedia benchmarking analysis for three risk assessment models: RESRAD, MMSOILS, and MEPAS. Risk Analysis, 17(2), 203-214. Linkov, I.; Burmistrov, D., 2003. Model uncertainty and choices made by modelers: lessons learned from the International Atomic Energy Agency model intercomparisons. Risk Analysis, 23(6), 1297-1308. Linkov, I.; Carini, F.; Collins, C.; Eged, K.; Mitchell, N. G.; Mourlon, Z.; Ould-Dada, Z.; Robles, B.; Sweeck, L.; Venter, A., 2006. Radionuclides in fruit systems: model-model intercomparison study. Science of the Total Environmantal, 364, 124-137. Lyman, W. J.; Reehl, W. F.; Rosenblall, D. H., 1982. Handbook of Chemical Property Estimation Methods. McGraw-Hill, Inc., New York. Ma, H., 2002. Stochastic multimedia risk assessment for a site with contaminated groundwater. Stochastic Environmental Resesrch and Risk Assessment, 16, 464-478. Ma, H.; Crawford-Brown, D.J., 1998. The comparison of the systems approach and the single-medium approach in environmental risk-based decision making: a case study of a sludge management problem. Journal of Environmental Systems, 26, 215-247. Mackay, D., 1979. Finding fugacity feasible. Environmental Science and Technology, 13, 1218-1223. Maddalena, R.L.; Mckone, T.E.; Hsieh, D.P.H.; Geng, S., 2001. Influential input classification in probabilistic multimedia models, Stochastic Environmental Resesrch and Risk Assessment, 15, 1-17. Maxwell, R.M.; Kastenberg, W.E., 1999. Stochastic environmental risk analysis: An integrated methodology for predicting cancer risk from contaminated groundwater. Stochastic Environmental Resesrch and Risk Assessment, 13, 27-47. Mayer, D.G.; Butler, D.G., 1993. Statistical validation. Ecological Modelling, 68, 21-32. McKay, M.D.; Meyer, M., 2000. Critique of the limitations on the use of expert judgement in accident consequence uncertainty analysis. Radiation Protection Dosimetry, 90, 325-330. Mckone, T.E.; Bogen, K.T., 1992. Uncertainty in health-risk assessment: an integrated case study based on tetrachloroethylene in California groundwater. Regulatory Toxicology and Pharmacology, 15, 86-103. Mckone, T.E., 1993a. CalTOX: A Multimedia Total-Exposure Model for Hazardous Waste Sites: Part Ⅰ: Executive Summary. prepared for the State of California, Department of Toxic Substances Control, Lawrence Livermore National Laboratory, Livemore, CA, UCRL-CR-111456PtI. Mckone, T.E., 1993b. CalTOX: A Multimedia Total-Exposure Model for Hazardous Waste Sites: Part Ⅱ: Multimedia Transport and Transformation Model. prepared for the State of California, Department of Toxic Substances Control, Lawrence Livermore National Laboratory, Livemore, CA, UCRL-CR-111456PtI. Mckone, T.E., 1993c. CalTOX: A Multimedia Total-Exposure Model for Hazardous Waste Sites: Part Ⅲ: Multipathway Exposure Model. prepared for the State of California, Department of Toxic Substances Control, Lawrence Livermore National Laboratory, Livemore, CA, UCRL-CR-111456PtI. Mckone, T.E., 1994. Uncertainty and variability in human exposures to soil contaminants through home-grown food-A Monte-Carlo assessment. Risk Analysis, 14, 449-463. Metropolis, N.; Ulam, S., 1949. The Monte Carlo method. Journal of American Statistic Association, 44, 335-341. Mills, W.B.; Cheng, J.J.; Droppo, J.G.; Faillance, E.R.; Gnanapragasam, E.K.; Johns, R.A.; Laniak, G.F.; Lew, C.S.; Strenge, D.L.; Sutherland, J.F.; Whelan, G.; Yu, C., 1997. Multimedia benchmarking analysis for three risk assessment models: RESRAD, MMSOILS, and MEPAS. Risk Analysis, 17(2), 187-201. Morgan, M.G.; Henrion, M., 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press, New York. Mokhtari, A.; Frey H.C., 2005. Recommended practice regarding selection of sensitivity analysis methods applied to food safety risk process models. Human and Ecological Risk Assessment, 11, 591-605. Moschandreas, D. J.; Karuchit, S., 2002. Scenarion-model-parameter: a new method of cumulative risk uncertainty analysis. Environmental International, 28, 247-261. National Research Council, 1983. Risk assessment in the Federal Government : Managing the Process. NAS-NRC Committee on the Institutional Means for Assessment of Risks to Public Health, National Academy Press, Washington,DC. Nauta, M. J., 2000. Separation of uncertainty and variability in quantitative microbial risk assessment models. International Journal of Food Microbiology, 57, 9-18. Ould-Dada, Z.; Carini, F.; Eged, K.; Kis, Z.; Linkov, I.; Mitchell, N.G.; Mourlon, C.; Robles, B.; Sweeck, L.; Venter, A., 2006. Radionuclides in fruit systems: Model prediction-experimental data intercomparison study. Science of the Total Environment, 366, 514-524 Pollock, D.; Salama, R.; Kookana, R., 2002. A study of atrazine transport through a soil profile on the Gnangara Mound, Western Australia, using LEACHP and Monte Carlo techniques. Australian Journal of Soil Research, 40, 455-464. Regens, J.L.; Obenshian, K.R.; Travis, C.; Whipple, C., 2002. Conceptual site models and multimedia modeling: comparing MEPAS, MMSOILS, and RESRAD. Human and Ecological Risk Assessment, 8(2), 391-403. Smith, A.E.; Ryan, P.R.; Evans, J.S., 1992. The effect of neglecting correlation when propagating uncertainty and estimating the population distribution of risk. Risk Analysis, 12, 467-474. Sohn, M.D.; Small, M.J.; Pantazidou, M., 2000. Reducing uncertainty in site characterization using Bayes Monte Carlo Methods. Journal of Environmental Engineering, 126, 893-902. Taiwan EPA, 2005.The Evaluative and Analytic Principles of Health Risk Assessment, Soil and Groundwater Remediation Fund Management Board, Taipei, Taiwan (in Chinese). Taylor, A.C., 1993. Using objective and subjective information to develop distributions for probabilistic exposure assessment, Journal of Exposure Analysis and Environmental Epidemiology, 3, 285-298. Travis, C.C.; Arms, A.D., 1988. Bioconcentration of organics in beef, milk, and vegetation, Environmental Science and Technology, 22, 271-274. U.S. EPA, 1989. Risk Assessment Guidance for Superfund: Human Health Evaluation Manual, vol. 1, (Part A), Office of Emergency and Remedial Response, Washington, DC. U.S. EPA, 1990. Lake Ontario TCDD Bioaccumulation Study Final Report. Cooperative study including US EPA, New York State Department of Environmental Conservation, New York State Department of Health, and Occidental Chemical Corporation. May 1990. U.S. EPA, 1992. Guidelines for Exposure Assessment. Office of Research and Development, Office of Health and Environmental Assessment, Washington, DC. U.S. EPA, 1996. MMSOILS Model: Multimedia Contaminated Fate, Transport, and Exposure Model: Documentation and User’s Manual Version 4.0, Office of Research and Development, Washington, DC. U.S. EPA, 1997. Exposure Factors Handbook. Office of Research and Development National Center for Environmental Assessment , Washington, DC. U.S. EPA, 1999. Human Health and Ecological Risk Assessment Support to the Development of Technical Standards for Emissions form Combustion Units Burning Hazardous Waste. Office of Solid Waste, Washington, DC. U.S. EPA, 2002a. TRIM: Total Risk Integrated Methodology: TRIM.FaTE Technical Support Document Volume Ⅰ: Description of Module, Office of Air Quality Planning and Standards, Washington, DC. U.S. EPA, 2002b. TRIM: Total Risk Integrated Methodology: TRIM.FaTE Technical Support Document Volume Ⅱ: Description of Chemical Transport and Transformation Algorithms, Office of Air Quality Planning and Standards, Washington, DC. U.S. EPA, 2003. Multimedia, Multipathway, and Multireceptor Risk Assessment (3MRA) Modeling System: Volume Ⅰ: Modeling System and Science. Office of Research and Development, and Office of Solid Waste, Washington, DC. U.S. EPA, 2005. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities (HHRAP). Office of Solid Waste Emergency Response, Washington, DC. Whelan, G.; McDonald, J.P.; Gnanapragasam, E.K.; Laniak, G.F.; Lew, C.S.; Mills, W.B.; Yu, C., 1999a. Benchmarking of the saturated-zone module associated with three risk assessment models: RESRAD, MMSOILS, and MEPAS. Environmental Engineering Science, 16(1), 67-80. Whelan, G.; McDonald, J.P.; Gnanapragasam, E.K.; Laniak, G.F.; Lew, C.S.; Mills, W.B.; Yu, C., 1999b. Benchmarking of the vadose-zone module associated with three risk assessment models: RESRAD, MMSOILS, and MEPAS. Environmental Engineering Science, 16(1), 81-91. White, P.R.; Desmet, B.; Owens, J.W.; Hindel, P., 1995. Environmental-management in an international consumer-goods company. Resources, Conservation and Recycling, 14, 171-184. Wu, S.; Chang, Y.; Fang, C.; Pan, W., 1999. Food sources of weight, calories and three macro-nutrients: NAHSIT 1993-1996, Nutritional Sciences Journal, 24, 59-80. Yeh, H.C.; Kastenberg, W.E., 1991. Health risk assessment of biodegradable volatile organic chemicals : A case study of PCE,TCE,DCE and VC, Journal of Hazardous Materials, 27, 111-126. Zimmermann, H. J., 2000. An application-oriented view of modeling uncertainty, European Journal of Operational Research, 122, 190-198. Zou, R.; Lung, W.S.; Guo, H., 2002. Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty. Journal of Computing in Civil Engineering, 16, 135-142. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30969 | - |
dc.description.abstract | 近年評估一個污染場址對於人體健康的威脅,是否嚴重到需要進一步整治時,已普遍地應用風險評估方法,作為決策輔助工具。風險評估因為考慮實地性、多介質與機率性等概念,整個評估方法因此更趨成熟,但是也因為複雜度的提高,同時必須面對許多不確定性的問題,所以近年風險評估的文獻,都聚焦於不確定性的研究。
在風險評估各類的不確定性中,參數不確定性因為其容易分析與量化的特性,所以有許多文獻進行研究探討,也能有效地加以量化與降低,但是關於其他來源的不確定性,包括模式與情境不確定性,研究則相當缺乏,僅有一些研究提出這些不確定性的初步量化方法,證明對風險結果有很大的影響,但是卻缺乏有效降低這些不確定性的相關研究。有鑑於不同模式之間的結果必然存在差異,導致模式選擇這個步驟會產生大量的不確定性,因此,如何刪除不適模式或是選擇最適模式,以降低模式差異所造成的不確定性就成為本研究的重點。 本研究第一部分,在於建立一個可以比較各模式之情境適合度的篩選流程,此流程以數個候選的多介質模式,分別結合蒙地卡羅方法進行不確定性分析,得到各多介質模式具機率性的暴露途徑與風險值之後,比較各模式與情境之間的適合度,來刪除不適合模式,此流程以MEPAS、MMSOILS與CalTOX三個多介質模式,應用於一個地下水污染場址來做介紹。結果顯示,經由此流程可以刪去不適合情境假設的模式,降低因為模式差異所造成的不確定性。 但是即使透過以上篩選流程選出適合情境的模式後,一個決策者仍然難以客觀地在數個模式之間選出有助於決策的模式,因此,為了能進行一個有效且客觀的整治決策,第二部份的研究,納入風險因子之外的成本考量,建立一個以降低參數不確定性至不干擾決策之最小花費為基準,來選擇出最適合整治決策之多介質模式的方法。首先,此方法結合二維蒙地卡羅、排序相關係數法,與風險之決策準則,找出各模式中參數分布會干擾決策的關鍵不確定性參數;接著透過分布收縮率,計算每個模式中為了降低不確定性所需的花費,其中分布收縮率為每個關鍵參數之分布所需要的縮小程度,最後,以分布收縮率最小與成本花費最少為依據,選出最適合決策進行的客觀模式。此部份研究同樣沿用以上地下水污染場址案例,來展現此方法。結果顯示,此方法可以在考慮不確定性的影響之下,客觀地選擇出有助於決策的最適模式。 以上兩部分的研究,皆證明客觀的模式選擇方法,可以有效降低模式不確定性,但是不同的模式選擇方法各有其選擇基礎,其差異可視為情境不確定性的來源,因此,最後一部分的研究,建立總不確定性量化方法,不僅可以量化風險評估中各類的不確定性,尤其是不同模式選擇方法所造成的情境不確定性,更可以清楚呈現模式選擇前後,對總不確定性降低的影響。 | zh_TW |
dc.description.abstract | The decision as to whether a contaminated site poses a threat to human health and should be cleaned up relies increasingly upon the use of risk assessment models. However, the more sophisticated risk assessment models become, through inclusion of such concepts as stochasticity, multimedia transfer, and site-specificity, the greater the concern with the uncertainty in, and thus the credibility of, risk assessment. It has been demonstrated in the literature that model uncertainty may significantly affect the assessment result, but no research has provided the practical methods on how to analyze and decrease them. Therefore, how to eliminate unsuitable model or select right model in order to reduce model uncertainty is an important issue in the research.
Based on the relationship between exposure pathways and estimated risk results, this study develops a screening procedure to compare the relative suitability between potential multimedia models, which would facilitate the reduction of uncertainty due to model selection. MEPAS, MMSOILS, and CalTOX models, combined with Monte Carlo simulation, are applied to a realistic groundwater-contaminated site to demonstrate the process. The results reveal that this procedure can decrease model uncertainty by eliminating unsuitable model. In particular, when there are several equally plausible models, decision makers are confused by model uncertainty and perplexed as to which model should be chosen for making decisions objectively. When the correctness of different models is not easily judged after objective analysis has been conducted, the cost incurred during the processes of risk assessment has to be considered in order to make an efficient decision. In order to support an efficient and objective remediation decision, this study develops a methodology to cost the least required reduction of uncertainty and to use the cost measure in the selection of candidate models. The focus is on identifying the efforts involved in reducing the input uncertainty to the point at which the uncertainty would not hinder the decision in each equally plausible model. First, this methodology combines a nested Monte Carlo simulation, rank correlation coefficients, and explicit decision criteria to identify key uncertain inputs that would influence the decision in order to reduce input uncertainty. This methodology then calculates the cost of required reduction of input uncertainty in each model by convergence ratio, which measures the needed convergence level of each key input’s spread. Finally, the most appropriate model can be selected based on the convergence ratio and cost. A case of a contaminated site is used to demonstrate the methodology. The outcome shows that this methodology can efficiently and objectively select the best model to support decision with considering the influence from uncertainty. Although the previous two model comparison methods have both proved that an objective model selection method could effectively reduce model uncertainty, different model selection method based on different consideration and criteria would cause different results that can be seen as the source of scenario uncertainty. Therefore, this study finally develops a framework of total uncertainty to not only quantify scenario uncertainty due to different model selection methods but also explicitly reveal the reduction of total uncertainty resulting from model selection. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:23:16Z (GMT). No. of bitstreams: 1 ntu-96-D89541006-1.pdf: 2066354 bytes, checksum: 8d83d02ee807e69f3afe060d3c5ccbf3 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 中文摘要..................................................I
Abstract ...............................................III 目錄.....................................................V 圖目錄................................................VIII 表目錄..................................................IX 第一章 緒 論............................................1 1.1 前 言 ................................................1 1.2 研究目的.............................................6 1.3 研究內容與架構.......................................7 第二章 文獻回顧........................................12 2.1健康風險評估.........................................14 2.1.1健康風險評估在環境決策上的重要性......................................................14 2.1.2健康風險之評估方法.................................16 2.1.3實地多介質機率性風險評估...........................19 2.1.4環境多介質模式之發展...............................20 2.2不確定性之定性分析...................................23 2.2.1不確定性之起因與來源...............................23 2.2.2風險評估中不確定性之來源與分類.....................25 2.3不確定性之定量分析...................................35 2.3.1參數不確定性之分析與量化方法.......................35 2.3.2一維與二維蒙地卡羅方法 .............................43 2.3.3模式不確定性之分析與量化方法......................................................50 2.3.4環境多介質模式之比較研究...........................54 2.3.5情境或決策規則不確定性之分析與量化方法......................................................57 2.3.6整合各類不確定性之分析與量化方法...................60 2.4不確定性之降低研究...................................63 2.4.1敏感度分析方法.....................................63 2.4.2貝式蒙地卡羅方法...................................65 2.4.3模式不確定性之降低方法.............................67 2.4.4情境與決策規則不確定性之降低方法......................................................68 第三章 研究方法........................................69 3.1參數不確定性分析......................................................69 3.1.1蒙地卡羅方法之應用.................................69 3.1.2結合敏感度分析方法.................................70 3.2特定情境下之模式篩選.................................71 3.2.1模式比較方法之應用.................................71 3.2.2特定情境下模式篩選流程之建立......................................................71 3.3不確定性下之模式選擇.................................73 3.3.1決策關鍵參數篩選方法之應用.........................73 3.3.2不確定性下模式選擇方法之建立.......................74 3.4總不確定性樹狀量化方法之建立.........................77 第四章 案例與情境 ......................................79 4.1地下水污染風險評估案例之說明.........................79 4.2模式篩選流程之情境設定...............................81 4.3模式選擇方法之情境設定...............................86 4.4總不確定性樹狀量化方法之情境設定.....................88 第五章 結果與討論 .....................................90 5.1特定情境下之模式篩選結果 ............................90 5.1.1特定情境下各模式之風險結果.........................92 5.1.2暴露途徑與風險結果之差異原因分析...................99 5.1.3高情境適合度模式之篩選............................103 5.1.4蒙地卡羅模擬之重要性..............................104 5.1.5具代表性重要參數之選取............................106 5.1.6模式篩選流程之限制與優點..........................111 5.2不確定性下之風險決策結果............................112 5.2.1二維蒙地卡羅模擬之結果............................112 5.2.2決策關鍵參數之篩選................................115 5.2.3不確定性下之模式選擇..............................118 5.2.4模式選擇方法之限制與優點..........................119 5.3總不確定性樹狀分析與量化之結果......................120 5.3.1各類不確定性量化結果..............................124 5.3.3總不確定性量化方法之限制與優點....................127 第六章 結論與建議 .....................................128 參考文獻.....................................................131 附錄A:各模式參數之單調性..............................137 | |
dc.language.iso | zh-TW | |
dc.title | 健康風險評估中不確定性之量化與降低 | zh_TW |
dc.title | Quantification and Reduction of Uncertainty in Health Risk Assessment | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 楊萬發(Wan-Fa Yang),李公哲(Kung-Cheh Li),王根樹(Gen-Shuh Wang),吳焜裕(Kuen-Yuh Wu),高志明(Chih-Ming Kao) | |
dc.subject.keyword | 模式不確定性,不確定性,敏感度分析,蒙地卡羅,多介質模式, | zh_TW |
dc.subject.keyword | Uncertainty,Model uncertainty,Sensitivity analysis,Monte Carlo,Multimedia model, | en |
dc.relation.page | 147 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-01-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。