請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30965
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁詩同(Shih-Torng Ding) | |
dc.contributor.author | Yi-Jun Li | en |
dc.contributor.author | 李奕均 | zh_TW |
dc.date.accessioned | 2021-06-13T02:23:05Z | - |
dc.date.available | 2009-02-02 | |
dc.date.copyright | 2007-02-02 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-29 | |
dc.identifier.citation | 丁詩同及鄭登貴。2003。豬脂肪前身細胞與脂肪細胞的初代培養。脂肪細胞學研究專輯。32-46。
Allsopp, R. C. H. Vaziri, C. Patterson, S. Goldstein, E. V. Younglai, A. B. Futcher, C. W. Greider, C. B. Harley, 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 89: 10114-10118. Betts, D. H. S. D. Perrault, J. Petrik, L. Lin, L. A. Favetta, C. L. Keefer, W. A. King. 2005. Telomere length analysis in goat clones and their offspring. Mol Reprod Dev 72: 461-470. Bian, C., K. Zhao, G. X. Tong, Y. L. Zhu, and P. Chen. 2005. Immortalization of human umbilical vein endothelial cells with telomerase reverse transcriptase and simian virus 40 large t antigen. J Zhejiang Univ Sci B 6: 631-636. Bodnar, A. G. , M. Ouellette, M. Frolkis, S. E. Holt, C. P. Chiu, G. B. Morin, C. B. Harley, , J. W. HarleyShay, S. Lichtsteiner, W. E. Wright. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349-352. Chang, E., and C. B. Harley. 1995. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci U S A 92: 11190-11194. Cherington, V. , M. Brown, E. Paucha, J. St Louis, B. M. Spiegelman, T. M. Roberts. 1988. Separation of simian virus 40 large-t-antigen-transforming and origin-binding functions from the ability to block differentiation. Mol Cell Biol 8: 1380-1384. Condon, J. , S. Yin, B. Mayhew, R. A. Word, W. E. Wright, , J. W. Shay, W. E. Rainey. 2002. Telomerase immortalization of human myometrial cells. Biol Reprod 67: 506-514. Counter, C. M. , A. A. Avilion, C. E. LeFeuvre, N. G. Stewart, C. W. Greider, C. B. Harley, S. Bacchetti. 1992. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. Embo J 11: 1921-1929. Coursen, J. D., W. P. Bennett, L. Gollahon, J. W. Shay, and C. C. Harris. 1997. Genomic instability and telomerase activity in human bronchial epithelial cells during immortalization by human papillomavirus-16 e6 and e7 genes. Exp Cell Res 235: 245-253. Darimont, C. , O. Avanti, Y. Tromvoukis, P. Vautravers-Leone, N. Kurihara, G. D. Roodman, L. M. Colgin, H. Tullberg-Reinert, A. M. Pfeifer, E. A. Offord, K. Mace. 2002. Sv40 t antigen and telomerase are required to obtain immortalized human adult bone cells without loss of the differentiated phenotype. Cell Growth Differ 13: 59-67. Darimont, C., and K. Mace. 2003. Immortalization of human preadipocytes. Biochimie 85: 1231-1233. Darimont, C. , I. Zbinden, O. Avanti, P. Leone-Vautravers, V. Giusti, P. Burckhardt, A. M. Pfeifer, K. Mace. 2003. Reconstitution of telomerase activity combined with hpv-e7 expression allow human preadipocytes to preserve their differentiation capacity after immortalization. Cell Death Differ 10: 1025-1031. Delany, M. E., L. M. Daniels, S. E. Swanberg, and H. A. Taylor. 2003. Telomeres in the chicken: Genome stability and chromosome ends. Poult Sci 82: 917-926. Dimri, G. P. , X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E. E. Medrano, M. Linskens, I. Rubelj, O. Pereira-Smith et al.. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92: 9363-9367. Duncan, E. L., R. Wadhwa, and S. C. Kaul. 2000. Senescence and immortalization of human cells. Biogerontology 1: 103-121. Feng, J. , W. D. Funk, S. S. Wang, S. L. Weinrich, A. A. Avilion, C. P. Chiu, R. R. Adams, E. Chang, R. C. Allsopp, J. Yu et al.. 1995. The rna component of human telomerase. Science 269: 1236-1241. Fradiani, P. A., F. Ascenzioni, M. Lavitrano, and P. Donini. 2004. Telomeres and telomerase activity in pig tissues. Biochimie 86: 7-12. Green, H., and O. Kehinde. 1976. Spontaneous heritable changes leading to increased adipose conversion in 3t3 cells. Cell 7: 105-113. Green, H., and M. Meuth. 1974. An established pre-adipose cell line and its differentiation in culture. Cell 3: 127-133. Halbert, C. L., G. W. Demers, and D. A. Galloway. 1991. The e7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 65: 473-478. Harrington, L. , W. Zhou, T. McPhail, R. Oulton, D. S. Yeung, V. Mar, M. B. Bass, M. O. Robinson. 1997. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 11: 3109-3115. Hastie, N. D. , M. Dempster, M. G. Dunlop, A. M. Thompson, D. K. Green, R. C. Allshire. 1990. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346: 866-868. Hayflick, L., and P. S. Moorhead. 1961. The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585-621. Hemmrich, K., D. von Heimburg, K. Cierpka, S. Haydarlioglu, and N. Pallua. 2005. Optimization of the differentiation of human preadipocytes in vitro. Differentiation 73: 28-35. Huang, S. M., and D. J. McCance. 2002. Down regulation of the interleukin-8 promoter by human papillomavirus type 16 e6 and e7 through effects on creb binding protein/p300 and p/caf. J Virol 76: 8710-8721. Huschtscha, L. I., and R. Holliday. 1983. Limited and unlimited growth of sv40-transformed cells from human diploid mrc-5 fibroblasts. J Cell Sci 63: 77-99. Kim, N. W. , M. A. Piatyszek, K. R. Prowse, C. B. Harley, M. D. West, P. L. Ho, G. M. Coviello, W. E. Wright, S. L. Weinrich, J. W. Shay. 1994. Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011-2015. Kiyono, T. , S. A. Foster, J. I. Koop, J. K. McDougall, D. A. Galloway, A. J. Klingelhutz. 1998. Both rb/p16ink4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396: 84-88. Lill, N. L., M. J. Tevethia, R. Eckner, D. M. Livingston, and N. Modjtahedi. 1997. P300 family members associate with the carboxyl terminus of simian virus 40 large tumor antigen. J Virol 71: 129-137. Liu, J. P. 1999. Studies of the molecular mechanisms in the regulation of telomerase activity. Faseb J 13: 2091-2104. Munger, K. , A. Baldwin, K. M. Edwards, H. Hayakawa, C. L. Nguyen, M. Owens, M. Grace, K. Huh. 2004. Mechanisms of human papillomavirus-induced oncogenesis J Virol No. 78. p 11451-11460. Nakajima, I., S. Muroya, and K. Chikuni. 2003. Growth arrest by octanoate is required for porcine preadipocyte differentiation. Biochem Biophys Res Commun 309: 702-708. O'Hare, M. J. , J. Bond, C. Clarke, Y. Takeuchi, A. J. Atherton, C. Berry, J. Moody, A. R. Silver, D. C. Davies, A. E. Alsop, A. M. Neville, P. S. Jat. 2001. Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc Natl Acad Sci U S A 98: 646-651. Porse, B. T. , T. A. Pedersen, X. Xu, B. Lindberg, U. M. Wewer, L. Friis-Hansen, C. Nerlov. 2001. E2f repression by c/ebpalpha is required for adipogenesis and granulopoiesis in vivo. Cell 107: 247-258. Shay, J. W., W. E. Wright, and H. Werbin. 1991. Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1072: 1-7. Sherwood, S. W., D. Rush, J. L. Ellsworth, and R. T. Schimke. 1988. Defining cellular senescence in imr-90 cells: A flow cytometric analysis. Proc Natl Acad Sci U S A 85: 9086-9090. Soloff, M. S. , Y. J. Jeng, M. Ilies, S. L. Soloff, M. G. Izban, T. G. Wood, N. I. Panova, G. V. Velagaleti, G. D. Anderson. 2004. Immortalization and characterization of human myometrial cells from term-pregnant patients using a telomerase expression vector. Mol Hum Reprod 10: 685-695. Steinberg, M. L., and V. Defendi. 1983. Transformation and immortalization of human keratinocytes by sv40. J Invest Dermatol 81: 131s-136s. Takahashi, N. , T. Yamamoto, T. Goto, A. Taimatsu, N. Aoki, H. Kawasaki, K. Taira, K. K. Yokoyama, Y. Kamei, T. Fushiki. 2002. Overexpression and ribozyme-mediated targeting of transcriptional coactivators creb-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor gamma. J Biol Chem 277: 16906-16912. Tang, Q. Q., T. C. Otto, and M. D. Lane. 2003a. Ccaat/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci U S A 100: 850-855. Tang, Q. Q., T. C. Otto, and M. D. Lane. 2003b. Mitotic clonal expansion: A synchronous process required for adipogenesis. Proc Natl Acad Sci U S A 100: 44-49. Wang, Y., K. A. Kim, J. H. Kim, and H. S. Sul. 2006. Pref-1, a preadipocyte secreted factor that inhibits adipogenesis. J Nutr 136: 2953-2956. Weinberg, R. A. 1995. The retinoblastoma protein and cell cycle control. Cell 81: 323-330. Wright, W. E., and J. W. Shay. 1992. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 27: 383-389. Wu, Y. Y. , A. M. Hruszkewycz, R. M. Delgado, A. Yang, A. O. Vortmeyer, Y. W. Moon, R. J. Weil, Z. Zhuang, A. T. Remaley. 2000. Limitations on the quantitative determination of telomerase activity by the electrophoretic and elisa based trap assays. Clin Chim Acta 293: 199-212. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30965 | - |
dc.description.abstract | 動物細胞培養是研究細胞的生理、增生、分化與探討基因功能、表現調控機制等之重要模式。早期,科學家使用初代細胞培養來進行研究,但是初代細胞在數次的繼代後,即出現細胞生長停滯,甚或死亡的現象。所以每次的實驗都要重新採取一批細胞。但是每次由組織取得之細胞除了在試驗花費不貲外,所取得的細胞族群也雜而不齊,造成許多研究結果的不一致,所以一株穩定的不朽化細胞株對於做研究是非常重要的。
本論文的研究目的是藉著恢復端粒酶活性與表現人類乳突病毒第16型的E7 (HPV 16-E7)蛋白建立不朽化豬的脂肪前身細胞株。實驗所需的初代細胞由二週齡三品種雜交豬(Landrace, Yorkshire, and Duroc)的背脂分離出來,試驗所需要之反轉錄病毒由GP2-293細胞產出,在細胞第一代時利用反轉錄病毒轉染human telomerase reverse transcriptase (hTERT)後,以puromycin篩選一週,存活之細胞再進行HPV 16-E7的轉染,以histidinol作篩選。在histidinol篩選後,利用細胞選殖得到許多細胞殖系,並且利用RT-PCR確定其hTERT與HPV 16-E7的表現,其中一株細胞植系生長快速並且在以分化液(含有insulin, dexamethasone, rosiglitazone等)誘導分化後,能夠分化成脂肪細胞,將其命名為LYD1。試驗進一步測試了pref-1、PPARγ、aP2與LPL的基因表現,推測LYD1為脂肪前身細胞,並且具有分化能力。 因為LYD1細胞能夠表現hTERT與HPV 16-E7基因,我們推測LYD1細胞能夠無限制的分裂,此外,LYD1細胞能夠以分化液誘導分化成脂肪細胞。因此,若能確定與脂肪細胞分化相關的基因表現,即能確定LYD1細胞是一株不朽化的豬脂肪前身細胞株。 | zh_TW |
dc.description.abstract | Culture of animal cells is a basic and important technique for research and development of biotechnological products. It is used to investigate cell physiology, proliferation, differentiation, and function of genes and regulation of their expression. Originally, scientists employ primary cell culture for research but primary cultured cells will be senescent or die after multiple passages. For this reason, they have to isolate new cells from tissues for each experiment. Not only greater cost of time and money is needed but also the result of experiment will vary due to the differences among batches of cells. As a result, a stable clone is essential for better research.
The aim of our study was to establish an immortalized pig preadipocyte by introduction of a combination of telomerase and human papillomavirus type 16 E7 (HPV 16-E7). The primary porcine stromal vascular cells were isolated from back fat of a two-week hybrid pig (Landrace, Yorkshire, and Duroc). Retrovirus with human telomere reverse transcriptase (hTERT) or HPV 16-E7 were produced by GP2-293 packaging cell line. Retrovirus with hTERT infected primary cells at passage one and then, cells were selected by puromycin for two weeks. The cells that were alive after treatment of puromycin, indicating a successful expression of telomerase. We also confirmed that the telomerase mRNA was present in the selected cells. They were infected with HPV 16-E7 containing retrovirus, and selected by histidinol treatments. After histidinol selection, pure cell strains were obtained by cell cloning. The expression of hTERT and HPV 16-E7 mRNA in several clones of porcine preadipocyte were confirmed by RT-PCR. One of the clones grew very fast and could be induced to differentiate into adipocyte when treated with adipocyte differentiation medium (insulin, dexamethasone, rosiglitazone, containing DMEM/F12). We named this cell clone LYD1. Expression of preadipocyte factor 1 (pref-1), peroxisome proliferator activated-receptor gamma (PPARγ), lipoprotein lipase(LPL) and adipocyte-specific fatty acid binding protein(aP2) were determined. Because LYD1 cells can express hTERT and HPV 16-E7 genes, we conjecture that LYD1 cells can proliferate indefinitely. These LYD1 cells could be induced to differentiate into adipocyte by differentiation medium. Therefore, if we can confirm the expression of adipocyte specific gene, it will become a suitable porcine preadipocyte clonal cell line. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:23:05Z (GMT). No. of bitstreams: 1 ntu-96-R93626015-1.pdf: 15037073 bytes, checksum: 4f3603b1f83ce49d0c8e442601361fde (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 致謝 Ⅰ
中文摘要 Ⅱ 英文摘要 Ⅲ 圖目錄 V 表目錄 VII 文獻檢討 1 材料方法 11 結果 19 討論 23 結論 38 參考文獻 39 附錄 43 | |
dc.language.iso | zh-TW | |
dc.title | 不朽化豬脂肪前身細胞株的建立與脂肪細胞分化 | zh_TW |
dc.title | Establishment of an immortalized porcine preadipocyte clone and adipocyte differentiation | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳洵一,朱有田,陳珠亮 | |
dc.subject.keyword | 不朽化,端粒,端粒酶,hTERT,E7, | zh_TW |
dc.subject.keyword | immortal,telomere,telomerase,hTERT,E7, | en |
dc.relation.page | 43 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-01-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 14.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。