Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30929
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁昭旼
dc.contributor.authorFuren Xiaoen
dc.contributor.author蕭輔仁zh_TW
dc.date.accessioned2021-06-13T02:21:24Z-
dc.date.available2011-08-16
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-01
dc.identifier.citation1. A M, Monro A. Observations on the structure and function of the nervous system. Edinburgh: Creech & Johnson; 1783.
2. G K, Kelly G. Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans Med Chir Sci Edinb. 1824;1:84–169.
3. Otani N, Takasato Y, Masaoka H, Hayakawa T, Yoshino Y, Yatsushige H, et al. Surgical outcome following decompressive craniectomy for poor-grade aneurysmal subarachnoid hemorrhage in patients with associated massive intracerebral or sylvian hematomas. Cerebrovasc Dis. 2008;26(6):612-617.
4. Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scalea TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J. Neurosurg. 2006;104(4):469-79.
5. Vahedi K, Vicaut E, Mateo J, Kurtz A, Orabi M, Guichard JP, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke. 2007;38(9):2506.
6. Adams HP, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, et al. Guidelines for the early management of adults with ischemic stroke. Stroke. 2007;38(5):1655-711.
7. Bullock MR, Chesnut R, Ghajar J, Gordon D, Hartl R, Newell DW, et al. Guidelines for the surgical management of traumatic brain injury. Neurosurgery. 2006;58(3):S2-1-62.
8. Morgenstern LB, Hemphill JC, Anderson C, Becker K, Broderick JP, Connolly ES, et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2010 Sep 1;41(9):2108-2129.
9. Matthew J. Meyer, Joseph Megyesi, Jay Meythaler, Manuel Murie-Fernandez, Jo-Anne Aubut, Norine Foley, et al. Acute management of acquired brain injury part I: An evidence-based review of non-pharmacological interventions [Internet]. 2010 Apr 7 [cited 2010 Nov 3];Available from: http://informahealthcare.com/doi/abs/10.3109/02699051003692118
10. Compagnone C, Murray GD, Teasdale GM, Maas AIR, Esposito D, Princi P, et al. The management of patients with intradural post-traumatic mass lesions: a multicenter survey of current approaches to surgical management in 729 patients coordinated by the European Brain Injury Consortium. Neurosurgery. 2005 Dec;57(6):1183-1192; discussion 1183-1192.
11. Morgalla MH, Will BE, Roser F, Tatagiba M. Do long-term results justify decompressive craniectomy after severe traumatic brain injury? Journal of Neurosurgery: Pediatrics. 2008;109(4).
12. Taylor A, Butt W, Rosenfeld J, Shann F, Ditchfield M, Lewis E, et al. A randomized trial of very early decompressive craniectomy in children with traumatic brain injury and sustained intracranial hypertension. Child’s Nervous System. 2001;17(3):154–162.
13. Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–1502.
14. 黃勝堅, 王國川, 蕭輔仁, 楊士弘, 杜永光. 減壓性顱骨除術在大面積腦部動脈栓塞之應用. 腦中風會訊. 2001;8(3):8–10.
15. Arac A, Blanchard V, Lee M, Steinberg GK. Assessment of outcome following decompressive craniectomy for malignant middle cerebral artery infarction in patients older than 60 years of age. Neurosurg Focus. 2009;26(6):E3.
16. Pfefferkorn T, Eppinger U, Linn J, Birnbaum T, Herzog J, Straube A, et al. Long-Term Outcome After Suboccipital Decompressive Craniectomy for Malignant Cerebellar Infarction. Stroke. 2009 Sep 1;40(9):3045-3050.
17. Jimenez DF, Barone CM. Endoscopic craniectomy for early surgical correction of sagittal craniosynostosis. Journal of neurosurgery. 1998;88(1):77–81.
18. Kaiser G. Sagittal synostosis—its clinical significance and the results of three different methods of craniectomy. Child’s Nervous System. 1988;4(4):223–230.
19. Alban??se J, Leone M, Alliez J-R, Kaya J-M, Antonini F, Alliez B, et al. Decompressive craniectomy for severe traumatic brain injury: Evaluation of the effects at one year*. Critical Care Medicine. 2003 Oct;31(10):2535-2538.
20. Mori K, Nakao Y, Yamamoto T, Maeda M. Early external decompressive craniectomy with duroplasty improves functional recovery in patients with massive hemispheric embolic infarction: Timing and indication of decompressive surgery for malignant cerebral infarction. Surgical Neurology. 2004 Nov;62(5):420-429.
21. Ruf B, Heckmann M, Schroth I, Hugens-Penzel M, Reiss I, Borkhardt A, et al. Early decompressive craniectomy and duraplasty for refractory intracranial hypertension in children: results of a pilot study. Critical Care. 2003;7(6):R133-R138.
22. Schwab S, Steiner T, Aschoff A, Schwarz S, Steiner HH, Jansen O, et al. Early Hemicraniectomy in Patients With Complete Middle Cerebral Artery Infarction. Stroke. 1998 Sep 1;29(9):1888-1893.
23. Bullitt E, Lehman RA. Osteomyelitis of the skull. Surg Neurol. 1979 Mar;11(3):163-166.
24. Hatanaka H, Nakagawa Y. Clinical results of long-surviving brain tumor patients who underwent boron neutron capture therapy. International Journal of Radiation Oncology*Biology*Physics. 1994 Mar 30;28(5):1061-1066.
25. Bederson JB, Connolly ES, Batjer HH, Dacey RG, Dion JE, Diringer MN, et al. Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Statement for Healthcare Professionals From a Special Writing Group of the Stroke Council, American Heart Association. Stroke. 2009 Jan;40(3):994-1025.
26. Chen CC, Cho DY, Tsai SC. Outcome and prognostic factors of decompressive hemicraniectomy in malignant middle cerebral artery infarction. Journal of the Chinese Medical Association. 2007;70(2):56–60.
27. Cho DY, Chen TC, Lee HC, EGNCHI T, YONAS H, JANNETTA PJ. Ultra-early decompressive craniectomy for malignant middle cerebral artery infarction. Commentary. Surgical neurology. 2003;60(3):227–233.
28. Huang APH, Tu YK, Tsai YH, Chen YS, Hong WC, Yang CC, et al. Decompressive craniectomy as the primary surgical intervention for hemorrhagic contusion. Journal of Neurotrauma. 2008;25(11):1347–1354.
29. Kuo JR, Chio CC, Wang CC, Lin HJ, Yeh CH, Wong BS, et al. Decompressive Craniectomy for Space-occupying Middle Cerebral Artery Infarction-Analysis of 17 Cases. Acta Neurologica Taiwanica. 2002;11(1):8–12.
30. Pompucci A, De Bonis P, Pettorini B, Petrella G, Di Chirico A, Anile C. Decompressive craniectomy for traumatic brain injury: patient age and outcome. Journal of Neurotrauma. 2007;24(7):1182–1188.
31. Potts MB, Chi JH, Meeker M, Holland MC, Claude HJ, Manley GT. Predictive values of age and the Glasgow Coma Scale in traumatic brain injury patients treated with decompressive craniectomy. Acta Neurochir. Suppl. 2008;102:109-112.
32. Ucar T, Akyuz M, Kazan S, Tuncer R. Role of decompressive surgery in the management of severe head injuries: prognostic factors and patient selection. J. Neurotrauma. 2005 Nov;22(11):1311-1318.
33. Koh MS, Goh KYC, Tung MYY, Chan C. Is decompressive craniectomy for acute cerebral infarction of any benefit? Surgical neurology. 2000;53(3):225–230.
34. Howard JL, Cipolle MD, Anderson M, Sabella V, Shollenberger D, Li PM, et al. Outcome after decompressive craniectomy for the treatment of severe traumatic brain injury. The Journal of Trauma. 2008;65(2):380.
35. Hukkelhoven CWPM, Steyerberg EW, Rampen AJJ, Farace E, Habbema JDF, Marshall LF, et al. Patient age and outcome following severe traumatic brain injury: an analysis of 5600 patients. J. Neurosurg. 2003 Oct;99(4):666-673.
36. Uhl E, Kreth FW, Elias B, Goldammer A, Hempelmann RG, Liefner M, et al. Outcome and prognostic factors of hemicraniectomy for space occupying cerebral infarction. Journal of Neurology, Neurosurgery & Psychiatry. 2004;75(2):270.
37. Xiao F, Tseng M-Y, Teng L-J, Tseng H-M, Tsai J-C. Brain abscess: clinical experience and analysis of prognostic factors. Surg Neurol. 2005 May;63(5):442-449; discussion 449-450.
38. Murray GD, Butcher I, McHugh GS, Lu J, Mushkudiani NA, Maas AIR, et al. Multivariable Prognostic Analysis in Traumatic Brain Injury: Results from The IMPACT Study. Journal of Neurotrauma. 2007 Feb;24(2):329-337.
39. Harscher S, Reichart R, Terborg C, Hagemann G, Kalff R, Witte OW. Outcome after decompressive craniectomy in patients with severe ischemic stroke. Acta Neurochir (Wien). 2005 Sep;148(1):31-37.
40. Marshall LF, Bowers Marshall S, Klauber MR, van Berkum Clark M, Eisenberg HM, Jane JA, et al. A new classification of head injury based on computerized tomography. Journal of Neurosurgery. 1991;75:14-20.
41. Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57(6):1173-1182.
42. Saunders DE, Clifton AG, Brown MM. Measurement of infarct size using MRI predicts prognosis in middle cerebral artery infarction. Stroke. 1995;26(12):2272.
43. Toutant SM, Klauber MR, Marshall LF, Toole BM, Bowers SA, Seelig JM, et al. Absent or compressed basal cisterns on first CT scan: ominous predictors of outcome in severe head injury. Journal of neurosurgery. 1984;61(4):691–694.
44. Nelson DW, Nystrom H, MacCallum RM, Thornquist B, Lilja A, Bellander BM, et al. Extended Analysis of Early Computed Tomography Scans of Traumatic Brain Injured Patients and Relations to Outcome. Journal of Neurotrauma. 2010;27(1):51–64.
45. Mathew P, Teasdale G, Bannan A, Oluoch-Olunya D. Neurosurgical management of cerebellar haematoma and infarct. British Medical Journal. 1995;59(3):287.
46. Suzuki J, Komatsu S, Sato T, Sakurai Y. Correlation between CT findings and subsequent development of cerebral infarction due to vasospasm in subarachnoid haemorrhage. Acta Neurochirurgica. 1980;55(1):63–70.
47. Marshall LF, Toole BM, Bowers SA. The National Traumatic Coma Data Bank. Part 2: Patients who talk and deteriorate: implications for treatment. Journal of Neurosurgery. 1983;59(2):285-8.
48. Ono J, Yamaura A, Kubota M, Okimura Y, Isobe K. Outcome prediction in severe head injury: analyses of clinical prognostic factors. Journal of Clinical Neuroscience. 2001;8(2):120-3.
49. Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. New England Journal of Medicine. 1986;314(15):953-8.
50. Liao C-C, Xiao F, Wong J-M, Chiang I-J. Computer-aided diagnosis of intracranial hematoma with brain deformation on computed tomography. Comput Med Imaging Graph. 2010 Oct;34(7):563-571.
51. Liao CC, Xiao F, Wong JM, Chiang I, others. A knowledge discovery approach to diagnosing intracranial hematomas on brain CT: recognition, measurement and classification. In: Proceedings of the 1st international conference on Medical biometrics. 2008. p. 73–82.
52. Liao C-C, Xiao F, Wong J-M, Chiang I-J. A multiresolution binary level set method and its application to intracranial hematoma segmentation. Comput Med Imaging Graph. 2009 Sep;33(6):423-430.
53. Xiao F, Liao CC, Wong JM, Chiang IJ. Automatic Diagnosis of Intracranial Hematoma on Brain CT Using Knowledge Discovery Techniques: Is Finer Resolution Better? Biomedical Engineering: Applications, Basis and Communications. 2008;20(6):401–408.
54. Liao CC, Xiao F, Wong JM, Chiang IJ. A simple genetic algorithm for tracing the deformed midline on a single slice of brain CT using quadratic B? zier curves. 2006;
55. Liao CC, Chiang IJ, Xiao F, Wong JM. Tracing the deformed midline on brain CT. BIOMEDICAL ENGINEERING APPLICATIONS BASIS COMMUNICATIONS. 2006;18(6):305.
56. Liao C-C, Xiao F, Wong J-M, Chiang I-J. Automatic recognition of midline shift on brain CT images. Comput. Biol. Med. 2010 Mar;40(3):331-339.
57. Yuh EL, Gean AD, Manley GT, Callen AL, Wintermark M. Computer-aided assessment of head computed tomography (CT) studies in patients with suspected traumatic brain injury. Journal of Neurotrauma. 2008;25(10):1163-1172.
58. Bullock MR, Chesnut R, Clifton GL, Ghajar J, Marion DW, Narayan RK, et al. Guidelines for the management of severe traumatic brain injury. J. Neurotrauma. 2000;17:449-554.
59. Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27(8):1304-5.
60. Team RDC. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2008.
61. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837-845.
62. Hilden J, Glasziou P. Regret graphs, diagnostic uncertainty and Youden’s Index. Statistics in Medicine. 1996;15(10):969-86.
63. Tasaki O, Shiozaki T, Hamasaki T, Kajino K, Nakae H, Tanaka H, et al. Prognostic indicators and outcome prediction model for severe traumatic brain injury. Journal of Trauma. 2009;66(2):304-308.
64. Liu B, Yuan Q, Liu Z, Li X, Yin X. Automatic segmentation of intracranial hematoma and volume measurement. 2008.
65. Bardera A, Boada I, Feixas M, Remollo S, Blasco G, Silva Y, et al. Semi-automated method for brain hematoma and edema quantification using computed tomography. Computerized Medical Imaging and Graphics. 2009 Jun;33(4):304-311.
66. Nelson DW, Nystrom H, MacCallum RM, Thornquist B, Lilja A, Bellander BM, et al. Extended analysis of early computed tomography scans of traumatic brain injured patients and relations to outcome. Journal of Neurotrauma. 2010;(ja).
67. Eisenberg HM, Gary Jr HE, Aldrich EF, Saydjari C, Turner B, Foulkes MA, et al. Initial CT findings in 753 patients with severe head injury. Journal of Neurosurgery: Pediatrics. 1990;73(5).
68. Lu W, Tan J, Floyd R. Automated fetal head detection and measurement in ultrasound images by iterative randomized Hough transform. Ultrasound in Medicine and Biology. 2005;31(7):929-36.
69. Wan Zaki WM, Ahmad Fauzi MF, Besar R. A New Approach of Skull Fracture Detection in CT Brain Images [Internet]. In: Proceedings of the 1st International Visual Informatics Conference on Visual Informatics: Bridging Research and Practice. Berlin, Heidelberg: Springer-Verlag; 2009 [cited 2011 May 4]. p. 156–167.Available from: http://dx.doi.org/10.1007/978-3-642-05036-7_16
70. Chung J, Bang OY, Lim YC, Park SK, Shin YS. Newly suggested surgical method of decompressive craniectomy for patients with middle cerebral artery infarction. Neurologist. 2011 Jan;17(1):11-15.
71. Sarov M, Guichard J-P, Chibarro S, Guettard E, Godin O, Yelnik A, et al. Sinking skin flap syndrome and paradoxical herniation after hemicraniectomy for malignant hemispheric infarction. Stroke. 2010 Mar;41(3):560-562.
72. Munch E, Horn P, Schurer L, Piepgras A, Paul T, Schmiedek P. Management of severe traumatic brain injury by decompressive craniectomy. Neurosurgery. 2000;47(2):315.
73. Kenning TJ, Gandhi RH, German JW. A comparison of hinge craniotomy and decompressive craniectomy for the treatment of malignant intracranial hypertension: early clinical and radiographic analysis. Neurosurg. Focus. 2009;26(6):E6.
74. Munshi I, Frim D, Stine-Reyes R, Weir BK, Hekmatpanah J, Brown F. Effects of posterior fossa decompression with and without duraplasty on Chiari malformation-associated hydromyelia. Neurosurgery. 2000 Jun;46(6):1384-1389; discussion 1389-1390.
75. Park J, Kim E, Kim G-J, Hur Y-K, Guthikonda M. External decompressive craniectomy including resection of temporal muscle and fascia in malignant hemispheric infarction. Journal of Neurosurgery. 2009 Jan;110(1):101-105.
76. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, et al. Engineering and algorithm design for an image processing api: a technical report on itk-the insight toolkit. Stud. Health Technol. Inform. 2002;:586–592.
77. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging. 2010;29(1):196–205.
78. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 1987 Aug;21:163–169.
79. Li X, Wang W, Martin RR, Bowyer A. Using low-discrepancy sequences and the Crofton formula to compute surface areas of geometric models. Computer-Aided Design. 2003;35(9):771–782.
80. Liu YS, Yi J, Zhang H, Zheng GQ, Paul JC. Surface area estimation of digitized 3D objects using quasi-Monte Carlo methods. Pattern Recognition. 2010;43(11):3900–3909.
81. Weisstein EW. Sphere Point Picking -- from Wolfram MathWorld [Internet]. [cited 2011 May 10];Available from: http://mathworld.wolfram.com/SpherePointPicking.html
82. Antonov IA, Saleev VM. An economic method of computing LP[tau]-sequences. USSR Computational Mathematics and Mathematical Physics. 1979;19(1):252-256.
83. Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, et al. GNU scientific library. Network Theory Ltd. 2002.
84. Bresenham JE. Algorithm for computer control of a digital plotter. IBM Systems journal. 1965;4(1):25–30.
85. Wikipedia contributors. Solid angle. Wikipedia, The Free Encyclopedia; 2010.
86. Pravin JM. Symmetry on a sphere. Resonance. 2002;7(7):84-88.
87. Erbil HY, Meric RA. Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry. Journal of Physical Chemistry. B. 1997;101(35):6867-6873.
88. Wong ST, Ball AK, Sivak JG. Model of retinal surface area and neuron distribution in the avian eye. Journal of Neuroscience Methods. 2003;123(1):1-9.
89. Xiao F, Chiang I-J, Wong J-M, Tsai Y-H, Huang K-C, Liao C-C. Automatic measurement of midline shift on deformed brains using multiresolution binary level set method and Hough transform. Computers in Biology and Medicine [Internet]. [cited 2011 Jul 4];In Press, Corrected Proof. Available from: http://www.sciencedirect.com/science/article/pii/S0010482511001314
90. Xiao F, Liao C-C, Huang K-C, Chiang I-J, Wong J-M. Automated assessment of midline shift in head injury patients. Clin Neurol Neurosurg. 2010 Nov;112(9):785-790.
91. Smith SM. Fast robust automated brain extraction. Human Brain Mapping. 2002;17(3):143–155.
92. Beucher S, Lantuejoul C. Use of watersheds in contour detection. In: International Workshop on image processing, real-time edge and motion detection/estimation. 1979. p. 17–21.
93. Ibanez L, Schroeder W, Ng L, Cates J, others. The ITK software guide. Kitware Inc. 2005;
94. Jiang J-Y, Xu W, Li W-P, Xu W-H, Zhang J, Bao Y-H, et al. Efficacy of Standard Trauma Craniectomy for Refractory Intracranial Hypertension with Severe Traumatic Brain Injury: A Multicenter, Prospective, Randomized Controlled Study. Journal of Neurotrauma. 2005 Jun;22(6):623-628.
95. Gao CP, Ang BT. Biomechanical modeling of decompressive craniectomy in traumatic brain injury. Acta Neurochir. Suppl. 2009;:279–282.
96. Yang XF, Wen L, Shen F, Li G, Lou R, Liu WG, et al. Surgical complications secondary to decompressive craniectomy in patients with a head injury: a series of 108 consecutive cases. Acta Neurochir. 2008;150(12):1241–1248.
97. Yang XJ, Hong GL, Su SB, Yang SY. Complications induced by decompressive craniectomies after traumatic brain injury. Chinese journal of traumatology= Zhonghua chuang shang za zhi/Chinese Medical Association. 2003;6(2):99.
98. Stiver SI. Complications of decompressive craniectomy for traumatic brain injury. Neurosurg. Focus. 2009;26(6):7–479.
99. Hieu LC, Bohez E, Vander Sloten J, Phien HN, Vatcharaporn E, Binh PH, et al. Design for medical rapid prototyping of cranioplasty implants. Rapid Prototyping Journal. 2003;9(3):175–186.
100. Hieu LC, Bohez E, Vander Sloten J, Phien HN, Vatcharaporn E, Binh PH, et al. Case study Design for medical rapid prototyping of cranioplasty implants. Rapid Prototyping J. 2003;9(3):175-186.
101. Lo LJ, Chen YR, Tseng CS, Lee MY. Computer-aided reconstruction of traumatic fronto-orbital osseous defects: aesthetic considerations. Chang Gung Med. J. 2004;27(4):283–291.
102. Therneau TM, Atkinson EJ. An introduction to recursive partitioning using the RPART routines. Mayo Foundation. 1997;:1–52.
103. Therneau TM, Atkinson B, Ripley MB. The rpart package. In: Mayo Clinic, Section of Statistics, Rochester, MN. 2004.
104. Curran WJ, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. Journal of the National cancer institute. 1993;85(9):704.
105. Gaspar LE, Scott C, Murray K, Curran W. Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases* 1. International Journal of Radiation Oncology* Biology* Physics. 2000;47(4):1001–1006.
106. Breiman L. Classification and regression trees. Chapman & Hall/CRC; 1984.
107. Quinlan JR. C4. 5: programs for machine learning. Morgan Kaufmann; 1993.
108. Breiman L. Random forests. Machine learning. 2001;45(1):5–32.
109. Decaminada N, Pernter P, Imondi A, Tommasini A. CT perfusion evaluation of cerebral haemodynamics before and after cranioplasty. Neuroradiol J. 2008;21:459–471.
110. Liang W, Xiaofeng Y, Weiguo L, Gang S, Xuesheng Z, Fei C, et al. Cranioplasty of large cranial defect at an early stage after decompressive craniectomy performed for severe head trauma. Journal of Craniofacial Surgery. 2007;18(3):526.
111. Sakamoto S, Eguchi K, Kiura Y, Arita K, Kurisu K. CT perfusion imaging in the syndrome of the sinking skin flap before and after cranioplasty. Clinical neurology and neurosurgery. 2006;108(6):583–585.
112. Agner C, Dujovny M, Gaviria M. Neurocognitive assessment before and after cranioplasty. Acta neurochirurgica. 2002;144(10):1033–1040.
113. Segal DH, Oppenheim JS, Murovic JA. Neurological recovery after cranioplasty. Neurosurgery. 1994;34(4):729.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30929-
dc.description.abstract顱骨切除術是最常見的腦部手術之一,主要是希望藉由移除部份的顱骨,使得因外傷或中風而腫脹的腦部有膨脹的空間,避免因為顱內壓上而導致腦部的進一步傷害。雖然有很多研究認為顱骨切除術對改善預後非常有效,卻也有一些研究認為此手術無明顯效果。
有鑑於此,我們認為應該有量化的指標在影像學上評估顱骨切除術的成果與效果。我們提出顱骨切除成果的指標為顱骨切除體積與顱骨切除表面積,兩者也可說是減壓努力的指標。除了由電腦計算之外,我們也可以利用簡單的公式加以估算顱骨切除的體積與面積。由於相對容易,我們認為有關顱骨切除術的研究皆應該將切除的體積或面積當作常規的指標。
我們提出的減壓效果指標包括:中線回返量,顱容積增量和腦體積增量。這些指標與減壓努力指標有正相關,與時間也有相關性。除了由電腦計算之外,中線回返量較容易由影像上直接量出。
我們發現這些指標和許多臨床因素有相關性。這些減壓努力和效果指標和術後顱內壓和神經學結果也有關聯,值得進一步探討。
zh_TW
dc.description.abstractCraniectomy is one of the most common cranial surgeries. The object of this procedure is basically to provide an extra space for the swollen brain by removing part of the skull, and therefore reducing the intracranial pressure and avoiding secondary injuries to the brain. The most common indications of craniectomy are severe head injuries and large infarcts. Many studies showed positive effects of craniectomy for neurological outcomes, but there were some studies showing no effect.
We propose some quantitative image parameters for evaluation of decompressive efforts and decompressive effects. The former includes the craniectomy volume and surface area. In addition to the computerized measurement, the craniectomy volume and area can also be estimated by simple formulas. It is so simple that the estimation of craniectomy volume or area should be considered a routine in every craniectomy study.
The parameters for decompressive effects include the midline return, potential cranial capacity increment, and actual brain volume increment. These parameters also correlate with decompressive efforts and are actually functions of time. In addition to the computerized measurement, the midline return can be readily measured manually.
We observed some correlation between these parameters and many clinical variables. They also correlated with the postoperative intracranial pressure and neurological outcome. Further studies should be done to clarify the clinical significance.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:21:24Z (GMT). No. of bitstreams: 1
ntu-100-D93548003-1.pdf: 10280901 bytes, checksum: afead1bb54d5b50ebeafa116337579d3 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsChapter 1. Introduction 1
1.1. Monro-Kellie doctrine 1
1.2. Craniectomy: the size matters! 1
1.3. Dissertation goals 2
Chapter 2. Craniectomy: indication and clinical evaluation 4
2.1. Indication 4
2.1.1. Severe head injury 4
2.1.2. Malignant infarction 5
2.1.3. Craniosynostosis 5
2.1.4. Timing of decompression 5
2.1.5. Non-decompressive craniectomy 6
2.1.6. Craniectomy in Taiwan 6
2.2. Clinical evaluation 8
2.2.1. Neurological assessment – consciousness and pupils 8
2.2.2. Age 9
2.2.3. Comorbidity and others 10
Chapter 3. Preoperative image and prognosis 11
3.1. Image prognostic factors 11
3.1.1. Lesion size, type and location 13
3.1.2. Basal cisterns 13
3.1.3. Midline shift 13
3.2. Automated assessment of image and prognosis 14
3.2.1. Materials and methods 15
3.2.2. Statistical analyses 17
3.2.3. Results 18
3.2.4. Discussion 23
3.2.5. Summary 27
Chapter 4. Image assessment of craniectomy 28
4.1. Related works 28
4.1.1. Detection of skull defects 28
4.1.2. Estimation of skull defect size 28
4.1.3. Measurement of brain expansion 31
4.2. Parameters of decompressive efforts 31
4.2.1. Skull defect volume (Vs) 31
4.2.2. Skull defect surface area (SA) 32
4.3. Parameters of decompressive effects 32
4.3.1. Midline return (MLR) 33
4.3.2. Potential cranial capacity increment (CCI) 34
4.3.3. Actual brain volume increment (BVI) 34
Chapter 5. Materials and methods 35
5.1. Materials 35
5.2. Parameters for decompressive efforts 35
5.2.1. Skull defect volumes (Vs) 35
5.2.1.1. Segmentation of cranium 36
5.2.1.2. Registration of preoperative and postoperative images 39
5.2.1.3. Registration of postoperative and mirror images 39
5.2.1.4. Subtraction of images and calculation of volumes 39
5.2.2. Surface areas (SA) of skull defects by marching cubes 40
5.2.3. Surface area (SA) by quasi-Monte Carlo method 42
5.2.3.1. Crofton formula 42
5.2.3.2. Generate the reference sphere 44
5.2.3.3. Generating uniformly distributed lines using low-discrepancy sequences 45
5.2.3.4. The intersection counting algorithm 45
5.2.4. The “ABC” method for estimation of skull defect volumes and surface areas 46
5.2.4.1. Measurement of ABC 46
5.2.4.2. Rationale of ABC 48
5.3. Parameters for decompressive effects 51
5.3.1. Midline return (MLR) 51
5.3.2. Cranial capacity increment (CCI) 53
5.3.3. Actual brain volume increment (BVI) 55
5.3.3.1. Watershed segmentation 56
5.3.3.2. Find the flood level for brain segmentation 57
Chapter 6. Results of image analysis 61
6.1. Parameters of decompressive efforts 61
6.1.1. Skull defect volume (Vs) 61
6.1.1.1. Comparing preoperative and postoperative images 61
6.1.1.2. Comparing postoperative image to its mirror 62
6.1.2. The surface area (SA) 64
6.1.3. The ABC method 65
6.2. Parameters of decompressive effects 66
6.2.1. Midline return (MLR) 66
6.2.2. Cranial capacity increment (CCI) 67
6.2.3. Brain volume increment (BVI) 68
6.3. Discussion 69
6.4. Summary 73
Chapter 7. Clinical correlation 75
7.1. Clinical correlation of decompressive efforts 75
7.1.1. Pathology 75
7.1.2. Age 77
7.1.3. Preoperative consciousness 77
7.1.4. Intracranial pressure (ICP) 78
7.1.5. Neurological outcome 81
7.2. Outcome model 82
7.2.1. Using clinical and image parameters 83
7.2.2. Image only model 85
7.2.3. Variable importance 86
7.3. Discussion 87
7.3.1. Craniectomy volume 87
7.3.2. Outcome model of the trauma group 88
7.4. Summary 90
Chapter 8. Conclusion and future works 91
8.1. Conclusion 91
8.2. Limitation of our study 91
8.3. Future works 92
8.3.1. Prospective study 92
8.3.2. Simple decompressive effect estimation 93
8.3.3. Craniectomy size and cerebral perfusion 93
8.3.4. Biomechanical correlation 94
References 96
Annex 105
dc.language.isoen
dc.title顱骨切除術成果與效果之影像評估zh_TW
dc.titleImage Evaluation on the Effort and Effect of Craniectomyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.coadvisor蔣以仁
dc.contributor.oralexamcommittee陳中明,杜永光,蔡瑞章
dc.subject.keyword顱骨切除術,影像對位,影像分割,電腦斷層,中線偏移,zh_TW
dc.subject.keywordcraniectomy,image registration,image segmentation,computed tomography,midline shift,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2011-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
10.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved